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Low-density arrays for quantitative real-time PCR (qPCR) are increasingly being used
as an experimental technique for miRNA expression profiling. As with gene expression
profiling using microarrays, data from such experiments needs effective analysis methods
to produce reliable and high-quality results. In the pre-processing of the data, one crucial
analysis step is normalization, which aims to reduce measurement errors and technical
variability among arrays that might have arisen during the execution of the experiments.
However, there are currently a number of different approaches to choose among and
an unsuitable applied method may induce misleading effects, which could affect the
subsequent analysis steps and thereby any conclusions drawn from the results. The
choice of normalization method is hence an important issue to consider. In this study we
present the comparison of a number of data-driven normalization methods for TaqMan
low-density arrays for qPCR and different descriptive statistical techniques that can
facilitate the choice of normalization method. The performance of the normalization
methods was assessed and compared against each other as well as against standard
normalization using endogenous controls. The results clearly show that the data-driven
methods reduce variation and represent robust alternatives to using endogenous controls.
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1. Introduction

MicroRNAs (miRNAs) constitute a family of ∼22 nucleotide long non-coding

RNAs, which has proved to represent an important class of gene regulatory

biomolecules.1–4 MicroRNAs are responsible for the regulation of a large number of
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genes in animals, plants and humans, and are important in many different biolog-

ical and cellular processes, such as development, differentiation, cell cycle control

and oncogenesis.5,6 It has been reported that ∼30% of the coding genes in humans

may be regulated post-transcriptionally by miRNAs.7,8 Due to the importance of

miRNA expression profiling, several technologies have been developed that enable

high-throughput and sensitive profiling, such as microarrays,9–14 quantitative real-

time PCR (qPCR)15,16 and bead-based flow cytometry.17 qPCR has become a

powerful technique as it combines improvements in sensitivity, specificity and sig-

nal detection.15,16 However, the accuracy of the results from experiments utilizing

high-throughput techniques is critically dependent on proper data normalization,

so also data generated by qPCR.18,19 There are several variables in a qPCR exper-

iment that needs to be controlled for, being either technical, e.g. differences in

the sample procurement, stabilization, RNA extraction and target quantification,

or biological, e.g. reflecting sample-to-sample inconsistencies or differences in bulk

transcriptional activity. Normalization is a pre-processing step with the purpose

of removing experimentally induced variation and differentiating true biological

changes.19,20 On the other hand, inappropriate normalization may induce mislead-

ing effects, which could affect subsequent analysis steps and thereby any conclusions

drawn from the results.18,21–25 Consequently, the choice of normalization method

is a crucial step in the analysis of qPCR data.

Regarding miRNA qPCR experiments, low-density arrays have become available

that makes it possible to measure the expression of 384 miRNAs on one qPCR

panel (e.g. TaqMan� miRNA low density arrays), thus facilitating high-throughput

profiling of miRNA expression.26,27 On the other hand, the technique has also

introduced new analyses challenges that need to be solved. For example, to profile

all available miRNAs in an organism would generally require multiple panels, since

each panel is limited to only a few hundred targets. This type of setup makes it

difficult to utilize normalization methods developed for DNA microarrays, since

those have been developed with other requirements in mind. However, as with

large-scale DNA microarrays, it is assumed that the majority of the miRNAs is not

influenced by the experiment and therefore shows an unchanged or no expression

at all in the sample.

A frequent approach for qPCR data normalization is the use of invariant endoge-

nous controls or reference miRNAs, commonly identified from a pilot study with rep-

resentative samples from the experimental condition(s).19,23,27 Although recently,

alternative data-driven methods have been proposed for proper normalization, e.g.

using the mean expression value or quantile transformation.19,28,29 Here we present

the comparison of a number of data-driven methods for normalization of qPCR

arrays; mean expression normalization and quantile normalization, and compare

those to using endogenous controls for normalization. We also use different descrip-

tive statistical techniques in the process of choosing a proper normalization method.

The normalization methods were tested on a qPCR dataset generated by Jukic

et al.,30 a profiling analysis of the intergenerational differences in miRNA expression
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of melanocytic neoplasms in young adult and older adult groups. This dataset

constitutes an excellent example to test the methods on, since two panels were

used (TaqMan� Low Density Array panels A and B) on a large number of samples

(in total 52 arrays; 20 lesions plus 6 controls for each panel) and the samples were

taken from different background groups (primary melanoma lesions from two age

groups, < 30 and > 60 years old, and nevi benign specimens).

