
Nonlinear Dyn (2022) 107:1417–1450

https://doi.org/10.1007/s11071-021-06957-4

ORIGINAL PAPER

How to compute invariant manifolds and their reduced

dynamics in high-dimensional finite element models

Shobhit Jain · George Haller

Received: 18 March 2021 / Accepted: 24 September 2021 / Published online: 12 October 2021

© The Author(s) 2021

Abstract Invariant manifolds are important constructs

for the quantitative and qualitative understanding of

nonlinear phenomena in dynamical systems. In nonlin-

ear damped mechanical systems, for instance, spectral

submanifolds have emerged as useful tools for the com-

putation of forced response curves, backbone curves,

detached resonance curves (isolas) via exact reduced-

order models. For conservative nonlinear mechani-

cal systems, Lyapunov subcenter manifolds and their

reduced dynamics provide a way to identify nonlin-

ear amplitude–frequency relationships in the form of

conservative backbone curves. Despite these powerful

predictions offered by invariant manifolds, their use

has largely been limited to low-dimensional academic

examples. This is because several challenges render

their computation unfeasible for realistic engineering

structures described by finite element models. In this

work, we address these computational challenges and

develop methods for computing invariant manifolds

and their reduced dynamics in very high-dimensional

nonlinear systems arising from spatial discretization of

the governing partial differential equations. We illus-

trate our computational algorithms on finite element

models of mechanical structures that range from a sim-

ple beam containing tens of degrees of freedom to an

aircraft wing containing more than a hundred–thousand

degrees of freedom.
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1 Introduction

Invariant manifolds are low-dimensional surfaces in the

phase space of a dynamical system that constitute orga-

nizing centers of nonlinear dynamics. These surfaces

are composed of full system trajectories that stay on

them for all times, partitioning the phase space locally

into regions of different behavior. For instance, invari-

ant manifolds attached to fixed points can be viewed

as the nonlinear analogues of (flat) modal subspaces

of the linearized system. Classic examples are the sta-

ble, unstable and center manifolds tangent to the stable,

unstable and center subspaces of fixed points (see, e.g.,

Guckenheimer and Holmes [27]). The most important

class of invariant manifolds are those that attract other

trajectories, and hence, their own low-dimensional

internal dynamics acts a mathematically exact reduced-

order model for the full, high-dimensional system. The

focus of this article is to compute such invariant man-

ifolds and their reduced dynamics accurately and effi-

ciently in very high-dimensional nonlinear systems.

The theory of invariant manifolds has matured over

more than a century of research and has been applied

to numerous fields for the qualitative understanding of

nonlinear behavior of systems (see Fenichel [20–22],
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Hirsch et al. [35], Wiggins [74], Eldering [18], Nipp

and Stoffer [59]). The computation of invariant mani-

folds, on the other hand, is a relatively new and rapidly

evolving discipline due to advances in scientific com-

puting. In this paper, we address some challenges that

have been hindering the computation of invariant man-

ifolds in high-dimensional mechanical systems arising

from spatially discretized partial differential equations

(PDEs).

The methods for computing invariant manifolds

can be divided into two categories: local and global.

Local methods approximate an invariant manifold in

the neighborhood of simpler invariant sets, such as

fixed points, periodic orbits or invariant tori. Such

local approximations are performed using Taylor series

approximations around the fixed point or Taylor–

Fourier series around the periodic orbit/invariant torus

(see Simo [64]). Global methods, on the other hand,

seek invariant manifolds globally in the phase space.

Global techniques generally employ numerical contin-

uation for growing invariant manifolds from their local

approximation that may be obtained from the linearized

dynamics (see Krauskopf et al. [48] for a survey).

1.1 Global techniques

A key aspect of most global techniques is to dis-

cretize the manifold into a mesh, e.g., via a collo-

cation or a spectral approach (see Dancowicz and

Schilder [13], Krauskopf et al. [49]), and solve invari-

ance equations for the unknowns at the mesh points.

For growing an M−dimensional manifold via q col-

location/spectral points (along each of the M dimen-

sions) in an N−dimensional dynamical system, one

needs to solve a system of O
(

Nq M
)

nonlinear alge-

braic equations at each continuation step. This is

achieved via an iterative solver such as the Newton’s

method. As N invariably becomes large in the case

of discretized PDEs governing mechanics applications,

numerical continuation of invariant manifolds via col-

location and spectral approaches becomes computa-

tionally intractable. Indeed, while global approaches

are often discussed for general systems, the most com-

mon applications of these approaches tend to involve

low-dimensional problems, such as the computation of

the Lorenz manifold (Krauskopf and Osinga [47]).

Global approaches also include the continuation

of trajectory segments along the invariant manifold,

expressed as a family of trajectories. This is achieved

by formulating a two-point boundary value problem

(BVP) satisfied by the trajectory on the manifold

and numerically following a branch of solutions (see

Krauskopf et al. [48], Guckenheimer et al. [28]). While

collocation and spectral methods are valid means to

achieve this end as well, the (multiple) shooting method

(see Keller [43]; Stoer and Bulirsch [66]) has a distin-

guishing appeal from a computational perspective for

high-dimensional problems. In the (multiple) shooting

method, an initial guess for one point on the solu-

tion trajectory is iteratively corrected such until the

two-point BVP is solved up to a required precision.

In each iteration, one performs numerical time inte-

gration of the full nonlinear system between the two

points of the BVP, which is a computationally expen-

sive undertaking for large systems. However, time inte-

gration involves the solution O (N ) nonlinear alge-

braic equations at each time step, in contrast to col-

location and spectral methods which require O (Nq)

nonlinear algebraic equations to be solved simultane-

ously for q collocation/spectral points. Coupled with

advances in domain decomposition methods for time

integration (see Carraro et al. [10]), the multiple shoot-

ing method provides a feasible alternative to collo-

cation and spectral methods. Still, covering a multi-

dimensional invariant manifold using trajectory seg-

ments in a high-dimensional system is an elusive task

even for multiple shooting methods (see, e.g., Jain et

al. [42]).

A number of numerical continuation packages have

enabled the computation of global invariant manifolds

via collocation, spectral or multiple shooting meth-

ods. AUTO [17], a FORTRAN-based package, con-

stitutes the earliest organized effort toward continua-

tion and bifurcation analysis of parameter-dependent

ODEs. AUTO [17] employs orthogonal collocation to

approximate solutions and is able to continue solution

families in two or three parameters. The MATLAB-

based package Matcont [16] addresses some of the

limitations of AUTO, albeit at a loss of computational

performance. Additionally, Matcont can also perform

normal form analysis. coco [13] is an extensively

documented and object-oriented MATLAB package

which enables continuation via multi-dimensional atlas

algorithms (Dankowicz et al. [14]) and implements

collocation as well as spectral methods. Another

recent MATLAB package, NLvib [46], implements

the pseudo-arc-length technique for the continuation
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of single-parameter family of periodic orbits in non-

linear mechanical systems via the shooting method or

the spectral method (commonly referred to as harmonic

balance in mechanics). Similar continuation packages

are also available in the context of delay differential

equations (see DDE-BIFTOOL [19], written in MAT-

LAB and Knut [67], written in C++). The main focus

of all these and other similarly useful packages is to

implement automated continuation procedures, includ-

ing demonstrations on low-dimensional examples, but

not on the computational complexity of the opera-

tions as N increases. As discussed above, the collo-

cation/spectral/shooting techniques that are invariably

employed in such packages limit their ability to com-

pute invariant manifolds in high-dimensional mechan-

ics problems, where system dimensionality N varies

from several thousands to millions.

1.2 Local techniques

In contrast to global techniques, local techniques for

invariant manifold computations produce approxima-

tions valid in a neighborhood of a fixed point, peri-

odic orbit or invariant torus. As a result, local tech-

niques are generally unable to compute homoclinic and

heteroclinic connections. Nonetheless, in engineering

applications, local approximations of invariant mani-

folds often suffice for assessing the influence of non-

linearities on a well-understood linearized response.

Center manifold computations and their associated

local bifurcation analysis via normal forms (see Guck-

enheimer and Holmes [27]) are classic applications of

local approximations where the manifold is expressed

locally as a graph over the center subspace. For an

M−dimensional manifold, this local graph is sought

via an M−variate Taylor series where the coefficient

of each monomial term is unknown. These unknown

coefficients are determined by solving the invariance

equations in a recursive manner at each polynomial

order of approximation, i.e., the solution at a lower

order can be computed without the knowledge of the

higher-order terms. The computational procedure sim-

ply involves the solution of a system of O(N ) linear

equations for each monomial in the Taylor expansion

(see Simo [64] for flows, Fuming and Küpper, [23]

for maps). Thus, in the computational context of high-

dimensional problems, local techniques that employ

Taylor series approximations exhibit far greater fea-

sibility in comparison to global techniques that involve

the continuation of collocation, spectral or shooting-

based solutions.

More recently, the parametrization method has

emerged as a rigorous framework for the local analy-

sis and computation of invariant manifolds of discrete

and continuous time dynamical systems. This method

was first developed in papers by Cabré, Fontich and

de la Llave [6–8] for invariant manifolds tangent to

eigenspaces of fixed points of nonlinear mappings on

Banach spaces and then extended to whiskered tori by

Haro and de la Llave [32–34]. We refer to the mono-

graph by Haro et al. [31] for an overview of the results.

An important feature of the parametrization method

is that it does not require the manifold parametriza-

tion to be the graph of a function and hence allows for

folds in the manifold. Furthermore, the method returns

the dynamics on the invariant manifold along with its

embedding. The formal computation can again be car-

ried out via Taylor series expansions when the invariant

manifold is attached to a fixed point and via Fourier–

Taylor expansions when it is attached to an invariant

torus perturbing from a fixed point (see, e.g., Mireles

James [56], Castelli et al. [11], Ponsioen et al. [61,63]).

The main focus of the parametrization method has

been on the computer-assisted proofs of existences

and uniqueness of invariant manifolds, for which the

dynamical system is conveniently diagonalized at the

linear level. Furthermore, as discussed by Haro et

al. [31], this diagonalization allows a choice between

different styles of parametrization for the reduced

dynamics on the manifold, such as a normal form

style, a graph style or a mixed style. Recent applica-

tions of the parametrization method include the com-

putation of spectral submanifolds or SSMs (Haller and

Ponsioen [29]) and Lyapunov subcenter manifolds or

LSMs (Kelley [44]). For these manifolds, the nor-

mal form parametrization style can be used to directly

extract forced response curves (FRCs) and backbone

curves in nonlinear mechanical systems, as we will dis-

cuss in this paper (see Ponsioen et al. [61,63], Breunung

and Haller [3], Veraszto et al. [72]).

1.3 Our contributions

While helpful for proofs and expositions, the rou-

tinely performed diagonalization and the associated

linear coordinate change in invariant manifold compu-
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tations render the parametrization method unfeasible

to high-dimensional mechanics problems for two rea-

sons. First, diagonalization involves the computation

of all N eigenvalues of an N−dimensional dynamical

system, and second, the nonlinear coefficients in physi-

cal coordinates exhibit an inherent sparsity in mechan-

ics applications that is annihilated by the linear coor-

dinate change associated with diagonalization. Both

these factors lead to unmanageable computation times

and memory requirements when N becomes large, as

we discuss in Sect. 3 of this manuscript.

To address these issues, we develop here a new

computational methodology for local approximations

to invariant manifolds via the parametrization method.

The key aspects making this methodology scalable to

high-dimensional mechanics problems are the use of

physical coordinates and just the minimum number of

eigenvectors. In the autonomous setting, we seek to

compute invariant manifolds attached to fixed points

where we develop expressions for the Taylor series

coefficients that determine the parametrization of the

invariant manifold as well as its reduced dynamics in

different styles of parametrization (see Sect. 4). We

develop similar expressions in the non-autonomous

periodic or quasiperiodic setting, where we seek to

compute invariant manifolds or whiskers attached to an

invariant torus perturbed from a hyperbolic fixed point

under the addition of small-amplitude non-autonomous

terms. In this case, we seek to compute the coefficients

in Fourier–Taylor series that parametrize the invariant

manifold as well as its reduced dynamics in different

parametrization styles (see Sect. 5). Finally, we apply

this methodology to high-dimensional examples aris-

ing from a finite element discretization of structural

mechanics problems, whose forced response curves we

recover from a normal form style parametrization of

SSMs (see Sect. 6).

Related computational ideas have already been used

in other contexts. For instance, Beyn and Kleß [2] per-

formed similar Taylor series-based computations of

invariant manifolds attached to fixed points in physical

coordinates using master modes. Their work predates

the parametrization method and does not involve the

choice of reduced dynamics or normal forms. Recently,

Carini et al. [9] focused on computing center manifolds

of fixed points and their normal forms using only master

modes in physical coordinates. While this is an applica-

tion of the parametrization method in the normal form

style, they attribute their results to earlier related work

by Coullet and Spiegel [12] and use these center mani-

folds for analyzing stability of flows around bifurcating

parameter values.

More recently, Vizzaccaro et al. [73] and Opreni et

al. [60] have computed normal forms on second order,

proportionally damped mechanical systems with up to

cubic nonlinearities and derived explicit expressions up

to cubic-order accuracy (see also Touzé et al. [71] for a

review). This is a direct application of the parametriza-

tion method via a normal form style parametrization to

formally compute assumed invariant manifolds whose

existence/uniqueness is a priori unclear (cf. Haller and

Ponsioen [29]). These results in [60,73] provide low-

order approximations to SSMs [29], whose computa-

tion up to arbitrarily high orders of accuracy has already

been automated in prior work [61,63] for mechanical

systems with diagonalized linear part. A major com-

putational advance in the approach of Vizzaccaro et

al. [73] is the non-intrusive use of finite element soft-

ware to compute normal form coefficients up to cubic

order. All these prior results, however, are fundamen-

tally developed for unforced (non-autonomous) sys-

tems.

