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Abstract

Log data from educational assessments attract more and more attention and large-

scale assessment programs have started providing log data as scientific use files. 

Such data generated as a by-product of computer-assisted data collection has been 

known as paradata in survey research. In this paper, we integrate log data from edu-

cational assessments into a taxonomy of paradata. To provide a generic framework 

for the analysis of log data, finite state machines are suggested. Beyond its com-

putational value, the specific benefit of using finite state machines is achieved by 

separating platform-specific log events from the definition of indicators by states. 

Specifically, states represent filtered log data given a theoretical process model, and 

therefore, encode the information of log files selectively. The approach is empiri-

cally illustrated using log data of the context questionnaires of the Programme for 

International Student Assessment (PISA). We extracted item-level response time 

components from questionnaire items that were administered as item batteries with 

multiple questions on one screen and related them to the item responses. Finally, the 

taxonomy and the finite state machine approach are discussed with respect to the 

definition of complete log data, the verification of log data and the reproducibility of 

log data analyses.
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1 Introduction

Educational large-scale assessments are in the middle of introducing computer-

based assessment and new methods of data collection. With this change of test 

administration mode, the incoming log data attract more attention, for instance, 

for the investigation of time on task (e.g., Scherer et al. 2015), to improve valid-

ity and reliability of computer-based administered measures (Ramalingam and 

Adams 2018), or to compare response sequences (e.g., He and von Davier 2015). 

Log data are not entirely new, in particular for questionnaires, as these additional 

data can be understood as part of the concept of paradata developed in the field 

of survey research (see, e.g., Kreuter 2013). Response times and response laten-

cies constitute an overlapping area of research using paradata from surveys (e.g., 

Heerwegh 2003), psychometric research using log data from educational and cog-

nitive assessments (see, e.g., Schnipke and Scrams 2002), applying techniques of 

educational data mining (e.g., Ma et al. 2016).

In the following, we will first refer to taxonomies and typologies of paradata 

(Callegaro 2012; Olson and Parkhurst 2013; McClain et  al. 2018) showing that 

paradata and log data can be grouped on a surface level into three generic catego-

ries of access-related, response-related and process-related paradata. The taxon-

omy is not intended to be an exhaustive literature review, but rather an overview 

of examples that constitute the essence for categories and subcategories of para-

data. Moreover, we will show that for some indicators the classification of para-

data in terms of a taxonomy is not sufficient. Specifically, if indicators require the 

combination of multiple paradata points (e.g., multiple timestamps; Zhang and 

Conrad 2013) or a sequence of multiple log events, the (atomistic) classification 

of log events falls short.

On this background, we introduce the concept of states representing parts 

of the theoretically defined response process that should be distinguished from 

log events. The definition of states depending on specific research questions and 

assumptions about the targeted response process allows to combine and integrate 

single log events in meaningful and flexible ways.

Furthermore, we apply a concept from computer-science (so-called finite state 

machines) to develop a framework for the analysis of log data from technology-

based assessments. The proposed framework serves to fill the gap between mean-

ingful states and (multiple) log events by providing a method for the interpreta-

tion of states that are identified by observable behavior from raw process data 

(Zoanetti 2010). For that purpose, an abstract layer conceptualized with finite 

state machines is inserted between log events and indicators. The approach is 

developed to tackle what Luecht and Clauser (2002, p 76) called the real chal-

lenge in complex computer-based tests, “how to filter, encode, smooth and raw 

score the data to retain as much information as necessary for subsequent use, that 

is, to be combined to produce the outcome results”.

Subsequently, we apply the generic framework to an empirical example from 

the context assessment of the Programme for International Student Assessment 

(PISA). This application relating item responses to item-level response times 
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illustrates how those response times can be extracted although item batteries with 

multiple questions (i.e., items) on one screen were administered. The finite state 

machine approach enabled us to disentangle the time between different responses 

into time components that can be interpreted as item-level response times.

The closing discussion critically reflects selected benefits and restrictions of 

the taxonomy of paradata and the finite-state machine approach, in particular, with 

respect to completeness of log data, the verification of log data, and the reproduc-

ibility of log data analyses.

2  Taxonomy of paradata

To elaborate the need for an additional theoretical layer for the analysis of log 

data, we start with presenting a brief review of the literature on paradata. In sur-

vey research, paradata is known as data generated as a by-product of computer-

assisted data collection methods (Couper 1998). Paradata include log data such as 

keystrokes, clicks and timestamps (Olson and Parkhurst 2013), gathered routinely in 

surveys. The taxonomy resulting from the following review represents our attempt 

to structure different types of paradata according to their use in a small number of 

categories, which we describe with prototypical examples.