The results show that for this dataset, quantile normalization performs best in

reducing variations between arrays and is better than the standard method using

an endogenous control.

2. Results

2.1. Raw data outline

The example dataset used in this study was obtained from GEO31 (accession num-

ber GSE1922930) and comprises CT values for 26 samples profiled on TaqMan�

miRNA low density arrays (TLDA). Of the samples, 10 originate from older

adult melanocytic neoplasm (AM/group 1), 10 from pediatric and young adult

melanocytic neoplasm (PM/group 2) and 6 from adult nevi and pediatric nevi

specimens as controls (control/group 3).

The TaqMan� MicroRNA Array Set v2.0 from Applied Biosystems (Applied

Biosystems, Foster City, CA, USA) consists of two panels, A and B, containing in

total 364 TaqMan� MicroRNA assays plus 20 control assays per panel. This setup

enables quantification of 667 unique human miRNAs in total. Panel A contains

337 miRNAs that tend to be functionally defined and are broadly and/or highly

expressed, whereas the 289 miRNAs on panel B are more narrowly expressed and/or

expressed at low levels and are usually not functionally defined.

Real-time quantitative PCR (qPCR) is an experimental technique based on the

polymerase chain reaction (PCR), where a target molecule (PCR product, DNA

or RNA) is amplified and quantified simultaneously. As the amplification reaction

progresses the amount of PCR product is detected in real time, as opposed to

a standard PCR where the amount is detected at the end of the reaction. The

amount of PCR product is measured at each amplification cycle and reported in

fluorescence units. The process leads to an exponential amplification of the amount,

since the number of products is doubled at each cycle. The CT value corresponds

to the number of amplification cycles required for the fluorescent signal to exceed

the background level. This means that CT levels are inversely proportional to the

amount of products in the sample, i.e. a low CT value means a high expression of

the miRNA and vice versa. Moreover, in this study miRNAs with a CT value above

40 cycles are considered non-expressed.

2.2. Raw data analysis

As a first step, a visual analysis of the distribution of the data is recommended, to

spot any apparent discrepancies between panels and/or samples; this can be done
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Fig. 1. Boxplots of raw data. The boxplots show the distribution of CT values in the raw (non-
normalized) data, where upper plots show CT values for miRNAs on panel A for group AM/1,
PM/2 and control/3, respectively, and lower plots show CT values for miRNAs on panel B for
group AM/1, PM/2 and control/3, respectively.

by generating a boxplot for each panel and sample, such as in Fig. 1. Studying the

raw expression values, variations in the distribution patterns among samples and

panels can be seen. To note is that less miRNAs on panel B are expressed, since

mean expression level for each array of panel B is ∼40 CT and in general higher

than for arrays of panel A. Consequently, more outliers are indicated for arrays

of panel B. However, there is no clear distinction between any of the different

groups and no group or sample discerns from the others, which indicates an overall

successful execution of the experiments.

2.3. Measure of dispersion and correlation for raw data values

The coefficient of variation (CV) is a normalized measure of the dispersion of the

data and in the context of expression profiling experiments it indicates to which

extent the expression for an individual miRNA/gene varies among samples. Prefer-

ably, after normalization the CV value should have decreased in comparison to

raw data. A lower CV denotes a better removal of experimentally induced noise

and indicates a good performance of the normalization method.32,33 The CV is a

dimensionless number and is therefore useful when comparing datasets with dif-

ferent units or widely different means. However, when the mean is close to zero,

the CV approaches infinity and is therefore sensitive to small changes in the mean,
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which can give a skewed picture of the variation in the data. If this is the case,

then the standard deviation (sd) may be a better measure of the dispersion, since

it is more robust to such changes. However, the sd is easily affected by outliers and

may therefore give a skewed picture if such values are frequent in the data. In this

study, we calculated the CV according to the following equation

CVg =
(standard deviation)tI···tn

√

[(mean)tI···tn]2

[see also Sec. 5, Materials and Methods for Eq. (1)]34 as well as the sd, for each

individual miRNA across all samples/arrays within each sample group in the raw

data.