The computation procedure we develop is generally

applicable to first-order systems with smooth nonlin-

earities, periodic or quasiperiodic forcing and enables

automated computation of various types of invariant

manifolds such as stable, unstable and center mani-

folds, LSMs and SSMs, up to arbitrarily high orders

of accuracy in physical coordinates. Finally, a numeri-

cal implementation of these computational techniques

is available in the form of an open-source MATLAB

package, SSMTool 2.0 [38], which is integrated with

a generic finite element solver (Jain et al. [37]) for

mechanics problems. We describe some key symbols

and the notation used in the remainder of this paper in

Table 1 before proceeding toward the technical setup

in the next section.

2 General setup

We are mainly interested here in dynamical systems

arising from mechanics problems. Such problems are

governed by PDEs that are spatially discretized typi-

cally via the finite element method. The discretization

results in a system of second-order ordinary differential

equations for the generalized displacement x(t) ∈ R
n ,
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Table 1 Notation

Symbol Meaning

n Dimensionality of full second-order mechanical system (1)

N Dimensionality of the full first-order system (2) in the first order (N = 2n for mechanical systems)

E Master (spectral) subspace of a fixed point of system (2)

W(E) Invariant manifold tangent to E at its fixed point

M dim(E) = dim(W(E)): Dimensionality of the invariant manifold constructed around E

W : C
M → R

N Parametrization for the invariant manifold W(E)

R : C
M → C

M Parametrization for the reduced dynamics on W(E)

p ∈ C
M Parametrization coordinates describing reduced dynamics: ṗ = R(p, t)

(•)⊤ Transpose of a matrix or vector

¯(•) Complex conjugation operation

(•)⋆ Complex conjugate transpose for a matrix or vector; adjoint for an operator.

K Number of rationally incommensurate forcing frequencies in system (1) or (2)

� ∈ R
K
+ Quasiperiodic forcing frequencies

γǫ small-amplitude invariant torus of system (2)

W(E, γǫ) Invariant manifold (whisker) of torus γǫ perturbed from spectral subspace E .

Wǫ : C
M × T

K → R
N Parametrization for the whisker W(E, γǫ)

Rǫ : C
M × T

K → C
M Parametrization for the reduced dynamics on W(E, γǫ)

e j [0, . . . , 0,

j−th position

↑
1 , 0, . . . , 0]⊤ : vector aligned along the j − th coordinate axis in Euclidean space

vec(•) Vectorization operation

�i,M An ordered set, {ℓ1, . . . , ℓM i ∈ {1, . . . , M}i }, which contains all possible i−tuples drawn from

i the set {1, . . . , M} for any i ∈ N imaginary unit

⊗ Kronecker product

which can be written as

Mẍ + Cẋ + Kx + f(x, ẋ) = ǫfext (x, ẋ,�t). (1)

Here, M, C, K ∈ R
n×n are the mass, stiffness and

damping matrices; f(x, ẋ) ∈ R
n is the purely nonlin-

ear internal force; and fext (x, ẋ,�t) ∈ R
n denotes the

(possibly linear) external forcing with frequency vec-

tor � ∈ R
K for some K ≥ 0. The function fext is

autonomous for K = 0, periodic in t for K = 1 and

quasiperiodic for K > 1 with K rationally incommen-

surate frequencies. The second-order system (1) may

be expressed in a first-order form as

Bż = Az + F(z) + ǫFext (z,φ), (2)

φ̇ = �, (3)

where z =
[

x

ẋ

]

, A, B ∈ R
2n×2n, F : R

2n → R
2n,

Fext : R
2n × T

K → R
2n denote the first-order quanti-

ties derived from system (1). Such a first-order conver-

sion is not unique: Two equivalent choices are given by

(see Tisseur and Meerbergen [70])

(L1) : A =
[

0 N

−K −C

]

,

B =
[

N 0

0 M

]

,

F(z) =
[

0

−f(x, ẋ)

]

,

Fext (z,φ) =
[

0

fext (x, ẋ,φ)

]

, (4)

(L2) : A =
[

−K 0

0 N

]

,

B =
[

C M

N 0

]

,
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F(z) =
[

−f(x, ẋ)

0

]

,

Fext (z,φ) =
[

fext (x, ẋ,φ)

0

]

, (5)

where N ∈ R
n×n may be chosen as any non-singular

matrix. If the matrices M, C, K are symmetric, then

the choice of N = −K for (L1) and N = M for (L2)

results in the first-order matrices A, B being symmet-

ric. The computation methodology we will discuss is

for any first-order system of the form (2) for z ∈ R
N . In

particular, we have N = 2n for second-order mechan-

ical systems of the form (1).

We first focus on the autonomous (ǫ = 0) limit of

the system (2), given by

Bż = Az + F(z), (6)

whose linearization at the fixed point z = 0 is

Bż = Az. (7)

The linear system (7) has invariant manifolds defined

by eigenspaces of the generalized eigenvalue problem

(

A − λ j B
)

v j = 0, j = 1, . . . , N , (8)

where for each distinct eigenvalue λ j , there exists an

eigenspace E j ⊂ R
N spanned by the real and imagi-

nary parts of the corresponding generalized eigenvector

v j ∈ C
N . These eigenspaces are invariant for the lin-

earized system (7) and, by linearity, a subspace spanned

by any combination of eigenspaces is also invariant for

the system (7). A general invariant subspace of this type

is known as a spectral subspace [29] and is obtained

by the direct summation of eigenspaces as

E j1,..., jq = E j1 ⊕ · · · ⊕ E jq ,

where ⊕ denotes the direct sum of vector spaces and

E j1,..., jq is the spectral subspace obtained from the

eigenspaces E j1 , . . . , E jq for some q ∈ N. Classic

examples of spectral subspaces are the stable, unstable

and center subspaces, which are denoted by E s , Eu and

Ec and are obtained from eigenspaces associated with

eigenvalues with negative, positive and zero real parts,

respectively. By the center manifold theorem, these

classic invariant subspaces of the linear system (7) per-

sist as invariant manifolds under the addition of nonlin-

ear terms in system (6). Specifically, there exist stable,

unstable and center invariant manifolds W s, W u and

W c tangent to E s, Eu and Ec at the origin 0 ∈ R
N ,

respectively. All these manifolds are invariant, and W s

and W u are also unique (see, e.g., Guckenheimer and

Holmes [27]).

In analogy with the stable manifold W s , which is

the nonlinear continuation of the stable subspace E s , a

spectral submanifold (SSM) [29] is an invariant sub-

manifold of the stable manifold W s that serves as

the smoothest nonlinear continuation of a given stable

spectral subspace of E s . The existence and uniqueness

results for such spectral submanifolds under appropri-

ate conditions are derived by Haller and Ponsioen [29]

using the parametrization method of Cabré et al. [6–

8]. The parametrization method also serves as a tool to

compute these manifolds.

We are interested in locally approximating the

invariant manifolds of the fixed point 0 ∈ R
N of sys-

tem (6) using the parametrization method. Let W(E)

be an invariant manifold of system (6) which is tangent

to a master spectral subspace E ⊂ R
N at the origin

such that

dim(E) = dim (W(E)) = M < N . (9)

Let VE = [v1, . . . , vM ] ∈ C
N×M be a matrix whose

columns contain the (right) eigenvectors correspond-

ing to the master modal subspace E . Furthermore, we

define a dual matrix UE = [u1, . . . , uM ] ∈ C
N×M

which contains the corresponding left-eigenvectors that

span the adjoint subspace E⋆ as

u⋆
j

(

A − λ j B
)

= 0, j = 1, . . . , M, (10)

where we choose these eigenvectors to satisfy the nor-

malization condition

u⋆
i Bv j = δi j (Kronecker delta). (11)

Using the eigenvalue problems (8)-(10), we obtain the

following relations for the matrices VE and UE

AVE = BVE�E , (12)

U⋆
E A = �E U⋆

E B, (13)

where �E := diag(λ1, . . . , λM ). We note that if the

matrices M, C, K are symmetric, then the matrices

A, B will be symmetric as well. In that case, the left

and the right eigenvectors u j , v j are identical and we
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may conveniently choose UE = V̄E , with the overbar

denoting complex conjugation.

The common approach to local invariant manifold

computation involves diagonalizing the system (6) as

q̇ = �q + T(q), (14)

where

� := diag(λ1, . . . , λN ),

T(q) := U⋆F(Vq),

V = [v1, . . . , vN ],
U = [u1, . . . , uN ], (15)

and q ∈ C
N are modal coordinates with z = Vq. When

B = IN , then using the normalization condition (11),

we obtain U⋆ = V−1, which results in the familiar

diagonalized form (14) with T(q) = V−1F(Vq).

While the form (14) is very helpful for the pur-

poses of proving the existence and uniqueness prop-

erties of invariant manifolds, it presents a computa-

tionally intractable form for the actual computation of

invariant manifolds in high-dimensional finite element

problems, as we will see next.

3 Pitfalls of the diagonalized form (14)

In this work, we use the Kronecker notation for express-

ing smooth nonlinear functions as a multivariate Taylor

series in terms of their arguments. The Kronecker prod-

uct (also known as the outer/dyadic product) is com-

monly denoted by the symbol ⊗. For a column vector

z ∈ R
N , the Kronecker product operation z ⊗ z returns

the matrix zz⊤ ∈ R
N×N . In index notation, we write

(z ⊗ z)i j = zi z j , ∀i, j ∈ 1, . . . , N . (16)

The Kronecker notation is more generally defined for

obtaining the product of higher-order tensors, where a

first-order tensor can be viewed as a vector, a second-

order tensor, as a matrix and an order-k tensor as a

k−dimensional array. Specifically, the Kronecker prod-

uct of two tensors of orders p and q yields a tensor of

order p + q. We refer to Van Loan [55] for a concise

review of the Kronecker product and its properties.

Now, the system nonlinearity F (see Eq. (6)) can be

expanded in terms of the physical coordinates z ∈ R
N

as

F(z) =
∑

k∈N

Fkz⊗k, (17)

where z⊗k denotes the term z ⊗ · · ·⊗ z (k-times), con-

taining N k monomial terms at degree k in the variables

z. The array Fk ∈ R
N×N k

contains the coefficients of

the nonlinearity F associated with each of these mono-

mials. Similarly, the nonlinearity T (see Eq. (14)) in

modal coordinates q ∈ C
N can be expanded as

T(q) =
∑

k∈N

Tkq⊗k . (18)

3.1 Eigenvalue and eigenvector computation

For local approximations of invariant manifolds around

a fixed point of (6), it is commonly assumed that the

complete generalized spectrum of the matrix B−1A (or

generalized eigenvalues of the pair A, B) is known and

that a basis in which the linear system (7) takes its Jor-

dan canonical form is readily available (see, e.g., Simo

[64]; Homburg et al. [36]; Tian and Yu [69]; Haro et

al. [31]; Ponsioen et al. [61,63]). For small to moder-

ately sized systems, obtaining a complete set of (gener-

alized) eigenvalues/eigenvectors can indeed be accom-

plished using numerical eigensolvers, but this quickly

transforms into an intractable task as the system size

increases.

While techniques in numerical linear algebra can

help us determine a small subset of eigenvalues and

eigenvectors for very high-dimensional systems using

a variety of iterative methods (see, e.g., Golub and Van

Loan [25]), obtaining a complete set of eigenvectors of

such systems remains unfeasible despite the availabil-

ity of modern computing tools. To emphasize this, we

illustrate in Fig. 2 the time and memory required for

the eigenvalue computation for the finite element mesh

for a square plate (see Fig. 1). The purpose of this com-

parison is to report trends in computational complexity

rather than precise numbers. To this end, we have used

MATLAB across all comparisons, which may not be

the fastest computing platform generally but is known

to assimilate the state-of-the-art algorithms for numer-

ical linear algebra computations (Golub and Van Der

Vorst [26]).
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Fig. 1 Mesh for case study: We use a shell-based finite ele-

ment mesh of a square plate with geometric nonlinearities, arising

from von Kármán strains for performing numerical experiments

(see Figs. 2 and 3). The material is linear elastic with Young’s

modulus 70 GPa, density 2700 kg/mm3 and Poisson’s ratio 0.33.

The plate has a thickness of 8 mm, and length is proportional to

the square root of the total number of elements. This fixes the

size of the elements in the mesh and avoids numerical errors that

may otherwise arise in larger meshes

Figure 2a shows that as the number of degrees of

freedom, n, increases from a few tens to approximately

a hundred thousand, the computational time required

for computing a full set of eigenvalues of the system

grows polynomially up to almost a year. For comput-

ing a subset of eigenvalues in discretized PDEs, sparse

iterative eigensolvers are used, such as the routines

(e.g., Stewart [65], Lehoucq et al. [51]) implemented

by the MATLAB’s eigs command (cf. direct eigen-

solvers implemented by the eig command). These

sparse solvers are considered inefficient for nearly full

or less sparse matrices. There are, therefore, two com-

peting factors here, sparsity of the matrices and the size

of the matrices. The small matrices in the beginning

have very low sparsity, and sparse eigensolver eigs

of MATLAB is inefficient for computing eigenvalues

here. Indeed, we see that computing the full set of eigen-

values for a small matrix (using the eig command)

ends up being less expensive compared to computing

a subset of eigenvalues. As sparsity is governed by the

number of DOFs that are shared by neighboring ele-

ments relative to the total number of degrees of free-

dom, it increases with mesh refinement. Thus, sparse

eigensolvers become more efficient as we refine the

mesh initially, but after the refinement reaches an opti-

mum value, the computation time is governed solely

by the size of the matrix.