2.1  Types of data

Callegaro (2012) distinguished four data types: substantive data (1), the results of 

assessments with one final response for each test taker to all administered questions 

or (sub)tasks. They are typically organized in rectangular datasets, and missing val-

ues are generally coded with specific pre-defined values. On the contrary, paradata 

(2) contain any information that describes how the data were collected, originally 

described as process data that come “for free” (see Olson 2013). We focus on para-

data which describe data collections that directly involve the unit of observation.1 

The data are not necessarily rectangular (Olson and Parkhurst 2013) in the sense 

that (a) particular values might change during the assessment (for instance, for 

each session) and that (b) the data are fitting better into an event structure, where 

each event provides a possibly nested data structure that is specific to a particular 

event type (see, e.g., Kaczmirek 2009). Accordingly, metadata (3) describe the for-

mat and structure of the variables and provide “data about data”, e.g., codebooks, 

that are, however, often only available for substantive data. Some paradata, such as 

the response rate for a survey, become metadata when aggregated (Kreuter 2013). 

Finally, auxiliary data (4) are described as a separate type of data, not collected 

directly in the survey or assessment itself, but linked, for instance, at an aggregate 

1 Note that this differs in the categories used by Olson (2013), who created groups of paradata regarding 

the sample unit (neighborhood, housing, and person), the call record information and the observations 

recorded by the interviewer while interacting with the sampled person.
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level. For educational assessments auxiliary data can arise, at the school level, such 

as the technical equipment and internet connectivity of the schools’ computer pool.

Callegaro (2012) differentiates paradata describing the device type and paradata 

describing the questionnaire navigation. The typology of McClain et  al. (2018) 

describes four phases (prior survey, recruitment, access, and response). We combine 

both views by reorganizing paradata into three main categories of access-related, 

response-related and process-related paradata,2 partitioned in additional sub-cate-

gories (presented in Table 1 with prototypical examples).

2.2  Access-related paradata

Each time a participant is exposed to an assessment (e.g., a commissioned inter-

viewer tries to reach a target person) access-related paradata are generated. Access-

related paradata are often at least partially under control of target persons. This is in 

particular true for the time chosen by the target person to participate in an interview, 

survey or assessment as well as for the setting and environment, in which questions 

or test items are answered. Access-related paradata originate at the level of persons 

and can vary within persons over time (i.e., the paradata emerge for each intended, 

completed or interrupted session). Access-related paradata can be classified into 

three sub-categories: ‘contact’, ‘setting’ and ‘device’ (see Fig. 1), as will be detailed 

in the following.

2.2.1  Contact

This subcategory ‘contact’ collects information about the communication and inter-

action history, with contact information as an essential part (field process data). It 

will emerge as soon as the target person is called (call record, see, e.g., Hanly et al. 

2016), invited by e-mail, visited by an interviewer or contacted via letter or post-

card. Access-related paradata will also be generated whenever a target person visits 

a website to inform or participate in a web-based survey. Access-related paradata 

contain the administration mode itself and are mode-specific (Olson and Parkhurst 

2013), and paradata might be missing due to mode-specific unit non-response (e.g., 

Klausch et al. 2013). ‘Login’ and ‘resume’ information is particularly relevant for 

web-based assessments that can be interrupted deliberately or due to technical issues 

(Sinharay et al. 2014). The participation status of a target person (e.g., not started, 

partially completed, completed) can be derived, from ‘login’, ‘logout’ and ‘resume’ 

information.

2 The aggregated information from previous assessments classified by McClain et al. (2018) as prior sur-

vey phase represents auxiliary data, which can be linked if available. Besides, we disentangle response-

related and process-related paradata to express the proximity of paradata dealing directly with the 

response and paradata dealing with the navigation.
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2.2.2  Setting

All information describing the specific conditions of a data collection is subsumed in 

a subcategory with non-device specific characteristics of the environment of a data 

collection. ‘Setting’ includes location related information, for instance, gathered 

with mobile devices using the built-in GPS. Either self-selected or arranged with 

an interviewer, the participation time (e.g., Durrant et al. 2011) and the time zone of 

test takers for a particular access to an assessment belong to this subcategory.

2.2.3  Device

The subcategory ‘device’ represents technical information depending on the test-

ing mode and the deployment technique (see, for instance, Dadey et al. 2018, for a 

review of effects across different devices). It includes hardware-related information 

about the device type (e.g., desktop, laptop or mobile; see Schroeders and Wilhelm 

2010), and the screen (orientation, pixel width and height, density, size in inch; see, 

e.g., Bridgeman et  al. 2003). Included in this category are also information about 

software components, such as the version and specific features of the web browser 

(e.g., plugins, permissions, installed certificates, etc.) as well as properties of the 

infrastructure such as the network connection (type, bandwidth, latency, etc.), if rel-

evant for a web-based assessment (see, e.g., Bennett 2015).