The results show that the CV values for individual miRNAs range from 0.00–

0.13, 0.00–0.10 and 0.00–0.10 for groups 1, 2 and 3, respectively and the sd from

0.00–3.94, 0.00–3.47 and 0.00–3.12 for groups 1, 2 and 3, respectively (Fig. 2). Both

CV and sd values are very small, which indicates a very small dispersion among

samples with the same background and, hence, a good consistency in the executed

experiments. It can also be seen that the CV and sd values are fairly smaller for

group 3 (having smaller average values) than for groups 1 and 2, indicating a slightly

less dispersion in the controls than in the neoplasm samples.

The Pearson’s correlation coefficient (r) is a measure of the linear dependence

between two variables and is represented by a value between ±1, where +1 indicates

a perfect fit of the data points for the two variables and −1 an opposite fit. In the

context of expression profiling experiments, r gives an indication of how well the

expression values from one array/sample is consistent with the expression values

from another array/sample. Hence, r should be calculated for each pair of samples

with the same background and after normalization r should have increased for

samples from the same group.

We also calculated r for each pair of arrays of the same panel and from the

same sample group (i.e. all arrays of panel A from group AM/1 was compared to

each other, etc.), but summarized the r values in one boxplot for each sample group

(Fig. 2). The correlation is overall high, again indicating a good consistency among

samples with the same background, and is also larger for samples in the control

group, which again indicate an overall better consistency among the controls.

All in all, the data has good consistency among samples with the same back-

ground and hence only small variations need to be adjusted for.

2.4. Normalization of data

As previously described, there are several technical and biological variables in a

qPCR experiment that can lead to variations among samples with the same back-

ground, and these variations need to be controlled for. Hence, normalization aims

to reduce any experimentally induced variation and differentiate true biological

changes.19,20
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Fig. 2. Boxplots of CV, sd and r values. The boxplots show calculated CV, sd and r values of
individual miRNAs across samples and for each sample group separately. The first row shows
non-normalized (raw) data, second row shows normalized data using an endogenous control, third
row shows normalized data using the approach by Mestdagh et al. (2009), fourth row shows
normalized data using array mean, fifth row shows normalized data using qpcrNorm and sixth
row shows normalized data using Affy.
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A frequent approach for normalization of qPCR data is the use of invariant

endogenous controls or reference miRNAs.19,23,27 On the TaqMan� MicroRNA

Array Set v2.0 there are several endogenous controls present on each panel that

can be utilized as normalizers, e.g. MammU6, RNU44 and RNU48. However, as

previously stated, the normalization is only as good as the normalization method

used,18,21–25 and when using an endogenous control the preferable normalizer is an

RNA that is consistently stably expressed across all samples and expressed along

with the target genes of interest27,35; since any biological variations in the expres-

sion levels of the normalizer will obscure real changes. It is therefore important

to carefully evaluate which control available on the array that is the best nor-

malizer, and which can be done by utilizing algorithms such as geNorm36,37 and

NormFinder.38,39 These will be described in more detail in Sec. 2.5.

Several methods for normalization of large-scale gene expression profiling exper-

iments using microarrays have been developed during recent years. These methods

are commonly data-driven, in that they utilize the large amount of data generated,

aim to use all data points available and make no prior assumptions about which

genes can be used as controls. Examples of methods are those that utilize the mean

or median expression value, lowess or quantile normalization.39–41 The common

assumption of these methods is that the majority of genes show an unchanged

expression level and only a small portion of the genes needs to be adjusted. With

the advancement in the qPCR technique using arrays, the range of possible tar-

gets to analyze has increased to a few hundred targets and, consequently, data-

driven methods have also been proposed for this type of experiments, e.g. using the

mean value of expressed RNAs or quantile normalization.29,40 As with large-scale

microarrays, it is assumed that the majority of the miRNAs is not influenced by the

experiment and therefore shows an unchanged or no expression at all in the sample.

But, as previously described, the technique introduces new analyses challenges, such

as profiling all available miRNAs in an organism would generally require multiple

panels, since each panel is limited to only a few hundred targets. Moreover, since

normalization methods developed for microarrays do not take this type of setup in

consideration, this could make them inappropriate for data generated using qPCR

arrays.