Furthermore, all these eigenvectors must be held in

the computer’s active memory (RAM) in typical invari-

ant manifold computations, which contributes toward

very high memory requirements, as shown in Fig. 2b.

At the same time, these figures also show that a small

subset of eigenvectors can be quickly computed and

easily stored even for very high-dimensional systems.

(a) (b)

Fig. 2 Cost of computing eigenvalues and eigenvectors of an

n−degree-of-freedom plate example (see Fig. 1) for n = 36,

120, 432, 1,632, 6,336, 24,960, 99,072. a Computation time and

b memory required for obtaining all n eigenvalues and eigenvec-

tors using the eig command of MATLAB compared to those for

obtaining a subset of 5 smallest magnitude eigenvalues and their

associated eigenvectors using theeigs commands of MATLAB.

These computations were performed on the ETH Zürich Euler

cluster with 105 MB RAM. The computation of all eigenvalues

in the case of n = 99,072 degrees of freedom was manually ter-

minated as the estimated computation time via extrapolation was

found to be around 341 days
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(a) (b)

Fig. 3 a Destruction of sparsity: Transforming the system (6)

into (14) via the linear transformation z = Vq results in destruc-

tion of the inherent sparsity of the governing equations in physical

coordinates z, which leads to unfeasible memory (RAM) require-

ments for storing nonlinearity coefficients. Here, the multi-

dimensional array Fk and Tk represent the polynomial coeffi-

cients at degree k for the nonlinearities F (in physical coordinates)

and T (in modal coordinates); see Eqs. (6), (14), (17) and (18). b

Comparison of memory requirements for storing the nonlineari-

ties F and T at degrees k = 2, 3, 4, 5 in the n−degree-of-freedom

square plate example (see Fig. 1) with n = 36, 120, 432, 1,632,

6,336, 24,960, 99,072 and phase space dimension N = 2n

3.2 Unfeasible memory requirements due to

coordinate change

Aside from the cost of eigenvalue computation, invari-

ant manifold computations typically involve local

approximations via Taylor series. These are obtained

by transforming the system into modal coordinates (see

Eq. (14)), expressing the manifold locally as a graph

over the master subspace, substituting the polynomial

ansatz into Eq. (14) and solving the invariance equa-

tions recursively at each order. While such a modal

transformation results in decoupling of the governing

equations at the linear level, it generally annihilates

the inherent sparsity in the nonlinear terms, as shown

in Fig. 3a. That sparsity generally arises because only

neighboring elements of the numerical mesh share cou-

pled degrees of freedom. Due to the loss of this spar-

sity upon transformation to the diagonal form (14), the

number of polynomial coefficients required to describe

the nonlinearities increases by orders of magnitude,

resulting in unfeasible memory requirements.

Indeed, in Fig. 3b, we compare the memory esti-

mates for storing these coefficients in physical vs.

modal coordinates as a function of the system’s phase

space dimension N . We see that even for the moder-

ately sized meshes of the square plate example (see

Fig. 1) considered here, the storage requirements for

the transformed coefficients reach astronomically high

values in the order of several terabytes/petabytes. At the

same time, however, note that the RAM requirements

for handling the same coefficients in physical coordi-

nates are much less than a gigabyte, which is easily

manageable for modern computers.

4 Computing invariant manifolds of fixed points in

physical coordinates

Unlike commonly employed computational approaches

[31,36,61,62,64,69], we now describe the computa-

tion of general invariant manifolds in physical coor-

dinates using the eigenvectors and eigenvalues associ-

ated with the master subspace E only. This is motivated

by the computational advantages we expect based on

Figs. 2 and 3.

We seek to compute an invariant manifold W (E)

tangent to a spectral subspace E at the origin of sys-

tem (6). Let W : C
M → R

N be a mapping that

parametrizes the M−dimensional manifold W (E) and

let p ∈ C
M be its parametrization coordinates. Then,

W(p) provides us the coordinates of the manifold in

the phase space of system (6), as shown in Fig. 4. For

any trajectory z(t) on the invariant manifold W (E),

we have a reduced dynamics trajectory p(t) in the

parametrization space such that

z(t) = W(p(t)). (19)
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Fig. 4 Using the parametrization method, we obtain the

parametrization W : C
M → R

N of an M−dimensional invari-

ant manifold for the system (6) constructed around a spectral

subspace E with dim(E) = dim(W(E)) = M . This manifold

is tangent to E at the origin. Furthermore, we have the freedom

to choose the parametrization R : C
M → C

M of the reduced

dynamics on the manifold such that the function W also maps

the reduced system trajectories p(t) onto the full system trajec-

tories on the invariant manifold, i.e., z(t) = W (p(t))

Let R : C
M → C

M be a parametrization for the

reduced dynamics. Then, any reduced dynamics tra-

jectory p(t) satisfies

ṗ = R(p). (20)

Differentiating Eq. (19) with respect to t and using

Eqs. (2) and (20), we obtain the invariance equation of

W(E) as

B (DW) R = AW + F ◦ W. (21)

To solve this invariance equation, we need to deter-

mine the parametrizations W and R. We choose to

parametrize the manifold and its reduced dynamics in

the form of multivariate polynomial expansions as

W(p) =
∑

i∈N

Wi p
⊗i , (22)

R(p) =
∑

i∈N

Ri p
⊗i , (23)

where Wi ∈ C
N×M i

, Ri ∈ C
M×M i

are matrix rep-

resentation of multi-dimensional arrays containing the

unknown polynomial coefficients at degree i for the

parametrizations W and R. Furthermore, we have the

expansion (17) for the nonlinearity F in physical coor-

dinates, where Fi ∈ R
N×N i

are sparse arrays, which

are straightforward to store despite their large size (see

Sect. 3.2).

Using the expansions (17), (22) and (23), we collect

the coefficients of the multivariate polynomials in the

invariance equation (21) at degree i ≥ 1, similarly to

Ponsioen et al. [61], as

(BDWR)i = AWi + (F ◦ W)i , (24)

where

(BDWR)i = BW1Ri + B

i
∑

j=2

W jRi, j , (25)

with

Ri, j :=
j

∑

k=1

IM ⊗ · · · ⊗ IM ⊗
k−th position

↑
Ri− j+1 ⊗ IM ⊗ · · · ⊗ IM

︸ ︷︷ ︸

j−terms

,

(26)

and

(F ◦ W)i =
i

∑

j=2

F j

⎛

⎝

∑

q∈N j ,|q|=i

Wq1 ⊗ · · · ⊗ Wq j

⎞

⎠ .

(27)
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At leading order, i.e., for i = 1, equation (24) simply

yields

AW1 = BW1R1. (28)

Comparing equation (28) with the eigenvalue problem

(12), we choose a solution for W1, R1 in terms of the

master modes and their eigenvalues as

W1 = VE , R1 = �E . (29)

Remark 1 The solution choice (29) for W1, R1 is not

unique. Indeed, we may choose W1 ∈ C
N×M to be

any matrix whose columns span the master subspace E ,

generally resulting in a non-diagonal R1. Since our sys-

tem is defined in the space of reals (R), a real choice of

W1, R1 allows us to choose the parametrization coor-

dinates p in R
M instead of C

M . This will result in

Wi ∈ R
N×M i

, Ri ∈ R
M×M i

for each i , which reduces

the computational memory requirements by half rela-

tive to the complex setting.

At any order i ≥ 2 in Eq. (24), we collect the terms

containing the coefficients Wi on the left-hand side and

the lower degree terms on the right-hand side as

BWiRi,i − AWi = Ci − BW1Ri (30)

where Ri,i is defined according to Eq. (26) and

Ci := (F ◦ W)i − B

i−1
∑

j=2

W jRi, j .

We solve (30) recursively for i ≥ 2 by vectorizing it as

(see, e.g., Van Loan [55])

Li wi = hi (Ri ), (31)

where

wi := vec (Wi ) ∈ C
N M i

, (32)

Li :=
(

R⊤
i,i ⊗ B

)

−
(

IM i ⊗ A
)

∈ C
N M i ×N M i

,

(33)

hi (Ri ) := vec (Ci ) − Di vec (Ri ) (34)

Ri,i =
i

∑

j=1

(IM )⊗ j−1 ⊗ R1 ⊗ (IM )⊗i− j ∈ C
M i ×M i

,

(from definition (26)) (35)

Di :=
(

IM i ⊗ BW1

)

∈ C
N M×M i

. (36)

In Eq. (31), the matrix Li is often called the order−i

cohomological operator induced by the linear flow (7)

and the master subspace E on the linear space whose

coefficients are homogeneous, M−variate polynomi-

als of degree i (see Haro et al. [31], Murdock [57]).

Hence, at any order of expansion i , the entries of Li

are completely determined using only the linear part of

the full and reduced systems, i.e., via the matrices A, B

and R1 (which is equal to �E due to the choice (29)).

Remark 2 For a diagonal choice of R1 (see, e.g.,

choice 29), the matrix Li has a block-diagonal struc-

ture, i.e., system (31) can be split into M i decoupled

linear systems containing N equations each. Hence, the

coefficients parametrizing the manifold and its reduced

dynamics can be determined independently for each

monomial in p⊗i . This splitting of the large system (31)

into smaller decoupled systems not only eases compu-

tations but also makes these computations appealing for

a parallel computing, which has the potential to speed

these computations up by a factor of M i at each order

i .

Note that the system (30) is under-determined in terms

of the unknowns Wi , Ri . As discussed by Haro et

al. [31], this underdeterminacy turns out to be an advan-

tage, as it provides us the freedom to choose a particu-

lar style of parametrization depending on the context.

When the matrix Li is non-singular for every i ≥ 2, the

cohomological equations (31) have a unique solution

Wi for any choice of the reduced dynamics Ri . The

trivial choice

Ri = 0 ∀i ≥ 2, (37)

leads to linear reduced dynamics. However, as we will

see next, Li may be singular in the presence of reso-

nances and yet system (31) may be solvable under an

appropriate choice of parametrization.

4.1 Choice of parametrization

4.1.1 Eigenstructure of Li

In order to choose the reduced dynamics R appro-

priately, we seek to explore the eigenstructure of Li
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in relation to that of the matrix Ri and the general-

ized matrix pair (B, A). We first derive a general result

which helps us compute the eigenstructure of Ri . For

notational purposes, we introduce an ordered set �i

which contains all i-tuples ℓ j (indexed lexicographi-

cally) taking values in the range 1, . . . , M , defined as

�i,M := {ℓ1, . . . , ℓM i ∈ {1, . . . , M}i ⊂ N
i }. (38)

As an example, consider the case of i = 3 and M = 2.

Then, we may order the 3−tuples in �3,2 lexico-

graphically as {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),

(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}, which contains

23 elements. Essentially, each ℓ ∈ �i,M corresponds

to a monomial of degree i in the reduced variables

p ∈ C
M , i.e., pℓ1 pℓ2 . . . pℓi

At a high order i for the manifold expansion, the

matrix Ri,i in Eq. (30) may be high-dimensional,

even though its components only involve the low-

dimensional matrices IM and R1 (see Eq. (35)). Propo-

sition 1 in Appendix A allows us to compute all the

eigenvalues and eigenvectors of Ri,i simply in terms

of those of R1. Indeed, let the eigenvalues of R⊤
1 be

given by λ1, . . . , λM . Note that for a diagonal choice

of R1 (see choice (29)), the left and right eigenvec-

tors are simply given by the unit vectors aligned with

the coordinate axes in C
M , i.e., e1, . . . , eM . Then, from

Proposition 1, the eigenvalues and eigenvectors of R⊤
i,i

are given as

λℓ := λℓ1+· · ·+λℓi
, eℓ = eℓ1⊗· · ·⊗eℓi

, ℓ ∈ �i,M .

(39)

Furthermore, Proposition 2 in Appendix A charac-

terizes the eigenstructure of Li in relation to that of

the matrices (B, A) and Ri,i . From Proposition 2, we

deduce that Li is singular whenever the resonance

λℓ = λ j occurs for some ℓ ∈ �i,M , j ∈ {1, . . . , N }.
In this case, the solvability of Eq. (31) depends on the

nature of such resonances. Hence, these resonances are

distinguished into inner and outer resonances as

Inner resonances: λℓ = λ j ,

ℓ ∈ �i,M , j ∈ {1, . . . , M}, (40)

Outer resonances: λℓ = λ j ,

ℓ ∈ �i,M , j ∈ {M + 1, . . . , N }. (41)

Both inner and outer resonances result in the coho-

mological operator Li becoming singular. The main

difference between these resonances is that the coho-

mological equation (30) can be solved in the presence

of inner resonances by adjusting the parametrization

choice of Ri so that the right-hand side of (30) belongs

to im(Li ), which we will discuss shortly. In the pres-

ence of outer resonances, however, the right-hand side

of equation (30) cannot be adjusted to lie in the range

of the operator Li and, hence, system (30) has no solu-

tion. Indeed, the manifold does not exist in the presence

of certain outer resonances (see Cabré et al. [6], Haller

and Ponsioen [29]). Haro et al. [31] refer to inner and

outer resonances as internal and cross-resonances, and

we use this terminology of Ponsioen et al. [61] as inter-

nal resonances carry a different meaning in the context

of mechanics.

Next, we discuss two common choices for reduced

dynamics parametrization, i.e., the normal form and the

graph style parametrizations, which are useful for solv-

ing the cohomological equation (31) in the presence of

inner resonances.