Substantive

Data

Auxiliary

Data

Meaningful Components of the 

Assessment Process (States) 

Log Events Contextualized 

within States

Contact Information

Participation Status

Login / Logout / Resume

…

Location / GPS

Setting / Environment

Time (Zone)

…

Device / Type

Browser & Plugins

…

Mouse / Touch Events

Keystrokes / Input

…

Answer Changes

Response Times (Item-Level)

…

Scrolling / Zooming

Navigation within Entities

Order of Answers in Entities

Prompts / Messages / Request 

of Additional Information

Total Time (Entity-Level)

…

Last Entity / Drop-off

Navigation between Entities

Item or Question Review

Completion Time

…

Paradata

Process-

related

Response-

related

Access-

related

Answer

Input

Micro

Macro

Contact

Setting

Device

M
et

ad
at

a

Indicators Extracted from the 

Reconstructed Sequence of States

States

Log

Events

Fig. 1  Taxonomy of paradata with categories access-related, response-related and process-related para-

data
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2.3  Response-related paradata

Response-related paradata are defined as events gathered as by-product of col-

lecting responses. Each event x (e.g., the answer change event that indicates that 

the selected answer for a particular question was changed) is defined by an event 

type out of the set of all event types Σ as well as by a set of properties (e) that 

are provided for an event of that type (e.g., the properties that for test taker i the 

answer to question j was changed to the value v).

2.3.1  Answer

The most obvious paradata of this subcategory are answer-change events to ques-

tions, tasks or items. For simple item formats (e.g., multiple choice questions 

such as QTI choice interactions, IMS 2012), log events contain the raw response 

to an item. For more complex item formats (e.g., items requiring multiple interac-

tions such as the QTI order interactions), log events might contain only the incre-

mental difference of the status before and after an answer-change, and the trace of 

all log events is required to reconstruct the final raw response.

Typically, answer-change events contain a time measure (either a timespan rel-

ative to the item start or a timestamp). If tasks or questions are administered in a 

way that allows a direct interpretation of the time measure, as it is, for instance, 

in the so-called “One Item, One Screen” design (OIOS; e.g., Reips 2002), the 

time differences between the event indicating the appearance of a question on 

screen and the answer-change events can be used as item-specific time measure 

(response time). Paradata of the subcategory ‘answer’ can, for instance, be data 

from a computer-assisted personal interviewing (e.g., Couper and Kreuter 2013) 

and strategies such as the “four-screens-per-question-technique” (e.g., May-

erl 2013) allow to measure response latencies in interviews. For item batteries, 

response times are either not analyzed at all (e.g., Yan and Tourangeau 2008), the 

total time per page is used (Malhotra 2008; Mavletova and Couper 2016; Höhne 

and Schlosser 2018), or the completion time for the whole instrument is analyzed 

(e.g., Couper et  al. 2013; Liu and Cernat 2016). Only some exceptions investi-

gate time differences between questions of item batteries (e.g., Zhang and Conrad 

2013).

2.3.2  Input

Not all user interactions necessarily result in an answer change. The subcat-

egory ‘input’ includes further log events indicating that a test taker interacts with 

the assessment platform although these events do not directly result in a changed 

response, but provide additional information about the test takers’ behavior. Events 

indicating mouse move or touch move are collected typically in terms of coordinates 

captured with a concrete sampling rate (e.g., Stieger and Reips 2010). However, 

additional events associated with information displayed on screen, such as mouse 
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over or hoover of, for instance, buttons or links, can also be classified into subcat-

egory ‘input’ (e.g., Khasawneh et al. 2012).

2.4  Process-related paradata

Process-related paradata, include all pieces of information that arise in the course 

of an assessment going beyond answers and inputs. Without limiting the general 

scope, we consider computer-based instruments on two levels as tasks or questions 

that can be grouped into larger ‘entities’. Entities can be formed from screens, pages, 

items or tasks but not each element necessarily requires a response. In simple com-

puter-based instruments, an entity can consist of only one single item (e.g., OIOS).

2.4.1  Micro

The subcategory ‘micro’ represents process-related paradata within entities. If 

the information presented on pages or screens is modified either by scrolling or 

by zooming, related log events are classified as ‘micro’ (see e.g., Higgins et  al. 

2005, for the effect of scrolling on reading test performance). If entities create, for 

instance, unit-structured test, the navigation between pages or screens contributes 

to process-related paradata of the subcategory ‘micro’. If questions are combined 

in entities as in item batteries, the order of answers within entities also belongs to 

‘micro’. The order of answers within entities can be derived using multiple times-

tamps of answer-change events (e.g., Heerwegh 2003).

The appearance and disappearance of prompts or messages during the assessment 

is included in the subcategory ‘micro’. Logging of those is not only important to 

reconstruct all information visible on the screen. In particular, the so-called modal 

dialogs are important as they are hindering test takers from interacting with the 

instrument while open. This effectively reduces the available time for completing 

tasks. Similarly, logging the request for additional information (e.g., on-screen help 

for questions or tasks) is required to capture the whole test-taking process. Finally, 

as mentioned above, for item batteries time-related paradata are most often not con-

sidered at the item-level and measures such as the time per page fall into the subcat-

egory ‘micro’.