2.5. Normalized data using endogenous control

As previously described, qPCR miRNA profiling data is commonly normalized

against the expression of some reference RNA(s) that is present on the array. On the

TLDAs used in this study the endogenous controls MammU6, RNU44 and RNU48

are represented on both panels and on panel B the additional controls RNU24,

RNU43 and RNU6B are also present. To facilitate the identification of a normal-

izer that is consistently stably expressed across all samples and expressed along

with the target genes of interest, the algorithms geNorm36,37 and NormFinder38,39

have been developed.
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geNorm ranks candidate control RNAs according to their expression stability

and outputs the two most stable candidates. From a candidate set of plausible con-

trols, the algorithm compares the M -values of all candidates and removes the con-

trol with highest M -value. The process is repeated until only two candidates are left,

which is the optimal pair of controls having the smallest M -values in the set of can-

didates. The M -value is a gene stability measure and is “the average pairwise varia-

tion of a particular gene with all other control genes”. The standard deviation of the

log transformed expression ratios between two controls for each sample is calculated

and then the arithmetic mean of all standard deviations becomes the M -value.

NormFinder is also based on gene expression stability, but ranks the candidates

based on minimal inter- and intra-group variation. The output is a ranking list of

all candidates included in the analysis. The algorithm is based on a mathemat-

ical model of the gene expression, taking into account the amount of mRNA in

the sample as well as the random variation caused by biological and experimental

factors, and is used for estimating the inter- and intra-group variation. The under-

lying model for estimating the expression variation is based on the log transformed

expression levels of each candidate control. The intra- and inter-group variations are

estimated separately and thereafter combined into a stability measure representing

the estimated systematic error; a low stability value means a low systematic error

and thereby a stable expression across samples.

The algorithms were applied to panels A and B separately, and geNorm identifies

RNU44 and RNU48 as the most stable candidates for panel A, and RNU48 and

RNU24 for panel B. NormFinder also ranks RNU48 as the most stable candidate

for panel A, and RNU24 and RNU48 as the best and second best, respectively, for

panel B. The CV for RNU48 across all arrays is 0.045 for panel A and 0.047 for

panel B, which indicates a relatively stable expression across all arrays. The mean

CT value is 20.3 and 20.1 on panels A and B, respectively, which shows that the

RNA is expressed. Since RNU48 is suggested as candidate for both panels, this

RNA was used to normalize the data.

When using an endogenous control, the standardized way of normalizing

the data is according to the ∆CT method, where ∆CT = (CT miRNA −

CT endogenous control).
42 Hence, the data was normalized according to this method

(see Methods and Materials for more details), and for each array separately.42

After normalization, we calculated CV, sd and r values as previously described.

The results show that there is a general increase of the CV for all groups compared

to raw data (Fig. 2) and we can also see that the mean CV has increased for

all groups (Table 1), and for a few miRNAs there is even a dramatic increase

in the CV (see the outliers in the boxplots in Fig. 2 for normalized data using

endogenous control). On the other hand, the sd values has decreased for all groups

when compared to raw data. Regarding the correlations between samples, there is

a general deterioration for all sample groups. But, for some individual samples the

correlation has increased, e.g. study the whisker for group 2 that is increased and

almost reaches r = 1.0.
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Table 1. Calculated mean CV, sd and r. The table shows the mean of CV, sd and r for raw

(non-normalized) and normalized data, respectively, using different normalization methods.

CV sd r

AM/1 PM/2 Contr/3 AM/1 PM/2 Contr/3 AM/1 PM/2 Contr/3

Raw 0.029 0.030 0.021 0.837 0.889 0.609 0.941 0.940 0.960
Endo Contr 0.937 0.754 0.545 0.022 0.018 0.016 0.862 0.891 0.891
Mestdagh 1.500 0.762 0.994 1.061 0.990 0.903 0.923 0.927 0.943
Array mean 0.029 0.029 0.022 0.028 0.028 0.021 0.944 0.951 0.964
qpcrNorm 0.025 0.023 0.020 0.740 0.700 0.592 0.935 0.942 0.951
Affy 0.024 0.022 0.019 0.711 0.670 0.562 0.950 0.956 0.966

2.6. Normalized data using mean

Mestdagh et al.40 recently proposed the use of mean expression level of expressed

miRNAs, i.e. miRNAs with a CT value less than some pre-defined threshold, e.g.