4.1.2 Normal form parametrization

Normal forms provide us tools for the qualitative

and quantitative understanding of local bifurcations

in dynamical systems. Normal form computations for

any dynamical system involve successive near-identity

coordinate transformations to simplify the transformed

dynamics. The simplest form of dynamics that one

can hope for is linear. In the presence of resonances,

however, a transformation that linearizes the dynamics

does not exist and the normal form procedure results

in nonlinear dynamics that is only “as simple as possi-

ble.” This is achieved by systematically removing the

nonessential terms from the Taylor series up to any

given order (see, e.g., Guckenheimer and Holmes [27]).

Using the parametrization method, we can simulta-

neously compute the normal form parametrization for

the reduced dynamics R along with the parametriza-

tion W for the manifold. As discussed earlier, in the

absence of any inner resonances, the trivial choice (see

Eq. (37)) leads to the simplest (i.e., linear) reduced

dynamics, which is automatically obtained from the

normal form procedure. However, when the inner res-

onance relations (40) hold, then the dynamics cannot

be linearized. In such cases, we can compute the essen-

tial nonlinear terms at degree i following the normal
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form style of parametrization. This involves first pro-

jecting the invariance equation (31) onto ker(L⋆
i ) to

eliminate the unknowns Wi and then solving for the

essential non-trivial terms in Ri by computing a partial

inverse (see Murdock [57]). In prior approaches, this is

achieved by transforming the governing equations into

diagonal coordinates [27,31,61,63] which causes the

matrix Li to be diagonal and hence simplifies the detec-

tion of its kernel. Here, we develop explicit expressions

for the computation of normal form directly in phys-

ical coordinates using only the knowledge of the left-

eigenvectors u j associated with the master subspace E ,

as summarized below.

We focus on the case of a system with ri ∈ N0

inner resonances and no outer resonances at order i .

Taking D = R
⊤
i,i and C = IM i in Proposition 2, we can

directly estimate ker(L⋆
i ) using only the eigenvalues

λ j and the corresponding eigenvectors of the master

subspace E . Specifically, the generalized eigenvalues

for the matrix pair (IM i , R
⊤
i,i ) are given by μℓ = 1

λℓ

with left-eigenvectors eℓ according to Eq. (39) and with

the left kernel Ni of Li given as

Ni := ker(L⋆
i )

= span
(

(

eℓ ⊗ u j

)

∈ C
N M i |λℓ = λ j ,

ℓ ∈ �i,M , j ∈ {1, . . . , M}
)

. (42)

Now, let Ni ∈ C
N M i ×ri be a basis for Ni , which can

be obtained by simply stacking the column vectors
(

eℓ ⊗ u j

)

from Definition (42) that are associated with

the modes with inner resonances (see Eq. (40)). Then,

the reduced dynamics coefficients in the normal form

parametrization are chosen by projecting the invariance

equation (31) onto Ni as

N⋆
i Li wi = N⋆

i hi (Ri ). (43)

The left-hand side of Eq. (43) is identically zero since

columns of Ni belong to ker(L∗
i ) , i.e.,

N⋆
i Li = 0. (44)

Hence, we are able to eliminate the unknowns Wi from

Eq. (43) to obtain

N⋆
i Di vec (Ri ) = N⋆

i vec (Ci ) . (45)

To solve Eq. (45), we may further simplify it using the

normalization (11) which results in

N⋆
i Di = Ei

⊤, (46)

where Ei ∈ R
M i+1×ri is a matrix whose columns are

of the form
(

eℓ ⊗ e j

)

, such that (ℓ, j) are pairs with

inner resonances, i.e., λℓ = λ j and e j ∈ R
M is the unit

vector aligned along the j th coordinate axis. Here, the

columns
(

eℓ ⊗ e j

)

of Ei must be arranged analogous

to the columns
(

eℓ ⊗ u j

)

of Ni . Using the relation (46),

and noting that Ni is a Boolean matrix with Ei Ei
⊤ = I,

we obtain the canonical solution to (45) for the coeffi-

cients Ri as

Normal form style: vec (Ri ) = Ei N
⋆
i vec (Ci ) . (47)

Note that for each inner resonant pair (ℓ, j) in the

definition of Ni (42), the solution choice (47) pro-

duces non-trivial coefficients in the j th equation of

reduced dynamics (20) precisely for the monomial

pℓ1 . . . pℓi
corresponding to an inner resonance. As a

result, Eq. (47) directly provides the normal form coef-

ficients of the reduced dynamics on the manifold in

physical coordinates, using only the knowledge of the

master modes spanning the adjoint modal subspace E⋆.

Remark 3 (Near-resonances) As the resonance rela-

tions (40)-(41) are meant for the real as well as imagi-

nary parts of the eigenvalues simultaneously, these are

seldom satisfied exactly. However, in lightly damped

systems (where the real parts of the eigenvalues are

small), near-resonances might exist between the imag-

inary parts of the eigenvalues. In such cases, it is desir-

able to include the corresponding near-resonant modes

in the normal form parametrization of the reduced

dynamics; otherwise, it leads to small divisors (ill-

conditioning) in solving system (31) and the domain of

the validity of the Taylor approximation to the manifold

shrinks (see, e.g., Guckenheimer and Holmes [27]).

4.1.3 Graph style parametrization

As the name suggests, a graph style of parametrization

for the reduced dynamics is the result of expressing the

manifold as a graph over the master subspace E (see

Haro et al [31]), as done in the graph transform method.

The graph style of parametrization may be appealing

in the context of center manifold computation, where
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an infinite number of inner resonances may arise. For

instance, in a system with a two-dimensional center

subspace with eigenvalues λ1,2 = ±iω, its center man-

ifold exhibits the inner resonances

λ1 = (ℓ + 1) λ1 + ℓλ2, (48)

λ2 = ℓλ1 + (ℓ + 1) λ2, ∀ℓ ∈ N. (49)

In our setting, a graph style of parametrization is

achieved by projecting the invariance equations (31)

onto the subspace Gi defined as

Gi := span
(
(

eℓ ⊗ u j

)

∈ C
N M i

, ℓ ∈ �i,M , j ∈ {1, . . . , M}
)

.

(50)

Note that in the case of inner resonances, Ni ⊂ Gi (cf.

Definition (42)) and, hence, Gi includes all possible res-

onant subspaces at order i . Then, similarly to the nor-

mal form style, we define a basis Gi ∈ C
N M i ×M i

forGi ,

obtained by stacking the column vectors
(

eℓ ⊗ u j

)

in

Definition (50). We obtain a graph style of parametriza-

tion by projecting (31) on to Gi and equating the right-

hand side to zero as

G⋆
i hi (Ri ) = 0. (51)

In contrast to the normal form style (47), where only

the coefficients of resonant monomials are non-trivial,

we generally obtain a larger set of monomials with non-

trivial coefficients in the graph style. Hence, the normal

form style retains only the minimal number of nonlin-

ear terms in the reduced that are essential for solving

the invariance equation (21) at each order i , whereas

the graph style generally leads to more complex expres-

sions of the reduced dynamics.

For the choice of W1 = VE (see Eq. (29)) and the

normalization condition (11), Eq. (51) can be simplified

to obtain the reduced dynamics coefficients in the graph

style as

Graph style: Ri = U⋆
E Ci . (52)

Note that Eq. (52) directly provides the reduced dynam-

ics coefficients in the graph style without the evalua-

tion of Gi . Hence, an advantage of using the graph style

parametrization relative to the normal form style is that

specific inner resonances need not be identified a priori.

More generally, a combination of graph and nor-

mal form styles of parametrization may also be used

depending on the problem. This is referred to as a

mixed style of parametrization as discussed by Haro

et al. [31]. A mixed style may be particularly appealing

in the context of parameter-dependent manifold com-

putation, where the parameters are dummy dynamic

variables and the associated modes always have triv-

ial dynamics. Thus, it is desirable to choose a graph

style for the parametric modes and a normal form style

for remaining master modes which may feature inner

resonances (see Haro et al. [31], Murdock [57]).

4.1.4 Computing the parametrization coefficients wi

Once the reduced dynamics coefficients Ri (specific

to the choice of parametrization style) are determined

(see Eqs. (47), (52)), we can compute the manifold

parametrization coefficients Wi by solving Eq. (30).

When the coefficient matrix Li is (nearly) singular

in the presence of (near) resonances, numerical blow-

up errors (ill-conditioning) may occur due to the small

divisors that arise in solving system (30) using conven-

tional solvers (see also Remark 3). As an alternative,

we adopt a norm-minimizing solution to (30) given by

wi = min
x∈CN Mi

,Li x=hi (Ri )

‖x‖2, (53)

which can be obtained using existing routines, such

as the lsqminnorm in MATLAB. Other commonly

used techniques in the literature include the simulta-

neous solution of equations (31) and (45) or (50). This

involves the inversion of a bordered matrix that extends

Li and ends up being non-singular (see, e.g., Beyn and

Kleß [2], Kuznetsov [50]).

To summarize, we have developed an automated

procedure for computing invariant manifolds attached

to fixed points of system (6) and for choosing different

styles of parametrizations for their reduced dynamics

(Eqs. (47), (52)) by solving invariance equations (31)

in the physical coordinates and only using the eigen-

vectors associated with its master spectral subspace.

The open-source MATLAB package [38] automates

this computational procedure. Next, we illustrate appli-

cations of this computation procedure developed so far.
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4.2 Applications

4.2.1 Parameter-dependent center manifolds and

their reduced dynamics

We illustrate the automated procedure developed above

to compute the center manifold in the Lorenz system

and its normal form style of reduced dynamics with-

out performing any diagonalization and using only the

modes associated with the center subspace. In the fol-

lowing example, we compute the ρ-dependent center

manifold and the normal form of the reduced dynamics

to analyze the local bifurcation around ρ = 1 (see sec-

tion 3.2 in Guckenheimer and Holmes [27]). Consider

the Lorenz system

ẋ = σ(y − x),

ẏ = ρx − y − xz,

ż = −βz + xy,

(54)

where (x, y, z) ∈ R
3, σ, ρ, β > 0. The basic steps are

as follows.

1. Setup: With a new variable μ := ρ−1 in the Lorenz

system (54), we obtain an extended system of the

form (6) with

z =

⎡

⎢
⎢
⎣

x

y

z

μ

⎤

⎥
⎥
⎦

, A =

⎡

⎢
⎢
⎣

−σ σ 0 0

1 −1 0 0

0 0 −β 0

0 0 0 0

⎤

⎥
⎥
⎦

,

B = I4, F(z) =

⎡

⎢
⎢
⎣

0

xμ − xz

xy

0

⎤

⎥
⎥
⎦

. (55)

For σ = β = 1, the eigenvalues of A are given

by λ1 = λ2 = 0, λ3 = −2 , and λ4 = 1. The

nonlinearity F is quadratic and can be expressed

according to the Kronecker expansion (17) as

F(z) = F2z⊗2,

where the term z⊗2 = (z ⊗ z) = (x2, xy, xz, xμ,

yx, y2, yz, yμ, zx, zy, z2, zμ,μx, μy, μz, μ2)T

contains the monomials and F2 ∈ R
4×42

is a

sparse matrix representation of the coefficients of

the quadratic nonlinearity. The nonzero entries of

F2 corresponding to the monomials xη, xz and xy

in the definition of F (see Eq. (55)) are given as

(F2)24 = 1, (F2)23 = −1, (F2)32 = 1.

2. Choose master subspace: We construct a center

manifold over the center-subspace E spanned by

the eigenvectors corresponding to the two zero

eigenvalues. We obtain the eigenvectors associ-

ated with this E satisfying the normalization con-

dition (11), as

�E =
[

0 0

0 0

]

, VE = UE =

⎡

⎢
⎢
⎢
⎣

1√
2

1√
2

0

0

0

0

0

1

⎤

⎥
⎥
⎥
⎦

. (56)

3. Assemble invariance equations: At leading order,

the parametrization coefficients for the center mani-

fold and its reduced dynamics can be simply chosen

as (see Eqs. (56) and (29))

W1 = VE , R1 = �E = 0 ∈ R
2×2.

To obtain the parametrization coefficients at order

2, we need to solve the vectorized invariance equa-

tion (31) for i = 2, i.e.,

L2vec (W2) = vec (C2) − (I4 ⊗ W1) vec (R2) ,

(57)

where

L2 =
(

R⊤
2,2 ⊗ I4

)

− (I4 ⊗ A) ∈ R
64×64,

C2 = F2W⊗2
1 .

4. Resonance detection: We deduce the eigenvalues

of R⊤
2,2 from the formula (39) as

λ(i, j) = λi + λ j = 0, ∀i, j ∈ {1, 2}.
Thus, as per Definition (40), we observe inner-

resonances between the two (zero) eigenvalues of

the center-subspace, i.e.,

λ(i, j) = λk = 0, ∀i, j, k ∈ {1, 2},
and no outer-resonances, i.e.,

λ(i, j) �= λk = 0, ∀i, j ∈ {1, 2}, k ∈ {3, 4}.
5. Choice of parametrization: Hence, the singular sys-

tem (57) is solvable for a non-trivial choice of

reduced dynamics the R2. Using Eq. (47), we

choose the normal form parametrization of the

reduced dynamics which results in the following

nonzero entry in the coefficient array R2:

(R2)12 =
1

2
.
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6. Recursion: This procedure can be recursively applied

to obtain higher-order terms on the center mani-

fold dynamics. The reduced dynamics on the two-

dimensional center manifold up to cubic terms is

given as

ṗ =
[

ṗ1

ṗ2

]

=
[

1
2

p1 p2 + 1
4

p3
1 − 1

8
p1 p2

2

0

]

. (58)

Here, the variable p2 is the modal coordinate along

the center direction associated with the parame-

ter μ. The normal form parametrization automati-

cally results in trivial dynamics along this direction.