2.4.2  Macro

Whereas subcategory ‘micro’ contains paradata within entities, the subcategory 

‘macro’ addresses process-related paradata at the higher level. Often, there is a sec-

ond level of navigation that can be described as navigation between entities (see, 

e.g., Luecht and Sireci 2011), and while navigation within entities is typically unre-

strained, navigation between entities is often restricted and managed by the assess-

ment platform. A specific type of navigation between entities is the item or question 

review (i.e., the possibility to revisit already visited entities). If review is permit-

ted in a particular assessment, process-related paradata in the subcategory ‘macro’ 

allow to retrace test takers’ usage of the offered opportunity. Item review can be 
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deduced from the order of answers (subcategory ‘answer’ of response-related para-

data), only if answers are changed in the revisited tasks.

For tests administered without proctors (e.g., unstandardized online assessment; 

Kroehne et  al. 2018), the last entity before interrupting, canceling or aborting an 

assessment (drop-off) is part of the subcategory ‘macro’, while the related login 

for continuing an interrupted session might also be considered as access-related 

paradata (‘contact’). Further process-related paradata within (‘micro’) or between 

(‘macro’) tasks and questions are defined by the testing interfaces, e.g., the avail-

ability and usability of additional computer-based tools (Way et  al. 2015). Time 

measures at the level of the instrument (e.g., the completion time), are considered as 

paradata of this subcategory as well.

3  States

The taxonomy described so far includes paradata related to access, response and pro-

cess that can be illustrated with prototypical examples. All of them share the notion 

that information encoded in the log data can be identified primarily from the type of 

the log events. Introducing the concept of states goes beyond this direct relationship 

between the occurrence of events and the meaning of the information, by contextu-

alizing log events in meaningful components, labeled as states. Potential usages of 

log data and advanced applications of log data analyses can be understood as the 

decomposition of a response process into such states, which provide the theoretical 

foundation for the definition of indicators. The decomposition of the test taking or 

survey process into states and the reconstruction of the sequence of states using log 

events provide an abstract theoretical layer between the platform-specific log events 

and the interpretation of derived indicators.

By adding ‘states’ as a distinct category of the taxonomy (see Fig. 1) we empha-

size the importance of meaningful sections of the response and test-taking process. 

These states create contexts, in which log events can be interpreted and accordingly 

extend the taxonomy to indicators that go beyond the use of information that is 

encoded in the event type. Theoretical considerations about the interplay between 

respondents and the assessment platform like the expectation, that the question stem 

and the response categories are read before the first response to an item battery is 

given, constitute the meaning of states.

Ambiguity in the distinction of access-, response- and process-related paradata, 

illustrated in Fig. 1 as overlap between the categories, highlights the need to con-

cretize the intended interpretation and use of log data for a particular assessment. 

As explained by Kaczmirek (2009), at the lowest level (labeled by Kaczmirek as 

first level paradata), records of single events are, first of all, technical in nature. One 

approach of grouping paradata to concepts (second level) and aggregating across 

‘variables or persons’ (third level) or across ‘variables and persons’ was suggested 

by Kaczmirek (2009). We pursue an alternative approach to achieve an in-depth 

view regarding the relationship between log events and conceptually relevant fea-

tures of the response process by the identification of meaningful components of the 

process (i.e., states).
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Which states are relevant and how the desired indicators can be meaningfully 

extracted from the sequence of states must be defined in an assessment framework 

(e.g., Goldhammer and Zehner 2017; Mislevy et  al. 2012; OECD 2016), going 

beyond simple taxonomy of paradata with prototypical examples. Such a frame-

work elaborates the targeted (latent) construct (e.g., cognitive states of information 

processing), identifies observable evidence for that construct and the item content 

needed to elicit the desired behavior captured by considered states. This requires 

integrating substantive domain knowledge into a study-specific description of the 

distinguished states and the planned interpretation and use of log data and derived 

indicators.

The need for an additional layer can also be illustrated by the computation of 

item-level response time measures for item batteries. As mentioned, existing 

research using such response times computed them using ad hoc definitions, for 

instance, “as the elapsed time between submission of an answer to the previous and 

current question, based on timestamps collected on the server” (Zhang and Conrad 

2013, p 128). Hence, information from the paradata stored as log events is extracted 

(Heerwegh 2003). However, considering only answer changes between subsequent 

responses ignores parts of the empirical phenomenon. For instance, the time prior to 

the first response to an item battery is expected to contain also the time to read the 

question stem and the response categories. If different states of the response process 

are not differentiated, the meaning of the resulting item-level response time measure 

is different, for instance, for cases omitting the first item and for cases answering 

the first item. However, by distinguishing different states for reading the stem and 

answering the first question of an item battery versus answering subsequent ques-

tions of the same item battery, the approach we present in the next section can over-

come this imprecision of ad hoc definitions.

4  Using �nite state machines to analyze log data

In the following, we describe a formal approach as a theoretical layer intended to 

bridge the gap between (arbitrary) log events that are specific for a technical imple-

mentation of an assessment platform and derived indicators related to substantive 

research questions of log data analysis. For that purpose, we use the well-known 

idea of finite-state machines or finite state automata, which represent a formal math-

ematical model of computation, and apply the concept of abstract machines to the 

interaction between test taker and assessment platform. The additional theoretical 

layer is related to the taxonomy presented in the previous part, as it allows to define 

states based on log events and to aggregate information about states to indicators 

(see Fig. 2).