35 or 40 CT, as a normalization method. The mean CT value of expressed miRNAs

for an individual array is subtracted from the CT value of each miRNA, to get

a scaled value for each miRNA. The calculated mean, after removing all miRNAs

with an expression value ≥ 35, was included in the input data for geNorm36,37 along

with the expression values of the endogenous controls previously evaluated, and the

mean turned out to be top-ranked by this algorithm. Additionally, the mean has

a smaller dispersion across arrays than the endogenous controls, as indicated by

lower CV values (0.024 for panel A and 0.020 for panel B), and which follows the

reasoning by Mestdagh et al.40 that the mean is a more stable normalizer.

The results, after normalization, show that the CV in general has increased

compared to raw data and, additionally, for a portion of the miRNAs there is a

dramatic increase in the dispersion (study the outliers in the boxplots for the CV

values in Fig. 2 for normalized data using the approach by Mestdagh et al.40).

Moreover, the mean CV has increased for all sample groups (Table 1). The rea-

son for this is that the mean for individual arrays in this dataset are generally

high, around CT = 30, which yields very small normalized values and this in turn

results in a small normalized mean. As previously described, a small mean could

affect the CV values negatively and give a skewed picture of the normalization.

Inspecting the miRNAs with an extreme CV show that their normalized mean is

indeed very close to zero (data not shown), which supports this suspicion. The cal-

culated sd values additionally confirm it, since the boxplots of sd values show no

extreme outliers (Fig. 2). However, the sd values have not improved compared to

raw data and thereby neither compared to normalized data using the endogenous

control.

We also calculated the correlation between samples, which should also give an

indication of whether this normalization method is robust or not. But, the removal

of values ≥ 35 causes problems when calculating the correlation between samples,

since consequently for excluded miRNAs there are missing values in the data. To

overcome this problem, we replaced all removed values with 10, which is a higher
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expression value than the maximum normalized expression value in any of the

samples (max ≈ 8.5). The results show that the correlations of the normalized

values are higher when compared to using the endogenous control as normalizer

(see the boxplots for r values in Fig. 2 for normalized data using the approach by

Mestdagh et al.40 and the mean values in Table 1). However, the correlations are

slightly worse when compared to raw data, which is a similar result as when using

the endogenous control.

We also tested a second approach using the mean as normalizer, but where each

CT value was divided by the mean expression level for each array without prior

removal of CT values ≥ 35. This method results in both very small CV and sd

values, which are also in general smaller than for previous tested methods as well

as raw data (Fig. 2). In addition, the method results in very high r values that are

slightly better than for raw data (compare mean r values in Table 1), showing an

improved consistency among arrays within each group.

2.7. Normalized data using quantile

In DNA microarray analysis, quantile normalization is widely used and based on

the principle that on average the distribution of gene transcript levels within a cell

remains constant across samples; thus, if the expression level of one gene increases,

that of another decreases.41 In detail, the quantile measures the degree of spread

in the data. The typical example is that of the percentiles; in this case, the data

is divided into 100 regular intervals and split into quarters. The lower quarter

represents the 25th percentile, meaning that 25% of the data points are lower than a

specific value. Quantile normalization generalizes this approach to n-fold partitions

of the data, where n is the number of data points, and assumes that the data for

individual samples have the same overall rank-order quantile distribution. Finally,

quantile normalization adjusts the overall expression levels to make the distribution

for all samples equal.

There can also be panel-specific effects present in the qPCR experiments, since

the number of miRNAs assayed in each sample are dispersed across multiple PCR

panels (or plates), which can induce bias in the results.29 This is also indicated by

the boxplots of the raw CT values, which show that the average CT value is on the

same level for all samples on panel B but varies on panel A (Fig. 1). The solution

here is to use the quantile normalization approach assuming that the distribution

of the expression levels is the same across all arrays for the same experimental con-

dition. By forcing the distribution for each array to be equal, the variability asso-

ciated with panel-specific effects in the data can be removed. This approach was

incorporated in the normQpcrQuantile method (available in the package qpcrNorm

for R) developed by Mar et al.29 The method proceeds in two stages: first, the

quantile normalization is applied to each individual sample and if the sample is

distributed across multiple plates, plate-to-plate effects are removed by enforcing

the same quantile distribution on each plate. Then, in the second stage, the quantile
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distribution is enforced between samples, so that each sample has the same distri-

bution of expression values as all of the other samples that are compared.