Indeed, the near-identity transformation associated

with the normal form leaves the coordinate μ-mode

unchanged, which prompts us to replace p2 by

μ in Eq. (58). Hence, we obtain the parameter-

dependent dynamics on the center manifold as

ṗ = Rμ(p) =
1

2
pμ −

1

8
pμ2 +

1

4
p3,

which recovers the pitchfork bifurcation (see sec-

tion 3.4 in Guckenheimer and Holmes [27]) with

respect to the parameter μ.

For more involved applications to center manifold com-

putation, we refer to the work of Carini et al. [9], who

analyze the stability of bifurcating flows using a sim-

ilar methodology for computing parameter-dependent

center manifold and normal forms.

4.2.2 Lyapunov subcenter manifolds and conservative

backbone curves

The Lyapunov subcenter manifolds (LSMs) form cen-

terpieces of periodic response in conservative, unforced,

mechanical systems (see Kerschen et al. [45], de la

Llave and Kogelbauer [15]). We discuss how the above

methodology can be applied in such systems to com-

pute LSMs and directly extract conservative backbone

curves, i.e., the functional relationship between ampli-

tudes and frequency of the periodic orbits on the LSM.

We consider the following form of a conservative

mechanical system

Mẍ + Kx + f(x, ẋ) = 0, x ∈ R
n, (59)

where M, K ∈ R
n×n are positive definite mass and

stiffness matrices and f = O(‖x‖2, ‖ẋ‖2, ‖x‖‖ẋ‖) is

a conservative nonlinearity. The quadratic eigenvalue

problem

Kϕ j = ω2
j Mϕ j , j = 1, . . . , n (60)

provides us the vibration modes ϕ j ∈ R
n and the corre-

sponding natural frequencies ω j of system (59). In the

first-order form (5) with C = 0, N = M, the eigenval-

ues and eigenvectors can be expressed using Eq. (60)

as

λ2 j−1 = iω j , λ2 j = λ̄2 j−1, (61)

v2 j−1 =
[

ϕ j

λ2 j−1ϕ j

]

, v2 j = v̄2 j−1, j = 1, . . . , n.

(62)

Any distinct pair of eigenvalues ±iωm , where m =
1, . . . , n, spans a two-dimensional linear modal sub-

space. An LSM is a unique, analytic, two-dimensional,

nonlinear extension to such a linear modal subspace

and is guaranteed to exist if the master eigenfrequency

ωm is not in resonance with any of the remaining eigen-

frequencies of the system (Kelley [44]), i.e., under the

non-resonance conditions

ωm �= kωi , ∀k ∈ Z, i = {1, . . . , n}\m. (63)

The LSM over the mth mode can be computed by solv-

ing the invariance equation (21) in the physical coordi-

nates using only the master modeϕm that spans the two-

dimensional modal subspace E = span (v2m−1, v2m).

The leading-order coefficients in the parametrizations

for the LSM and its reduced dynamics are given by

Eq. (29) as

W1 = [v2m−1, v2m], (64)

R1 = �E = diag(iωm,−iωm). (65)

Note that for any ℓ ∈ N, the master subspace E satisfies

the inner resonance relations

λ2m−1 = (ℓ + 1) λ2m−1 + ℓλ2m, (66)

λ2m = ℓλ2m−1 + (ℓ + 1) λ2m, (67)

123



How to compute invariant manifolds and their reduced 1433

which result in the following reduced dynamics in the

normal form parametrization style (see Eq. (45))

ṗ = R(p) =
[

iωm p

−iωm p̄

]

+
∑

ℓ∈N

[

γℓ pℓ+1 p̄ℓ

γ̄ℓ pℓ p̄ℓ+1

]

, (68)

where the γℓ are the non-trivial coefficients associated

with the monomials in the normal form (45). Then, the

following statement directly provides us the conserva-

tive backbone associated with the mth mode.

Lemma 1 Under the non-resonance condition (63),

the backbone curve, i.e., the functional relationship

between the polar response amplitude ρ and the oscil-

lation frequency ω of the periodic orbits of the LSM

associated with the mode ϕm of the conservative

mechanical system (59), is given as

ω(ρ) = ωm +
∑

ℓ∈N

Im(γℓ)ρ
2ℓ. (69)

Proof See Appendix B. ⊓⊔

5 Invariant manifolds and their reduced dynamics

under non-autonomous forcing

In the non-autonomous setting of system (2), i.e.,

for ǫ > 0, the fixed point is typically replaced by

an invariant torus created by the quasiperiodic term

ǫFext (z,�t), or by a periodic orbit when � is one-

dimensional. Indeed, for small enough ǫ > 0, the exis-

tence of a small-amplitude invariant torus γǫ in the

extended phase space of system (2) is guaranteed if

the origin is a hyperbolic fixed point in its ǫ = 0 limit

(see Guckenheimer and Holmes [27]). In this setting,

we have an invariant manifold W(E, γǫ), which can be

viewed as a fiber bundle that perturbs smoothly from the

spectral subbundle γǫ×E under the addition of the non-

linear terms, as long as appropriate resonance condi-

tions hold (see Theorem 4 of Haller and Ponsioen [29],

Theorem 4.1 of Haro and de la Llave [32–34]).

In contrast to the invariant manifold W(E) from the

autonomous setting, the perturbed manifold or whisker,

W(E, γǫ), is attached to γǫ instead of the origin and

dim (W(E, γǫ)) = dim (E) + dim (γǫ) = M + K , as

shown in Fig. 5. From a computational viewpoint, now

the manifold W(E, γǫ) and its reduced dynamics need

to be additionally parametrized by the angular variables

φ ∈ T
K that correspond to the multi-frequency vector

� ∈ R
K as

Wǫ(p,φ) = W(p) + ǫX(p,φ) + O
(

ǫ2
)

, (70)

Rǫ(p,φ) = R(p) + ǫS(p,φ) + O
(

ǫ2
)

. (71)

Here, Wǫ : C
M × T

K → R
N , Rǫ : C

M ×
T

K → C
M are parametrizations for the invariant man-

ifold W(E, γǫ) and its reduced dynamics; W(p), R(p)

recover the manifold W(E) and its reduced dynamics

in the unforced limit of ǫ = 0; and X(p,φ), S(p,φ)

denote the O(ǫ) terms, which depend on the angular

variables φ due to the presence of forcing Fext (z,�t).

Invoking the invariance of W(E, γǫ), we substitute the

expansions (70)-(71) into the governing equations (2)

and collect the O(ǫ) terms to obtain (cf. Ponsioen et

al. [63])

B
[

DW(p)S(p,φ) + ∂pX(p, φ)R(p) + ∂φX(p,φ) · �
]

=
[

A + DF(W(p))
]

X(p, φ) + Fext (φ, W(p)). (72)

The terms X(p,φ), S(p,φ) can be further expanded

into Taylor series in p with coefficients that depend on

the angular variables φ as

X(p,φ) = X0(φ) +
ŴS∑

j=1

X j (φ)p⊗ j , (73)

S(p,φ) = S0(φ) +
ŴR∑

j=1

S j (φ)p⊗ j . (74)

Collecting the O(1) terms in p from the invariance

equation (72), we obtain

B
[

W1S0(φ) + ∂φX0(φ) · �
]

= AX0(φ) + Fext (φ),

(75)

which is a system of linear differential equations for

the unknown, time-dependent coefficients X0(φ). Sim-

ilarly to the autonomous setting, the choice of reduced

dynamics S0(φ) again provides us the freedom to

remove (near-) resonant terms via a normal form style

of parametrization.

In this work, we restrict our attention to the com-

putation of the leading-order non-autonomous contri-

butions, i.e., X0(φ), S0(φ). To this end, we perform a

Fourier expansion of the different terms in Eq. (75) as

Fext (z,φ) =
∑

κ∈ZK

F0,κei〈κ,φ〉 + O(|z|), (76)
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Fig. 5 Applying the parametrization method to system (2) with

ǫ > 0, we obtain a parametrization Wǫ : C
M ×T

K → R
N of an

(M +K )−dimensional perturbed manifold (whisker) attached to

a small-amplitude whiskered torus γǫ parametrized by the angu-

lar variables φ ∈ T
K with φ̇ = �. This whisker is perturbed from

the master spectral subspace E of the linear system (7) under the

addition of nonlinear and O(ǫ) terms of system (2) (cf. Fig. 4).

Furthermore, we have the freedom to choose a parametrization

Rǫ : C
M × T

K → C
M of the reduced dynamics on the man-

ifold such that the function Wǫ also maps the reduced system

trajectories p(t) onto the full system trajectories on the invariant

manifold, i.e., z(t) = Wǫ (p(t),�t)

X0(φ) =
∑

κ∈ZK

x0,κei〈κ,φ〉, (77)

S0(φ) =
∑

κ∈ZK

s0,κei〈κ,φ〉, (78)

where F0,κ ∈ C
N are the known Fourier coefficients for

the forcing Fext (z,�t) and x0,κ ∈ C
N , and s0,κ ∈ C

M

are the unknown Fourier coefficients for the leading-

order, non-autonomous components of X, S. Upon sub-

stituting Eqs. (76)-(78) into Eq. (75) and comparing

Fourier coefficients at order κ , we obtain linear equa-

tions in terms of the variables x0,κ , s0,κ as

L0,κx0,κ = h0,κ (s0,κ ), κ ∈ Z
K , (79)

where

L0,κ := i 〈κ,�〉 B − A ∈ C
N×N ,

h0,κ (s0,κ ) := F0,κ − BW1s0,κ ∈ C
N .

The coefficient matrix L0,κ in (79) becomes (nearly)

singular when the forcing is (nearly) resonant with any

of eigenvalues of the system (A, B), i.e., when

i 〈κ,�〉 ≈ λ j , j ∈ {1, . . . , N }. (80)

Similarly to the autonomous setting, such nearly reso-

nant forcing leads to small divisors, while we are solv-

ing system (79) (cf. Remark 3) and hence it is desirable

to include such terms in the reduced dynamics as per

the normal form style of parametrization. This results

in (cf. Eq. (47))

Normal form style: s0,κ = e j

(

u⋆
j F0,κ

)

∀κ ∈ Z
K , j ∈ {1, . . . , M} : i 〈κ,�〉 ≈ λ j . (81)

Alternatively, using a graph style parametrization, we

obtain (cf. Eq. (52))

Graph style: s0,κ = e j

(

u⋆
j F0,κ

)

∀κ ∈ Z
K ,

j ∈ {1, . . . , M}. (82)

Note, however, that these choices are only available

for the modes in the master subspace that are reso-

nant with the external frequency �, i.e., j = 1, . . . , M

in the approximation (80). If the near-resonance rela-

tion (80) holds for any eigenvalues outside the master

subspace, i.e., j = M + 1, . . . , N , then the domain of

convergence of our Taylor approximations is reduced.

Depending on the application, a workaround for this

may be to include any nearly resonant modes in the

master subspace from the start.
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Finally, upon determining the reduced dynamics

coefficients s0,κ specific to the chosen parametriza-

tion style (see Eqs. (81), (82)), we compute a norm-

minimizing solution to (79) given by

x0,κ = min
y∈CN ,L0,κ y=h0,κ (s0,κ )

‖y‖2, (83)

as we did in the autonomous setting (cf. Eq. (53)).

Remark 4 (Parallelization) For each κ ∈ Z
K , the

reduced dynamics coefficients s0,κ and the manifold

coefficients x0,κ can be determined independently of

each other. Hence, parallel computation of these coef-

ficients will result in high speedup due to minimal

cross-communication across the processes (see also

Remark 2).

5.1 Spectral submanifolds and forced response curves

In structural dynamics, predicting the steady-state

response of mechanical systems in response to peri-

odic forcing is often the end goal of the analysis. This

response is commonly expressed in terms of the FRC

depicting the response amplitude as a function of the

external forcing frequency. FRCs are computationally

expensive to obtain for large structural systems of engi-

neering significance (see, e.g., Ponsioen et al. [63],

Jain et al. [42]). The recent theory of spectral sub-

manifolds [29] (SSM), however, has enabled the fast

extraction of such FRCs via exact reduced-order mod-

els. The analytic results of Breunung and Haller [3],

Ponsioen et al. [62] make it possible to obtain FRCs

from the normal form of the reduced dynamics on two-

dimensional SSMs without any numerical simulation.

These approaches, however, develop SSM computa-

tions in diagonal coordinates assuming semisimplicity

of the matrix B−1A. This has limited applicability for

high-dimensional finite element-based problems, as we

have discussed in Sect. 3. Here, we revisit their results

in our context.

We consider the mechanical system (1) under peri-

odic, position-independent forcing as

Mẍ + Cẋ + Kx + f(x, ẋ) = ǫfext (�t), (84)

where � ∈ R+ is the external forcing frequency and

the periodic forcing Fext (�t) can be expressed in a

Fourier expansion as

Fext (�t) =
∑

κ∈Z

Fext
κ eiκ�t . (85)

We assume that the system (84) represents a lightly

damped structure. This implies that � satisfies the

following near-resonance relationship1 with a two-

dimensional spectral subspace associated with the

eigenvalues λ, λ̄:

λ − iη� ≈ 0, λ̄ + iη� ≈ 0, (86)

for some η ∈ N. The left and right eigenvectors asso-

ciated with the eigenvalues {λ, λ̄} are {u, ū} and {v, v̄}.
Furthermore, under light damping (i.e.,

|Re(λ)|
|Im(λ)| ≪ 1),

the near-resonance relationships

λ ≈ (ℓ + 1) λ + ℓλ̄, λ̄ ≈ ℓλ + (ℓ + 1) λ̄, (87)

will hold for any finite ℓ ∈ N (see Szalai et al. [68]).