4.1  Decomposing processes using �nite-state machines

Finite-state machines (FSMs, e.g., Alagar and Periyasamy 2011) are already 

used in assessments to program and create complex, interactive instruments 
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(see, e.g., Roelke 2012; Neubert et al. 2015), and are well known as a technique 

for software development, used, for instance, in game-based assessments (Mis-

levy et al. 2016). In the following, we use FSMs as a tool to analyze log data ret-

rospectively, that is, after the assessment is finished. Note that using FSMs as an 

analysis tool means that neither the assessment platform (i.e., the software used 

to administer the computer-based test or questionnaire) strained with additional 

load nor is it necessary to know the specific FSM before or during the data col-

lection. Analyses using FSMs have been rarely applied to log data, for instance, 

Almond et al. (2012) used FSMs to classify log entries, but focused on process-

ing of keystrokes in a writing assessment. Bergner et  al. (2014) analyzed data 

from a complex computer-based task of engineering literacy assessment using 

state sequences as modeled with the R package TraMineR (Gabadinho et  al. 

2011) without explicitly linking the investigated states to the log events.

The proposed framework is a new approach to contextualize the information 

provided as log events in states. The framework generalizes the retrospective 

analysis of Almond et al. (2012) beyond the classification of typing events and 

elaborates the retrospective reconstruction of state sequences as a versatile and 

generic tool for the analysis of log data using different FSMs to extract specific 

indicators depending on the respective research question.

Sections of the Interplay between Test-Taker &

Assessment Platform (“States”)

B S1
S2

S3

E
S4

States &

Transitions

Platform

Indicators

Specific CBA Platform(s) that Provides Log Events

Use of (platform specific) log events 

to identify transitions between states

Use of one or multiple finite state 

machines to derive indicators

(Output)

(Theoretical Input)

(Empirical Input

and Knowledge 

about the Platform)

Computation of Indicators using the

Reconstructed Sequence of States 

Examples: Frequency of state visits 

(Total) time in a particular state

Frequency of transitions between states

Sequence of states / sub-sequences / n-grams / …

Fig. 2  Illustration of states between log events and indicators computed using reconstructed sequences of 

states
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4.1.1  States and set of states

As described, states designate specific sections of the process conceptualized 

as an interplay between test taker and assessment platform and require a formal 

definition (Almond et  al. 2012). The meaning of states is constituted by three 

components:

a) the information that is presented by the assessment platform in a designated phase 

of the assessment (e.g., the texts, images, videos etc. shown on the screen),

b) the possibilities to interact with the content offered by the platform in a that spe-

cific phase (e.g., the interactive components such as buttons and input elements), 

and

c) a justifiable theoretical interpretation of the meaning of this particular period of 

an assessment (e.g., expected cognitive processes that are relevant for the state 

with respect to the interplay between test taker and assessment platform).

In this sense, states provide the semantics for a theory-based analysis of log 

data. Describing and defining states that are distinguished for creating indicators 

is seen as the cornerstone in log data analysis. Likewise, for the computation of 

simple descriptive statistics or the application of complex psychometric meth-

ods, such as process mining (e.g., Romero 2011; Ferreira 2017), a terminology 

is needed that relates gathered log events to meaningful parts of the assessment 

process. States are not more than labeled eggs—similar to constructs in latent 

variable models (Nachtigall et  al. 2003)—until a proper description is provided 

and evidence is gathered that support the hypothesized meaning of the processes 

related to this state. It is important to emphasize that the meaning of states is 

not created bottom up from information and provided interactivity of the assess-

ment platform (a and b), but rather from the top down description of the states (c) 

related to the assessment framework (see previous section). Accordingly, the con-

cept of states in this framework goes beyond the use of FSMs as an algorithmic 

tool for implementing or modeling complex systems.

States are thought as the filtered data that encode information that is used 

for the computation of indicators (with respect to Luecht and Clauser 2002, see 

above) by contextualizing events. Hence, the same log event can be understood 

differently in the FSM approach, depending on the current state.

No empirical data are required for defining the set of states S that are used to 

compute indicators for empirical applications. States can be defined a priori, and 

this even should be done based on an assessment framework to make sure that 

the assessment system finally provides all log events needed for identifying those 

states. For the a priori definition of states, no knowledge about the assessment 

platform is needed, so that the definition of states is not expected to be specific 

for a chosen implementation for a computer-based item (top down). However, 

states can also be defined or changed afterwards, for instance, to analyze existing 

log data (as we will show in the empirical application). The framework described 

in this paper can be used for any log data, as the reconstruction of the sequence 
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of states is performed as a first step in the analyses of log data. From this fol-

lows that indicators computed from states are expected to be comparable between 

different assessments when defined with respect to identical states, while indica-

tors directly computed from the log events are prone to contain platform-specific 

characteristics.