We applied the normQpcrQuantile method on the neoplasm data, which pro-

duced very small CV and sd values as well as high r values for all groups, and

which are slightly better than raw data (Fig. 2). However, the results are not as

good as when using the array mean, since the sd value have not decreased to the

same extent, but the CV and r values are on a comparable level.

The quantile normalization approach was first developed for large-scale DNA

microarrays in mind, which have a different magnitude, and a method for such data

is available in the R package Affy.41,43 In case of Affy quantile normalization, only

sample normalization is performed and no plate effects are corrected for, i.e. each

plate for each sample is quantile normalized. We also tested this algorithm and

applied it on arrays of the same panel separately, i.e. first for arrays of panel A and

then for arrays of panel B, which enforces the same distribution for samples from

the same panel.

This normalization yields a highly similar result as when using normQpcrQuan-

tile normalization, only here slightly lower CV and sd values (with less outliers than

for normQpcrQuantile normalization) as well as better correlations can be seen for

all groups (Fig. 2). As with normQpcrQuantile normalization, the sd values have

not decreased to the same extent as when using the array mean as normalizer.

2.8. Distribution of normalized data

The distribution of the data after normalization is also important to consider

in the choice of a proper normalization method. After normalization, the data

should become more homogenous compared to raw data, so that any experimen-

tally induced variations have been adjusted for. To compare with raw data, we

inferred boxplots of the distribution of the concatenated data from panels A and B,

and for each sample group and each normalized dataset, respectively (Fig. 3). The

boxplots show that the quantile-based normalization methods generate the most

homogenous distributions of the data after normalization and also an improved

distribution compared to raw data.

Although the array mean normalization produced the lowest CV and sd values,

the distribution of the normalized values are less homogenous than the quantile-

normalized data. Normalization using the endogenous control, on the other hand,

has introduced more outliers in the data and thereby a less homogenous distribution

compared to raw data as well as any of the other normalized datasets. In the

distribution plots of the approach proposed by Mestdagh et al., all values ≥ 35 have

been replaced with the value 10, which could be a reason for its relative homogenous

distribution plots. Moreover, these plots are more similar to the quantile-normalized

data than the array mean and endogenous control normalized data.

It can also be seen that the normQpcrQuantile method was here unable to

adjust for plate-to-plate effects, since the results are highly similar as for Affy
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Fig. 3. Boxplots of normalized data.The boxplots show the distribution of CT values of raw and
normalized data according to the different methods tested.
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normalization (where no plate-to-plate effects were considered) and the distribu-

tion plots are not entirely homogenous (e.g. the mean value is not the same for all

samples). Additionally, when studying the distributions plots for each panel sepa-

rately it can be seen that the distributions are completely homogenous, having the

same mean and same sd (data not shown). This also applies for the Affy normalized

data. Moreover, it can be seen that these two methods produce somewhat different

results, since the distribution for some samples are not identical, e.g. sample 2 for

group AM/1 have a lower mean after normQpcrQuantile normalization then after

Affy normalization. However, the differences are very small.

3. Which Method to Choose?

A common normalization strategy for qPCR data is the use of one or several

endogenous control RNAs available on the array and according to the ∆CT method.

Problems with this strategy arise if the control(s) in the study are not stable, not

expressed or very weakly expressed. Regarding the data used in this comparative

study, the use of an endogenous control was clearly not optimal, since the cor-

relation and the distribution plots showed a deterioration of the normalized data

compared to raw data, although the sd values decreased.

Of the data-driven normalization methods, the mean and quantile-based meth-

ods performed best; using the array mean as well as the quantile showed a decrease

in CV and/or the sd values and an increase in the correlation between samples

with the same background compared to raw data. However, the method proposed

by Mestdagh et al.40 is questionable for this dataset, since all results indicate a dete-

rioration in the spread of the data and an introduction of more variation among

samples within the same group.

The array mean normalization produced the smallest sd values as well as an

increase in correlation values, which indicate that it is a good choice for normal-

ization. However, the distribution patterns showed that the quantile-based nor-

malization methods are to prefer over the array mean for this dataset, since for

both quantile-based methods the data became more homogenous after normaliza-

tion compared to raw data and more homogenous than when normalizing with the

array mean. Additionally, for both quantile-based methods the CV and sd values

decreased and the r values increased compared to raw data.