As per Eqs. (47) and (81), the near-resonances (86)-

(87) lead to the following normal form for the reduced

dynamics (cf. Breunung and Haller [3]):

Rǫ(p,�t) =
[

λp

λ̄ p̄

]

+
∑

ℓ∈N

[

γℓ pℓ+1 p̄ℓ

γ̄ j pℓ p̄ℓ+1

]

+ǫ

[

u⋆Fext
η eiη�t

ū⋆F̄ext
η e−iη�t

]

+ O(ǫ|p|), (88)

where the coefficients γℓ are determined automatically

from the normal form style parametrization (47) of the

reduced dynamics on the two-dimensional SSM.

Theorem 3.8 of Breunung and Haller [3] provides

explicit expressions for extracting FRCs from the

reduced dynamics on two-dimensional SSMs near a

resonance with the forcing frequency. Their expres-

sions are derived under the assumption of propor-

tional damping, mono-harmonic, cosinusoidal and syn-

chronous forcing on the structure. The following state-

ment generalizes their expressions to system (84)

with periodic forcing (85) and provides us a tool to

extract forced-response curves near resonance from

two-dimensional SSMs in physical coordinates.

Lemma 2 Under the near-resonance relationships (86)

and (87):

1 Note that exact resonance is not possible for damped eigenval-

ues, which exhibit nonzero (strictly negative) real parts.
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(i) Reduced-order model on SSMs: The reduced

dynamics (88) in polar coordinates (ρ, θ) is given by

[

ρ̇

ρψ̇

]

= r(ρ, ψ,�) :=
[

a(ρ)

b(ρ,�)

]

+
[

cos ψ sin ψ

− sin ψ cos ψ

] [

Re ( f )

Im ( f )

]

, (89)

φ̇ = �, (90)

where

a(ρ) = Re

(

ρλ +
∑

ℓ∈N

γℓρ
2ℓ+1

)

,

b(ρ,�) = Im

(

ρλ +
∑

ℓ∈N

γℓρ
2ℓ+1

)

− ηρ�,

f = ǫu⋆Fext
η ,

ψ = θ − ηφ.

(ii) FRC: The fixed points of the system (89) correspond

to periodic orbits with frequency η� and are given by

the zero level set of the scalar function

F(ρ,�) := [a(ρ)]2 + [b(ρ,�)]2 − | f |2. (91)

(iii) Phase shift: The constant phase shift ψ between the

external forcing fext (�t) and a ρ-amplitude periodic

response, obtained as a zero of Eq. (91), is given by

ψ = arctan

(
b(ρ,�)Re( f ) − a(ρ)Im( f )

−a(ρ)Re( f ) − b(ρ,�)Im( f )

)

. (92)

(iv) Stability: The stability of the periodic response is

determined by the eigenvalues of the Jacobian

J (ρ) =
[

∂ρa −b(ρ,�)
∂ρb(ρ,�)

ρ
a(ρ)
ρ

]

. (93)

Proof See Appendix C ⊓⊔

Note that the zero level set of F , which provides the

FRC, can also be written as the zero-level set of the

functions

G±(ρ,�) := b(ρ,�) ±
√

| f |2 − [a(ρ)]2.

Despite the equivalence in the zero-level sets of the

functions F and G±, one over the other might be pre-

ferred to avoid numerical difficulties. The zero-level set

of F is a one-dimensional submanifold in the (ρ,�)

space for a given forcing of small enough amplitude

| f |. The parameter values for which the FRC contains

more than one connected component are referred in

the literature as the emergence of detached resonance

curves or isolas. The non-spurious zeros of the polyno-

mial a(ρ) result in the non-trivial steady state for the

full system (see Ponsioen et al. [62]). The analytical

formulas given in Lemma 2 enable us to compute the

FRCs along with isolas, if those exist.

In the case of (near-) outer resonances of λ with any

of the remaining eigenvalues of the system, such a two-

dimensional SSM does not exist (see Haller and Pon-

sioen [29]) and one should include the resonant eigen-

values in the master modal subspace E , resulting in

higher-dimensional SSMs with inner resonances. The

reduced dynamics on such high-dimensional SSMs can

again be used to compute FRCs via numerical contin-

uation, as discussed by Li et al. [54].

The automated computation procedure developed

here is also applicable for treating high-dimensional

problems with inner resonances up to arbitrarily high

order of accuracy. A numerical implementation of the

computational methodology developed in this work is

available in the form of the open-source MATLAB

package, SSMTool 2.0 [38], which is integrated with

a generic finite element solver (Jain et al. [37]) and

coco [13]. This allows us to treat high-dimensional

mechanics problems, as we demonstrate over several

numerical examples in the next section.

6 Numerical examples

In the following examples, we perform local SSM

computations on mechanical systems following the

methodology discussed in Sects. 4 and 5, which

involves the solution of invariance equations (21)

and (72). We use the reduced-dynamics on two-

dimensional SSMs attached to periodic orbits for

obtaining FRCs of various nonlinear mechanical sys-

tems via Lemma 2.

The equations of motion governing the following

examples are given in the general form:

Mẍ + Cẋ + Kx + f(x) = ǫfext (�t), x(t) ∈ R
n .

(94)
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Fig. 6 The schematic of an n−degree-of-freedom, nonlinear

oscillator chain where each spring has linear stiffness k [N/m]

and cubic stiffness κ , [N/m3]; each damper has linear damping

coefficient c [N s/m]; and each mass (m [kg]) is forced periodi-

cally at frequency � [rad/s] (see Eq. (94))

An SSM characterizes the deformation in the corre-

sponding modal subspace that arises due to the addi-

tion of nonlinearities in the linearized counterpart of

system (94). Specifically, the nonlinear terms in the

Taylor expansions W, R (see Eqs. (22) and (23)) end

up being non-trivial precisely due to the presence of

the nonlinearity f in system (94). For each of the fol-

lowing examples, we illustrate this deformation of the

modal subspace by taking a snapshot (Poincaré section)

of the non-autonomous SSM along with its reduced

dynamics at an arbitrary time instant, t = t0. We

then plot the SSM as a graph over the modal coor-

dinates [ρ cos θ, ρ sin θ ], where θ = (ψ + η�t0) (see

Lemma 2).

To this end, we simply simulate the autonomous,

two-dimensional ROM (89) which results in the reduced

dynamics trajectories ρ(t) and θ(t) on the SSM in polar

coordinates. We then map these trajectories onto the

SSM using the parametrization Wǫ(p(t),�t0)), where

p(t) = ρ(t)

[

eiθ(t)

e−iθ(t)

]

= ρ(t)

[

ei(ψ(t)+η�t0)

e−i(ψ(t)+η�t0)

]

. (95)

We also compare these results with global compu-

tational techniques involving numerical continuation

of the periodic response via collocation, spectral and

shooting-based approximations. While the local man-

ifold computations we have discussed would benefit

greatly from parallel computing (see Remarks 2 and 4),

in this work, we refrain from any parallel computations

for a fair comparison of computation time with other

techniques, where the tools we have employed do not

use parallelization. We perform all computations via

openly available MATLAB packages on version 2019b

of MATLAB.

6.1 Finite element-type oscillator chain

As a first example, we consider the nonlinear oscillator

chain example used by Jain et al. [42], whose computa-

tional implementation can be made to resemble a finite

element assembly, with each of the nonlinear springs

treated as an element.

The equations of motion for the n-mass oscillator

chain, shown in Fig. 6, are given by system (94) with

M = mIn, K = kLn, C = cLn, f(x) = κf3x⊗3,

(96)

where Ln is a Toeplitz matrix given as

Ln =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×n, (97)

and f3 ∈ R
n×n3

is a sparse cubic coefficients array such

that

f3x⊗3 =

⎡

⎢
⎢
⎢
⎣

x3
1 − (x2 − x1)

3

(x2 − x1)
3 − (x3 − x2)

3

...

(xn − xn−1)
3 − x3

n

⎤

⎥
⎥
⎥
⎦

. (98)

We choose the parameter values

m = 1, k = 1, c = 0.1, κ = 0.3,

fext (�t) = f0 cos(�t), ǫ = 0.1, (99)

where forcing frequency � in the range of 0.23-1 rad/s

and the forcing shape

f0 = [−0.386,−0.587,−0.521,−0.243, 0.095, 0.335,
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Fig. 7 a Poincaré section of the non-autonomous SSM com-

puted around the second mode (eigenvalues (102)) for � =
0.6158 rad/s, where the reduced dynamics in polar coordinates

ρ, θ is obtained by simulating the ROM (89) (see Eq. (95)).

The fixed points in blue and red directly provide us the stable

and unstable periodic orbits on the FRC. b FRC obtained via

local computations of SSM at O(5) agrees with those obtained

using global continuation methods involving the harmonic bal-

ance method (NLvib [46]) and collocation (coco [13]); the com-

putation is performed for n = 10 (see Table 2 for computation

times); and the plot shows the displacement amplitude for the 5th

(middle) degree of freedom

0.402, 0.323, 0.188, 0.075]⊤ (100)

are chosen to excite the first three modes of the system.

For the chosen parameter values, the pairs of eigenval-

ues associated with the first three modes are

λ1,2 = −0.0041 ± 0.2846i, (101)

λ3.4 = −0.0159 ± 0.5632i, (102)

λ5,6 = −0.0345 ± 0.8301i. (103)

For � ∈ [0.23, 1], these three pairs of eigenval-

ues (101)-(103) are nearly resonant with � as per

approximations (86) with η = 1. We subdivide the fre-

quency range into three intervals around each of these

near-resonant eigenvalue pairs. We then perform SSM

computations up to quintic order to approximate the

near-resonant FRC via Lemma 2 for each pair of near-

resonant eigenvalues.

Figure 7a illustrates the Poincaré section of the non-

autonomous SSM computed around the second mode

with eigenvalues (102) and near-resonant forcing fre-

quency � = 0.6158 rad/s (period T = 2π/�). Each

curve of the reduced dynamics shown in Fig. 7a rep-

resents iterates of the period T -Poincaré map. In par-

ticular, any hyperbolic fixed points correspond to T -

periodic orbits of the full system with the same hyper-

bolicity according to Lemma 2. Hence, we directly

obtain unstable and stable periodic orbits on the FRC

by investigating the stable (blue) and unstable (red)

fixed points of the reduced dynamics on the SSM for

different values of �, as shown in Fig. 7b.

Figure 7b further shows that the FRC obtained

from these SSM computations agrees with the spec-

tral (harmonic balance) and collocation-based approx-

imations. We perform these harmonic balance approx-

imations using an openly available MATLAB pack-

age, NLvib [46], which implements an alternating

frequency–time (AFT) approach. We choose 5 har-

monics for approximations in the frequency domain

and 27 time steps for the approximations in the time

domain. For performing collocation-based continua-

tion, we use the po-toolbox of coco [13] with default

settings and adaptive refinement of collocation mesh

and one-dimensional atlas algorithm.

The total computation time consumed in model gen-

eration, coefficient assembly and computation of all

eigenvalues of this system was less than 1 second
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Table 2 Computation times for obtaining the FRC depicted in Fig. 7

n Computation time [minutes/seconds]

SSM O(5) Harmonic balance Collocation

(number of degrees of freedom) (SSMTool 2.0 [38]) (NLvib [46]) (coco [13], atlas-1d)

10 00:07 00:14 02:47

These computations were performed on MATLAB version 2019b, installed on a Windows-PC with Intel Core i7-4790 CPU @ 3.60GHz

and 32 GB RAM

on a Windows-PC with Intel Core i7-4790 CPU @

3.60GHz and 32 GB RAM. We compare the computa-

tion times for obtaining the FRC using different meth-

ods in Table 2.

In this example, the SSM-based analytic approxi-

mation to FRC using Lemma 2 involves the computa-

tion of the O(5)-autonomous SSM three times (once

around each resonant pair). The leading-order non-

autonomous SSM computation needs to be repeated for

each � in the frequency span [0.23, 1]. We emphasize

that while each of these SSM computations is paral-

lelizable (see Remark 2) in contrast to continuation-

based global methods, we have reported computation

times via a sequential implementation in Table 2. As

expected, we observe from Table 2 that local approx-

imations to SSMs are a much faster means to com-

pute FRCs in comparison with global techniques that

involve collocation or spectral (harmonic balance)

approximations.

6.2 Von Kármán Beam

We now consider a finite element model of a geomet-

rically nonlinear, cantilevered von Kármán beam (Jain

et al. [41]), illustrated in Fig. 8a. The geometric and

material properties of the beam are given in Table 3.

The equations of motion are again given in the general

form (94). This model is programmed in the finite ele-

ment solver [37], which directly provides us the matri-

ces M, C, K and the coefficients of the nonlinearity f

in physical coordinates. We discretize this model using

10 elements resulting in n = 30 degrees of freedom.

The eigenvalue pair associated with the first mode

of vibration of the beam is given by

λ1,2 = −0.0019 + 5.1681i, (104)

Fig. 8 The schematic of a two-dimensional von Kármán beam

model (Jain et al. [41]) with height h and length L , initially

aligned with the x1 axis, see Table 3 for geometric and material

properties

Table 3 Physical parameters of the von Kármán beam model

(see Fig. 8a)

Symbol Meaning Value (unit)

L Length of beam 1 (m)

h Height of beam 1 (mm)

b Width of beam 0.1 (m)

E Young’s modulus 70 (GPa)

κ Viscous damping rate of material 107 (Pa s)

ρ Density 2700 (kg/m3)

, and external forcing is chosen as

fext (�t) = f0 cos(�t), ǫ = 10−3, (105)

where f0 represents a spatially uniform forcing vector

with transverse forcing magnitude of 0.5N/m across the

length of the beam. We choose the forcing frequency �

in the range 4.1-6.2 rad/s for which the eigenvalue pair

λ1,2 (104) is nearly resonant with � (see (86)). We then

perform O(5) SSM computations to approximate the

near-resonant FRC around the first natural frequency

via Lemma 2.
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Fig. 9 Poincaré sections of the non-autonomous SSM computed

around the first mode (eigenvalues (104)) of the beam for near-

resonant forcing frequency � = 5.4 rad/s. The projection of the

SSM onto the axial degree of freedom b located at the tip of

the beam shows significant curvature in contrast to that onto the

transverse degree of freedom (a), which appears relatively flat.