To reconstruct the sequence of states using available log data from a completed 

assessment, stored events are required to differentiate between states. Accordingly, 

not each set of states S can be analyzed using platform-specific log events Σ from 

every platform. However, as said, the definition of states is intended to be independ-

ent from the so-called input alphabet 
∑

 (i.e., all log events provided by an assess-

ment platform). The considered states should be motivated and described theoreti-

cally and not narrowed to the specific characteristics of log events available from an 

assessment platform.

4.1.2  De�nition of a FSM

A FSM M⟨S, s0,
∑

, �, F⟩ is defined by a finite number of states (i.e., a finite, non-

empty set of states S ), deterministic transitions between states (i.e., we use determin-

istic state machines) and triggers that provoke a particular transition from one state 

to another. FSMs starts with an initial state (s0) and are only in one state at a time 

(current state). The set Σ is the input alphabet, and δ represents the state-transition 

function (i.e., a definition of the possible transitions between states). The FSM is 

expected to end in an accept state out of a set of final states F (a subset of S ), when 

the stream of all input elements (i.e., the list of log events of type x ∈ Σ for a test 

taker) has been processed successfully, event by event.

4.1.3  Transitions between states

Transitions are either triggered by internal events (such as timers) or external events 

(such as button clicks). Log events processed by the FSM as the input alphabet 
∑

 , 

can be used to identify transitions and thereby states. Transitions are represented 

in the formal description of a state machine by a state-transition function � . This 

function is typically called partial state-transition function �(q, x) → q
� , because it 

only defines state transitions between states q , q′ and selected triggers x ∈
∑

 . The 

state-transition function returns, for a current state q ∈ S of M, the new state q�
∈ S , 

when trigger x ∈ Σ occurs. Consequently, the transition triggered by a log event x ∈ Σ 

depends on the current state q . Especially, this property makes state machines a val-

uable tool for log data analysis, as it contextualizes the meaning of log events x (e.g., 

pressing the back button of a web browser) with respect to the FSMs’ current state 

q ∈ S (e.g., the current page).

FSMs can be visualized by directed graphs, typically called state diagrams. States 

are represented by circles and transitions are represented by arrows. For the analysis 

of log data, the arrows are linked to the triggers (e.g., log events) that are used to 

identify the transitions.
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4.1.4  Extensions (guards, variables and look-ahead)

For practical applications of FMS’s, the trigger used in the state-transition function 

does not necessarily only refer to a specific event type x ∈ Σ but also to additional 

information specific for particular event types. Such properties of events denoted 

as (e), for instance, the specific question an answer-change event belongs to, can 

be used to formulate conditions (guards) that must be fulfilled, that M accepts an 

event x ∈ Σ in state q ∈ S. Moreover, extensions with respect to variables (known as 

extended state machines) can be used to identify state transitions with sparse log 

data. Finally, when log data are analyzed retrospectively with FSMs, guards that 

inspect not only the current log event, but incorporate all (or all remaining) events 

for an individual test taker (look-ahead) can be used practically (see the Table 3, 

below, for examples, i.e., is_last_event, nearest_event_is).3

4.2  Computing indicators using state machines

Using FSMs allows defining indicators with respect to the set of states S by combin-

ing theoretical input with empirical input [log events x ∈ Σ with additional event-data 

PISA/OECD

LOGO

Common question text for the subsequent questions of this item battery.

(Multiple Lines)

General instruction text for the set of questions, presented on this screen 

(including instructions how to use the response element, combo-boxes)

Additional instructions, such as: Please answer all questions and select ‘Forward >>’ to navigation to the next 

questions. For more information, press ‘Help’.

Reset << Back Forward >>

List of Items Log out

Question ID

Question text for the third sub-questions of this item battery

Question ID

Question text for the second sub-questions of this item battery

Question IDQuestion text for the first sub-questions of this item battery

…

Fig. 3  Example CBA screen of the PISA 2015 context questionnaire (schematic view) for an item battery 

with 3 items

3 Using look-ahead technically requires an extended definition of finite state machines. Instead of adding 

this additional complexity we formulate specific guard operators that evaluate to true, if M in a given 

state q ∈ S accepts x ∈ Σ, using δ(q, x), the list of tuples ⟨i, t, x, (e)⟩ containing all log events for test taker i, 

and a variable j that points to the current element in the list of tuples.
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(e) and timestamps t] and knowledge about the platform and the implementation of 

computer-based tasks (see Fig. 3). This can be conducted for the test takers sepa-

rately, each time starting with the state s0, and it is expected that the FSMs for each 

test taker reach one of the end states f ∈ F.

4.2.1  Reconstructed sequence of states

Using FMSs allows reconstructing how a test taker followed through the sequence of 

states q ∈ S, distinguished in a particular FSM. Based on the identified states various 

indicators can be computed. To include time into the FSM approach, timestamps 

that are provided with the log events can be used.