4. Discussion

In the current study, we compare the performance of different normalization strate-

gies for miRNA expression data generated by using qPCR arrays. The qPCR tech-

nique is commonly regarded as the golden standard, due to its high sensitivity,

specificity and good signal detection,15,16 and has been widely used as a valida-

tion technique in gene expression studies following microarray experiments. More-

over, the development of qPCR arrays has made it possible to increase the number

of targets assayed in parallel and, hence, the technique has recently increased in
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use for miRNA expression studies. However, the data produced by this technique

requires the development of amended analysis methods, since qPCR arrays have

other requirements than common microarrays that need to be regarded, e.g. the

magnitude of the data (the number of targets/transcripts on one array) is much

smaller and the samples may be distributed over several panels if the number of

targets assayed exceeds the capacity of the array.

The results from this study show that it is important to test and evaluate several

normalization strategies to find the optimal one for the dataset in consideration as

well as testing different measures for evaluating the methods. For the data used in

this study, quantile transformation is recommended, since it best accomplished to

remove variations among samples with the same background. However, none of the

quantile-based methods were able to adjust for plate-to-plate effects.

Finally, it should be noted that we have made no comparison of how the dif-

ferent normalization methods affect the inference of differentially expressed. Since,

clearly, the methods produce different results, their impact on which miRNAs will

be considered differentially expressed should also be investigated, and this would

be the next step in the analysis of the data.

5. Materials and Methods

5.1. miRNA dataset

The processed qPCR dataset, i.e. with obtained CT values, was downloaded

from GEO, accession number GSE19229. The dataset consists of 56 TaqMan�

microRNA low density arrays (TLDA, Applied Biosystems, Foster City, CA,

http://www.appliedbiosystems.com ) — 26 samples distributed on two panels: panel

A representing 377 functionally defined miRNAs and panel B representing 289 miR-

NAs whose function is not yet completely defined. Endogenous controls on panels A

and B include MammU6, RNU44 and RNU48, and on panel B the additional con-

trols RNU24, RNU43 and RNU6B. CT values had been obtained by running the

arrays in the 7900 HT Sequence Detection system and using the ABI TaqMan

SDS v2.3 software. The data includes three different groups: 10 samples from older

adult melanocytic neoplasm (AM), 10 samples from pediatric and young adult

melanocytic neoplasm (PM), and 3 controls from adult nevi and pediatric nevi

specimens, respectively (AN and PN). For PM, one of the samples had been repli-

cated three times; however, only the first sample was included in this study.

5.2. Normalization methods

MicroRNA expression values were normalized using:

(1) Endogenous control expression value

To identify candidate endogenous control RNAs the algorithms geNorm36,37

and NormFinder38,39 were applied to the raw CT values. For geNorm,

the package SLqPCR (http://www.bioconductor.org/packages/2.2/bioc/html/
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SLqPCR.html) in R was used and for NormFinder the MS Excel Add-In

(http://www. mdl.dk/publicationsnormfinder.htm) was used. NormFinder was

applied without using a group identifier. After identifying endogenous control

RNA(s) the CT values were normalized according to the ∆CT method, where

∆CT = (CT miRNA–CT endogenous control).
42

(2) Mean expression values

The mean expression value was used in two different approaches. First, accord-

ing to the method proposed by Mestdagh et al.,40 where prior to normalization

all CT values ≥ 35 were removed and not included in the normalization, and

thereafter, for each array the mean expression value was calculated and directly

subtracted from each individual miRNA’s CT value. Second, for each array the

mean expression value was calculated, without prior removal of CT values ≥ 35,

and thereafter divided with each individual miRNA’s CT value.

(3) Quantile transformation

Quantile normalization was performed by using the normQpcrQuantile func-

tion available in the R package qpcrNorm and the normalize.quantiles function

available in the R package Affy.

5.3. Measures of performance

The performance of the normalization methods were assessed by using boxplots to

investigate the distribution patterns of CT values for each sample/array and the

correlation of variance (CV) as well as standard deviation (sd) to investigate the

dispersion of CT values for individual miRNAs.34 Both measures were generated

using functions in R. Since there is a possibility to get negative mean values after

normalization, the CV values were computed as

CVg =
(standard deviation)

tI···tn
√

[(mean)tI···tn]2
, (1)

where g is a miRNA, and the standard deviation and mean were calculated for each

individual miRNA across all arrays.
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