The reduced dynamics in polar coordinates ρ, θ is obtained by

simulating the ROM (89) (see Eq. (95)); the fixed points in blue

and red directly provide us the stable and unstable periodic orbits

on the FRC for different values of � (see Fig. 10)

Figure 9 illustrates the Poincaré section of the non-

autonomous SSM computed around the first mode with

eigenvalues (104) and near-resonant forcing frequency

� = 5.4 rad/s (period T = 2π/�). We observe

in Fig. 9a that the graph of the manifold is flat along the

transverse degree of freedom, which gives the impres-

sion that there is no significant deformation of the

modal subspace under the addition of nonlinearities in

this system. At the same time, however, Fig. 9b depicts

a significant curvature of the SSM along the axial

degree of freedom, which is related to the bending–

stretching coupling introduced by the geometric non-

linearities in any beam model. Hence, we note that the

invariance computation automatically accounts for the

important physical effects arising due to nonlineari-

ties in the form of the parametrizations W and R of

the manifold and its reduced dynamics. These effects,

otherwise, are typically captured by a heuristic projec-

tion of the governing equation onto carefully selected

modes (see Jain et al. [41], Buza et al. [5] for a discus-

sion).

Finally, in Fig. 10, we obtain unstable and stable

periodic orbits on the FRC by investigating the stable

(blue) and unstable (red) fixed points of the reduced

dynamics on the SSM for different values of �. Fig-

ure 10 also shows that the FRC obtained via local SSM

computation closely approximates the FRCs obtained

using various global continuation techniques: colloca-

tion approximations via coco [13] and harmonic bal-

ance approximations via NLvib [46]. These continua-

tion were performed with the same settings as in the

previous example.

Once again, the total computation time spent on

model generation, coefficient assembly and comput-

ing the first 10 eigenvalues of this system was less than

1 second on a Windows-PC with Intel Core i7-4790

CPU @ 3.60GHz and 32 GB RAM. Table 4 records

the computation times to obtain FRCs via each of these

methods. For the collocation-based response computa-

tion via coco [13], we also employ the atlas-kd algo-

rithm (see Dankowicz et al. [14]) in addition to the

default atlas-1d algorithm used in the previous exam-

ple. Atlas-kd allows the user to choose the subspace of

the continuation variables along which the continuation

step size h is measured. Here, we choose this subset to

be (zout (0),�, T ), where T = 2π
�

is the time period

of periodic response and zout is the response at output

degree of freedom shown in Fig. 10. We allow for the

continuation step size to adaptively vary between the

values hmin = 10−5 to hmax = 50 and a maximum

residual norm for the predictor step to be 10. We found

these settings to be optimal for this atlas-kd run since
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Table 4 Computation time for obtaining the FRCs depicted in Fig. 8b

n Computation time [hours/minutes/seconds]

(number of degrees of freedom) SSM O(5) (SSMTool 2.0 [38]) Harmonic balance (NLvib [46]) Collocation (coco [13])

atlas-ld atlas-kd

30 00:00:03 00:31:15 05:36:15 05:09:18

These computations were performed on MATLAB version 2019b installed on a Windows-PC with Intel Core i7-4790 CPU @ 3.60GHz

and 32 GB RAM

Fig. 10 FRCs of the von Kármán beam model (see Fig. 8)

with n = 30 degrees of freedom under harmonic, spatially uni-

form transverse loading (see Eq. (105)). The FRC obtained via

local computations of SSM at O(5) agrees with those obtained

using global continuation methods involving the harmonic bal-

ance method (NLvib [46]) and collocation (coco [13]); the plot

shows the displacement amplitude for in the x3 direction at the

tip of the beam (see Table 4 for computation times)

relaxing these tolerances further has no effect on the

continuation speed. Once again, the computation times

in Table 4 indicate orders-of-magnitude higher speed in

reliably approximating FRC via local SSMs computa-

tions in comparison with global techniques that involve

collocation or spectral approximations.

6.3 Shallow-arch structure

Next, we consider a finite element model of a geomet-

rically nonlinear shallow arch structure, illustrated in

Fig. 11a (Jain and Tiso [39]).

The geometrical and material properties of this

curved plate are given in Table 5. The plate is simply

supported at the two opposite edges aligned along the

y-axis in Fig. 11a. The model is discretized using flat,

Table 5 Geometrical and material parameters of the shallow-

arch structure in Fig. 11a

Symbol Meaning Value (unit)

L Length of plate 2 (m)

t Thickness of plate 10 (mm)

H Width of beam 1 (m)

E Young’s modulus 70 (GPa)

ν Poisson’s ratio 0.33 (−)

κ Viscous damping rate of material 105 (Pa s)

ρ Density 2700 (kg/m3)

triangular shell elements and contains 400 elements,

resulting in n = 1320 degrees of freedom. The open-

source finite element code [37] directly provides us the

matrices M, C, K and the coefficients of the nonlinear-

ity f in the equations of motion (94).

The first mode of vibration of this structure is shown

in Fig. 11b, and the corresponding eigenvalue pair is

given by

λ1,2 = −0.29 ± 147.45i. (106)

The external forcing is again given by

fext (�t) = f0 cos(�t), ǫ = 0.1, (107)

where f0 represents a vector of concentrated load in z-

direction with magnitude of 100 N at the mesh node

located at x = L
2
, y = H

2
in Fig. (11)a. We choose

the forcing frequency � in the range 133–162 rad/s for

which the eigenvalue pair λ1,2 is nearly resonant with

� (see (86)).

We then compute the near-resonant FRC around the

first natural frequency via O(3),O(5), and O(7) SSM

computations using Lemma 2. Once again, Fig. 12a

shows the Poincaré section of the non-autonomous

SSM for the near-resonant forcing frequency � =
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(a)

Frequency=23.4682Hz

(b)

Fig. 11 a schematic of a shallow-arch structure (Jain and

Tiso [39]), see Table 5 for geometric and material properties. This

plate is simply supported at the two opposite edges aligned along

the y-axis. b The finite element mesh (containing 400 elements,

1320 degrees of freedom) deformed along first bending mode

having undamped natural frequency of approximately 23.47 Hz

Fig. 12 a Poincaré section of the non-autonomous SSM of the

shallow-arch structure (see Fig. 11) computed around the first

mode (eigenvalues (106)) for near-resonant forcing frequency

� = 146.49 rad/s. The reduced dynamics in polar coordinates

ρ, θ is obtained by simulating the ROM (89) (see Eq. (95)); the

fixed points in blue and red directly provide us the stable and

unstable periodic orbits on the FRC b for different values of �.

FRCs obtained using local SSM computations at O(3), O(5) and

O(7) agree with that obtained via global continuation based on

the shooting method, which implements the Newmark time inte-

gration (see Table 6 for computation times); plots (a) and (b)

show the displacements in the x and z-directions at the mesh

node located at x = L
2
, y = H

2
in Fig. 11

Table 6 Computation time for obtaining the FRCs depicted in Fig. 12

n Computation time (hours/minutes/seconds)

(number of degrees of freedom) Shooting method (Newmark) SSM O(3) SSM O(5) SSM O(7)

(SSMTool 2.0 [38])

1,320 52:50:14 00:00:07 00:00:12 00:00:28

All computations were performed on MATLAB version 2019b installed on a Windows-PC with Intel Core i7-4790 CPU @ 3.60GHz

and 32 GB RAM
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Table 7 Geometrical and material parameters of the shallow-

arch structure in Fig. 11a

Symbol Meaning Value (unit)

L Length of wing (z direction) 5 (m)

H Height of wing (y direction) 0.1 (m)

W Width of wing (x direction) 0.9 (m)

t Thickness of elements 1.5 (mm)

E Young’s modulus 70 (GPa)

ν Poisson’s ratio 0.33 (−)

ρ Density 2700 (kg/m3)

146.49 rad/s, where we directly obtain the unstable

(red) and stable (blue) periodic orbits on the FRC as

hyperbolic fixed points of the reduced dynamics (89) on

the SSM. The three FRCs at O(3),O(5) and O(7) seem

to converge to softening response shown in Fig. 12b.

Note that we expect a softening behavior in the FRC of

shallow arches (see, e.g., Buza et al. [4,5]).

Due to excessive memory requirements, this FRC

could not be computed using collocation approxima-

tions via coco [13] or using harmonic balance approx-

imations via NLvib [46]. Instead, we compare this FRC

to another global continuation technique based on the

shooting method, which is still feasible (see Introduc-

tion).

For shooting, we use the classic Newmark time

integration scheme (Newmark [58], see Géradin and

Rixen [24] for a review) as the common Runge–Kutta

schemes (e.g., ode45 of MATLAB) struggle to con-

verge in structural dynamics problems. We use an open-

source toolbox [52], based on the atlas-1d algorithm

of coco [13] for continuation of the periodic solu-

tion trajectory obtained via shooting (see Dancowicz

et al. [14]). We use a constant time step throughout

time integration which is chosen by dividing the time

span T = 2π
�

into 100 equal intervals. We found this

choice of time step to be nearly optimal for this problem

as larger time steps lead to non-quadratic convergence

during Newton–Raphson iterations and smaller time

steps result in slower computations. The stability of

the response is computed by integrating the equations

of variation around the converged periodic orbit.

The total time consumed in model generation and

coefficient assembly was 33 seconds on a Windows-

PC with Intel Core i7-4790 CPU @ 3.60GHz and 32

GB RAM. This includes the time spent in computing

the first 10 eigenvalues of this system, which took less

than 1 second. Figure 12b shows that this shooting-

based global continuation agrees with the SSM-based

approximation to the FRC. Obtaining this FRC via the

shooting methods, however, takes more than 2 days, in

contrast to SSM-based approximation using the pro-

posed computational methodology, which still takes

less than a minute even at O(7), as shown in Table 6.

6.4 Aircraft Wing

As a final example, we consider the finite element

model of a geometrically nonlinear aircraft wing origi-

nally presented by Jain et al [40] (see Fig. 13). The wing

is cantilevered at one of its ends, and the structure is

meshed using flat triangular shell elements featuring

6 degrees of freedom per node. With 49,968 elements

and 133,920 degrees of freedom, this model provides

a physically relevant as well as computationally real-

istic problem that is beyond feasibility for global con-

tinuation techniques based on collocation, spectral and

shooting methods, as shown by previous examples. The

open-source finite element code [37] directly provides

us the matrices M, K and the coefficients of the non-

linearity f in the equations of motion (94) (Table 7).

For assembling coefficients on a problem of this

size, we used the Euler supercomputing cluster at ETH

Zurich. The total time consumed in model generation

and coefficient assembly was 1 hour 21 minutes and 38

seconds without any parallelization. This time includes

the time taken for computing the first 10 eigenvalues

of this system, which was approximately 5 s. The main

bottleneck was the memory consumption during the

assembly of the coefficients of the nonlinearity f , where

the peak memory consumption was around 183 GB.

However, once assembled, these coefficients consume

only about 1.8 GB of RAM. This extraordinary memory

consumption during assembly occurs due to a subopti-

mal assembly procedure of sparse tensors [1]. To avoid

these bottlenecks, parallel computing and distributed

memory architectures need to be employed, which are

currently not available in the packages we have used.

In this example, we choose Rayleigh damping (see,

e.g., Géradin and Rixen [24]), which is commonly

employed in structural dynamics applications to con-

struct the damping matrix C = αM + βK as a linear

combination of mass and stiffness matrices. The con-

stants α, β are chosen to ensure a damping ratio of 0.4%
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Fig. 13 a A wing structure with NACA 0012 airfoil stiffened

with ribs (Jain et al. [40]), see Table 5 for geometric and material

properties. b The finite element mesh is illustrated after removing

the skin panels. The wing is cantilevered at the z = 0 plane. The

mesh contains 49,968 elements which results in n = 133, 920

degrees of freedom

Fig. 14 a Poincaré section of the non-autonomous SSM of the

aircraft wing structure with n =133,920 degrees of freedom (see

Fig. 13) computed around the first mode (eigenvalues (108)) for

near-resonant forcing frequency � = 29.8 rad/s. The reduced

dynamics in polar coordinates ρ, θ is obtained by simulating the

ROM (89) (see Eq. (95)); the fixed points in blue and red directly

provide us the stable and unstable periodic orbits on the FRC b

for different values of �. FRCs obtained using local SSM com-

putations at O(3), O(5) and O(7) converge toward a hardening

response; plots a and b show the displacements in the x and y-

directions at the tip-node 1 shown in Fig. 13b (see Table 8 for

the computational resources consumed)

Table 8 Computation time and memory requirements for obtaining the three FRCs depicted in Fig. 14

SSM order Computation time (hours/minutes/seconds) Peak memory consumption Average memory consumption

SSM-O(3) 00:11:17 ≈ 24 GB ≈ 9 GB

SSM-O(5) 00:35:47 ≈ 33 GB ≈ 10 GB

SSM-O(7) 01:47:51 ≈ 88 GB ≈ 19 GB

All computations were performed on MATLAB version 2019b installed on the ETH Zürich Euler supercomputing cluster on a single

node with 100, 000 MB (≈ 100 GB) of RAM
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along the first two vibration modes. The eigenvalue pair

associated with the first mode of vibration is given by

λ1,2 = −0.0587 ± 29.3428i. (108)

Once again, we choose harmonic external forcing given

by

fext (�t) = f0 cos(�t), ǫ = 0.01, (109)

where f0 represents a vector of concentrated loads at

the tip nodes 1 and 2 (see Fig. (13)b) in the transverse

y-direction each with a magnitude of 100 N. We choose

the forcing frequency � in the range 26.4–32.3 rad/s for

which the eigenvalue pair λ1,2 is nearly resonant with

� (see (86)). We then compute the near-resonant FRCs

around the first natural frequency via O(3),O(5), and

O(7) SSM computations using Lemma 2.