Thus, the FSM approach disentangles processing log events (this is done using 

the FSM) and the computation of indicators (this is done using the reconstructed 

sequences of states). For empirical log data analysis, this offers the possibility to 

include paradata comprising multiple events in a coherent way. More specifically, it 

fosters the separation of steps required to parse and read the log data (i.e., the empir-

ical input) from the steps used to extract meaningful indicators (Heerwegh 2003).

4.2.2  Augmented log data

The list of tuples ⟨i, t, x, (e)⟩ , that represent the empirical input for test taker i, is aug-

mented with additional information from the reconstructed sequences using a FSM 

M as follows: (1) the state q ∈ S of the FSM before an input element x ∈ Σ was pro-

cessed (starting with s0 for the first tuple), (2) the current state q′ ∈ S of the machine 

after a x ∈ Σ was processed and (3) the relative time difference td to the previous log 

event (starting with zero for the first tuple in the list).4 Each tuple ⟨x, t, i, (e)⟩ in this 

list represents a log event of type x ∈
∑

 from the input alphabet that occurred at 

time t and belongs to a test taker i = 1… I . To reconstruct the sequence of states, the 

list of tuples is processed event by event and augmented with q, q
′, td,5 starting with 

s0 for each test taker (see Table 3, below, for an example).

In general, indicators derived from log data using FSMs can be formulated as dif-

ferent aggregates of the reconstructed sequences of states in the augmented log data. 

Discussing and elaborating all possible ways to compute indicators is beyond the 

scope of this paper. Instead, in the following, we describe three outputs of the FSM 

approach that provide the source for different types of indicators: the sequence of 

states, the state summary table, and the state transition table.

4 The time difference to the previous log event td is added for convenience to each tuple in the list to 

simplify computation of the total time on states as the sum of td for all tuples with a particular state q′.
5 Note, neither the timestamp t nor the placeholder term (e) conflicts with the narrow definition of M as 

long as no information from t or (e) is used in δ(q, x) to reconstruct the sequence of states. However, as 

soon as guard operators are included, an extended definition of finite state machines would be required 

formally.
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4.2.3  Sequence of states and sub-sequences

Concatenating all states of a test taker allows to extract the sequence of states, 

which can represent an indicator itself when states are focused that can occur in 

different meaningful orders, for instance, to identify problem-solving strategies 

(e.g., Tóth et  al. 2014). The sequence of states can also be used to cluster test 

takers with respect to sequences (e.g., using edit distance as in Hao et al. 2015). 

Beyond the complete sequence, subsequences of a specific length can be counted 

automatically as output of the FSM approach, for instance, ordered as n-grams 

(e.g., He and von Davier 2016).

4.2.4  State summary table

A state summary table can be created for each test taker from the augmented log 

data, containing all defined states, the frequency how often states were visited, 

the total time on each state and additional measures for each state, such as the 

time of the shortest and longest visit. Values of binary indicators or count indica-

tors, such as indicators for the relevant page visit, the request of source informa-

tion and for tool use can be directly metered from the state summary table. For 

states that occurred at least once, the time on state can be used to compute values 

for further metric indicators, such as the time on task (Goldhammer et al. 2014), 

the reading time (e.g., Richter and Naumann 2000) and the edit time (Almond 

et al. 2012).

4.2.5  State transition table

Summarizing the augmented log data for each test taker with respect to rows that 

contain different values in the state before (q) and the state after (q′) allows to 

create a state transition table, that counts the frequency of the directed transi-

tions from one state to another. From the state transition table indicators that refer 

to the transition between states, e.g., the frequency of backward navigation from 

questions to the stimulus, can be extracted. Moreover, the state transition table 

can be used to create an aggregated representation of the navigation between 

states, such as an adjacency matrix.

5  Empirical application: item-level response times from item 
batteries

In the following empirical example, we first demonstrate how the FSM approach 

can be used to extract item-level time components from the PISA context ques-

tionnaire assessing ICT familiarity (Jude 2016). Then, we relate the extracted 

item response times to the item responses to explore whether there is any system-

atic (non-)linear relationship between the time needed for answering a question 
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and the given answer. Thus, this empirical analysis serves to illustrate the value 

of the framework for conceptualizing, representing and analyzing log data.

Item-level response times from questionnaire items (e.g., Likert type) are an 

interesting source of information above and beyond item responses. For instance, 

item response times can be used to evaluate the data quality (e.g., Wood et al. 2017). 

Furthermore, in personality assessment, response times have been decomposed 

into various pieces to address how the fit of trait level and item difficulty affects 

response behavior (e.g., Ferrando and Lorenzo-Seva 2007; Molenaar, et al. 2015). 

The distance-difficulty hypothesis (e.g., Eisenberg and Wesman 1941) predicts that 

response time—as an indicator of the difficulty of responding to an item—increases 

with decreasing distance between person (i.e., trait level) and item (i.e., difficulty).

Item-level response times can be easily obtained when the OIOS-design (Reips 

2010) is used. However, the PISA 2015 context questionnaire was administered 

with item batteries combining multiple items of a scale on one computer-screen (see 

Fig. 3 for a schematic visualization).