Similarly to the previous examples, Fig. 14a shows

the Poincaré section of the non-autonomous SSM for

the near-resonant forcing frequency � = 29.8 rad/s.

The hyperbolic fixed points of the reduced dynam-

ics (89) on the SSM directly provide the stable (blue)

and unstable (red) periodic orbits on the FRC for dif-

ferent values of forcing frequency �. On a macro-

level, this wing example resembles a cantilevered beam

and we expect a hardening type response. Indeed, the

three FRCs at O(3),O(5), and O(7) converge toward

a hardening-type response, as shown in Fig. 14b.

Table 8 depicts the computational resources con-

sumed in obtaining these three FRCs. The peaks in

memory consumption reported in Table 8 occur during

the composition of nonlinearity (see Eq. (27)). Note

that these peaks are short-lived, however, as the aver-

age memory consumption during all these computa-

tions is much lower. We remark that in the context of

finite element applications, these memory peaks can

be significantly reduced by implementing the nonlin-

earity composition at the element level in contrast to

the currently performed implementation at the full sys-

tem level. Once again, use of parallel computing and

distributed memory architectures would be greatly ben-

eficial in this context.

7 Conclusions

In this work, we have reformulated the parametriza-

tion method for local approximations of invariant man-

ifolds and their reduced dynamics in the context of

high-dimensional nonlinear mechanics problems. In

this class of problems, the classically used system diag-

onalization at the linear level is no longer feasible.

Instead, we have developed expressions that enable the

computation of invariant manifolds and their reduced

dynamics in physical coordinates using only the master

modes associated with the invariant manifold. Hence,

these computations facilitate mathematically rigorous

nonlinear model reduction in very high-dimensional

problems. A numerical implementation of the proposed

computational methodology is available in the open-

source MATLAB package, SSMTool 2.0 [38], which

enables the computation of invariant manifolds in finite

element-based discretized problems via an integrated

finite element solver [37] and bifurcation analysis of

the reduced dynamics on these invariant manifolds via

its coco [13] integration.

We have connected this computational methodol-

ogy to several applications of engineering significance,

including the computation of parameter-dependent

center manifolds; Lyapunov subcenter manifolds (LSM)

and their associated conservative backbone curves;

and spectral submanifolds (SSM) and their associated

forced response curves (FRCs) in dissipative mechan-

ical systems. We have also demonstrated fast and

reliable computations of FRCs via a normal form

style parametrization of SSMs in very large mechan-

ical structures, which has been a computationally

intractable task for other available approaches.

While our examples focused on the applications

of two-dimensional SSMs, this automated computa-

tion procedure and its numerical implementation [38]

can treat higher-dimensional invariant manifolds as

well. Specifically, the reduced dynamics on higher-

dimensional SSMs can be used for the direct compu-

tation of FRCs in internally resonant mechanical sys-

tems featuring energy transfer among multiple modes,

as will be demonstrated in forthcoming publications

(Li et al. [54]; Li and Haller [53]). Furthermore, in the

non-autonomous setting, we have restricted our expres-

sions to the leading-order contributions from the forc-

ing. Similar expressions, however, can also be obtained

for higher-order terms at the non-autonomous level,

which is relevant for the nonlinear analysis of para-

metrically excited systems. These expressions and the

related numerical implementation are currently under

development.
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Finally, as we have noted, these computations will

further benefit from parallelization since the invariance

equations can be solved independently for each mono-

mial/Fourier multi-index (see Remarks 2 and 4, and

Sect. 6.4). This development is currently underway and

will be reported elsewhere.
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Appendix A: Basic propositions

Proposition 1 Let Q ∈ C
M×M be any semisimple

matrix with eigenvalues μ1, . . . , μM (including rep-

etitions) and corresponding left and right eigenvectors

p1, . . . , pM ∈ C
M and r1, . . . , rM ∈ C

M . Then, for

any i ∈ N, the matrix

Qi :=
i

∑

j=1

(IM )⊗ j−1 ⊗ Q ⊗ (IM )⊗i− j ∈ C
M i ×M i

(110)

is semisimple and its eigenvalues are

μℓ = μℓ1 + · · · + μℓi
, ℓ ∈ �i,M (111)

with the left and right eigenvectors corresponding to

any eigenvalue μℓ explicitly given as pℓ := pℓ1 ⊗· · ·⊗
pℓi

and qℓ := qℓ1 ⊗ · · · ⊗ qℓi
.

Proof he proof involves a straightforward verification

of the statement. The eigenvalues and the left and right

eigenvectors of Q satisfy

Qp j = μ j p j , j = 1, . . . , M, (112)

q⋆
j Q = μ j q

⋆
j , j = 1, . . . , M, (113)

We first verify that μℓ (see Eq. (111)) is an eigen-

value of Qi (see Eq. (110)) with eigenvector pℓ :=
(

pℓ1 ⊗ · · · ⊗ pℓi

)

, i.e.,

Qi pℓ =

⎡

⎢
⎣

i
∑

j=1

Im ⊗ · · · ⊗
j−th position

↑
Q ⊗ · · · ⊗ Im

︸ ︷︷ ︸

i−terms

⎤

⎥
⎦

[

pℓ1 ⊗ · · · ⊗ pℓi

]

=
i

∑

j=1

pℓ1 ⊗ · · · ⊗ Qpℓ j
⊗ · · · ⊗ pℓi

=
i

∑

j=1

pℓ1 ⊗ · · · ⊗ μℓ j
pℓ j

⊗ · · · ⊗ pℓi

=
i

∑

j=1

μℓ j

(

pℓ1 ⊗ · · · ⊗ pℓi

)

= μℓpℓ,

where we have used basic properties of the Kronecker

product (see, e.g., Van Loan [55]) along with Eq. (113).

Similarly, using Eq. (112), we can verify that the left-

eigenvector corresponding to the eigenvalue μℓ is given

by qℓ := qℓ1 ⊗ · · · ⊗ qℓi
, i.e.,

q⋆
ℓQi = μℓq⋆

ℓ.

We note that since p1, . . . , pM are linearly independent

since Q is semisimple. Then, using the fact that for any

two linearly independent vectors a and b, the vectors

a ⊗ b and b ⊗ a are also linearly independent, we con-

clude that all M i eigenvectors pℓ with ℓ ∈ �i of Qi

are linearly independent. Hence, Qi is semisimple.
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Proposition 2 Let λ ∈ C be a generalized eigen-

value of a matrix pair A, B ∈ C
N×N with the cor-

responding left and right eigenvectors u, v ∈ C
N , and

μ ∈ C be a generalized eigenvalue of a matrix pair

C, D ∈ C
M×M with the corresponding left and right

eigenvectors e, f ∈ C
M for any M, N ∈ N. Then,

λμ is a generalized eigenvalue for the matrix pair

(C ⊗ A) , (D ⊗ B) ∈ C
N M×N M with the correspond-

ing left and right eigenvectors (e⊗u), (f ⊗v) ∈ C
M N .

Furthermore, if λμ = 1, then the matrix

E := D ⊗ B − C ⊗ A ∈ C
N M×N M (114)

is singular with (e ⊗ u) ∈ ker (E⋆) and (f ⊗ v) ∈
ker (E).

Proof ince λ is a generalized eigenvalue of the matrix

pair A, B with w, v being the corresponding left and

right eigenvectors, we have

Av = λBv, (115)

u⋆A = λu⋆B. (116)

Similarly, for the matrix pair C, D with eigenvalue μ

and e, f being the corresponding left and right eigen-

vectors, we have

Cf = μDf, (117)

e⋆C = μe⋆D. (118)

We verify that λμ is a generalized eigenvalue of the

matrix pair (C ⊗ A) , (D ⊗ B) with eigenvector (f⊗v),

i.e.,

(C ⊗ A) (f ⊗ v) = (Cf) ⊗ (Av)

= (μDf) ⊗ (λBv)

= λμ (Df) ⊗ (Bv)

= λμ (D ⊗ B) (f ⊗ v), (119)

where we have used Eqs. (115), (117) along with basic

properties of the Kronecker product of matrices (see,

e.g., Van Loan [55]). Similarly, using Eqs. (116), (118),

we can show that

(e ⊗ u)⋆ (C ⊗ A) = λμ(e ⊗ u)⋆ (D ⊗ B) , (120)

which proves that (e ⊗ u) is the generalized left-

eigenvector for the generalized eigenvalue λ for the

generalize first part of the proposition.

Finally, substituting λμ = 1 in Eqs. (119), (119),

we obtain

[(C ⊗ A) − (D ⊗ B)] (f ⊗ v) = 0,

(e ⊗ u)⋆ [(C ⊗ A) − (D ⊗ B)] = 0,

which proves that the matrix E (see Definition (114))

is singular and the vectors (f ⊗ v) and (e ⊗ u) belong

to its left and right kernels.

Appendix B: Proof of Lemma 1

In polar coordinates p = P(ρ, θ) := ρ

[

eiθ

e−iθ

]

, the

reduced dynamics (68) is given as

[

ρ̇

θ̇

]

=
[

a(ρ)

ω(ρ)

]

=
[

0

ωm

]

+
∑

ℓ∈N

[

Re(γℓ)ρ
2ℓ+1

Im(γℓ)ρ
2ℓ

]

.

(121)

Now, since the equation for ρ̇ is a scalar ODE decoupled

from the phase θ , the only possible steady states are

fixed points ρ̇ = 0, i.e., ρ = ρ(0) =constant. There-

fore, θ̇ = ω(ρ) represents a constant angular frequency

depending on the constant steady-state amplitude ρ.

Since the LSM is an analytic manifold, the functions

a, ω describing reduced dynamics on the LSM are also

analytic. Note that since the LSM is filled with periodic

orbits in an open neighborhood of the origin, a(ρ) must

be identically zero because any non-trivial polynomial

expression for a would result in isolated periodic orbits

on the LSM. Thus, we deduce that our computational

procedure must result in

Re(γℓ) = 0 ∀ℓ ∈ N.

Finally, as the LSM is foliated with periodic orbits

in an open neighborhood of the origin, the equation

θ̇ = ω(ρ) expresses the frequency of oscillation as a

function any given constant amplitude ρ for the peri-

odic orbits on the LSM. Hence, the conservative back-

bone around the mth mode is given by the relation (69).

123
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Appendix C: Proof of Lemma 2

Using polar coordinates p = P(ρ, θ) := ρ

[

eiθ

e−iθ

]

, we

rewrite the first equation in the system (88) as

ṗ1 = ρ̇eiθ +iθ̇ρeiθ = λρeiθ +
∑

ℓ∈N

γℓρ
2ℓ+1eiθ + f eiηφ,

(122)

where

f := ǫu⋆
j F

ext
η .

Dividing Eq. (122) by eiθ and introducing the phase

shift ψ = θ − ηφ, we obtain

ρ̇+i
(

ψ̇ + η�
)

ρ = λρ+
∑

ℓ∈N

γℓρ
2ℓ+1+ǫ f e−iψ . (123)

Comparing the real and imaginary parts in Eq. (123),

we obtain the polar reduced dynamics given in Eq. (89),

which concludes the proof of (i).

The fixed points of system (89) are obtained by

equating its right-hand side to zero as

r(ρ, ψ,�) = 0. (124)

Any such fixed point represents a periodic orbit for

the reduced system (89) with constant polar radius ρ

and constant phase difference ψ with respect to the

cyclic variable ηφ, which has the angular frequency

η�. Hence, we obtain a one-dimensional submani-

fold of zeros upon solving (124), whose projection in

the (ρ,�) provides us the FRC. Eliminating ψ from

Eq. (124), we obtain the fixed points as the set of points

(ρ,�) that satisfy the equation

[a(ρ)]2 + [b(ρ,�)]2 = | f |2, (125)

which proves statement (ii).

Solving the two equations (124) for cos ψ and sin ψ ,

we obtain

cos ψ = − (a(ρ)Re( f ) + b(ρ,�)Im( f ))

| f |2
,

sin ψ = (b(ρ,�)Re( f ) − a(ρ)Im( f ))

| f |2
,

which provides the phase shift as

ψ = arctan

(
b(ρ,�)Re( f ) − a(ρ)Im( f )

−a(ρ)Re( f ) − b(ρ,�)Im( f )

)

and hence proves statement (iii).

Finally, we rewrite the reduced dynamics (89) in its

standard form as

[

ρ̇

ψ̇

]

=
[

a(ρ)
b(ρ,�)

ρ

]

+
[

1 0

0 1
ρ

] [

cos ψ sin ψ

− sin ψ cos ψ

] [

Re ( f )

Im ( f )

]

.

(126)

The Jacobian of the right-hand side of Eq. (126) eval-

uated at the fixed point (ρ, ψ) is given by (93), and its

eigenvalues can be used to conclude the stability of any

hyperbolic fixed point via linearized stability analysis,

which proves statement (iv).
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