Note, that the questionnaire screen shown in Fig.  3 offered also different pos-

sibilities to navigate (buttons ‘List of Items,’ ‘Back’ and ‘Forward’), contained a 

shortcut to reset all answers (button ‘Reset’) and it was possible to log-out from the 

assessment.

5.1  FSM representing state sequences in item batteries

The log events provided by the TAO platform (see OECD 2017, for information 

about the technical implementation of the assessment) represent the input alphabet 

for the FSM approach.

The log events can be classified with respect to the taxonomy of paradata (see 

Table 2). Furthermore, the events in Table 2 were considered to identify transitions 

of a FSM for the item battery (i.e., for all items of a particular scale administered on 

one computer screen) as shown in Fig. 4. This FSM differentiates between the sub-

stantive states ‘Reading (stem) & first questions’, ‘Remaining questions’ and ‘Time 

after last answer’. Unfortunately, the available log data are incomplete regarding 

this FSM (because no log event indicates, when a requested list of items is closed). 

Accordingly, the transitions between ‘List of items’ and ‘Reading (stem) & first 

question’ and ‘Remaining questions’ are not identified and a FSM that explicitly 

separates the state ‘List of items’ from other states cannot be modeled.6

Time between the events ‘ITEM_START’ and the first answer-selection event 

can be interpreted as time for ‘Reading (stem) & answering first question’. The time 

after the first response is interpreted as time for answering the ‘Remaining questions’ 

(i.e., as a time measure that should correspond to the sum of all item-level response 

times of the remaining items). Finally, the state ‘Time after the last answer’ is mod-

eled separately. This time component is not related to single responses rather to an 

6 Note, that 26 cases have been removed from the analyses which requested the ‘List of items’ in the 

investigated item battery.
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overall speed level for processing the questionnaire and the certainty of answering 

all questions of a screen.

To decompose the state for answering the ‘Remaining questions’ an extended 

FSM can be developed. The implementation of this FSM can be simplified using 

a guard ‘is_last_event’ that evaluates to true for a current event, if subsequent to a 

considered event no further ‘ANSWER_SELECTION’-events are present in the list 

of log events. Figure 5 shows the idea to split the answering process by ‘ANSWER_

SELECTION’-events to extract item-level response times: The picture is not a com-

plete state diagram, but illustrates the generalization of the FSM shown in Fig.  4 

for an item battery with only three items. Although the available log data do not 

allow differentiating between ‘Reading (stem)’ and the two states for working on 

question one [i.e., the states ‘Q01 (prior to first answer)’ and the optional state ‘Q01 

(answering)’ when the test taker changes the answer to question one], we can iden-

tify the combined state ‘Reading stem & answering Q01’ for all test takers, that start 

Reading (stem) 

& first question0

Remaining 

questions

Time after 

last answer

List of 

items

End

RESET

ANSWER_SELECTION

(not identifiable)

ITEM_START

MOVE_FORWARD

MOVE_BACK

is_last_event(ANSWER_SELECTION)

RESET

Fig. 4  State diagram for a FSM differentiating states “Reading (stem) & first question”, answering 

“Remaining questions” and

0

Reading 

(stem)

Q01 (prior to 

first answer)

Q01 

answering

Time after last 

answer to Q01

End

ANSWER_SELECTION

is_last_event(ANSWER_SELECTION, Q01)

Q02 (prior to 

first answer)

Q02 

answering

ANSWER_SELECTION

Time after last 

answer to Q02

is_last_event(ANSWER_SELECTION, Q02)

Q03 (prior to 

first answer)

Q03 

answering

ANSWER_SELECTION

Time after 

last answer 

is_last_event(ANSWER_SELECTION, Q03)

ITEM_START

MOVE_FORWARD

MOVE_BACK

R
ead

in
g

 stem
&

A
n

sw
erin

g
 Q

0
2

an
sw

erin
g

 Q
0

1

A
n
sw

erin
g
 Q

0
3

Guard:

is_last_event(ANSWER_SELECTION)

Fig. 5  Schematic view of the construction of the states “Reading stem & answering Q01”, “Answering 

Q02”, “Answering Q03” and “Time after last answer”
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working on the item battery with question ‘Q01’, and that answer the three questions 

in the simple sequence ‘Q01–Q02–Q03’. For these test takers, we can also iden-

tify a state ‘Answering Q02’ that includes the ‘Time after last answer’ to the previ-

ous question by identifying the transition with the guard ‘is_last_event(ANSWER_

SELECTION, Q2)’ that evaluates to true, if the next answer-selection event is not 

related to question ‘Q02’. In the same way, time measures for all remaining ques-

tions can be identified.

To apply this approach to all test takers (i.e., to all potential sequences), we 

formulate a FSM that contains two states for each question: on state for the ques-

tion answered as the very first question on a screen (including the time prior to the 

first response that contains the time for reading the stem, ‘Stem & Q1’…’Stem & 

Q3’) and a second state for each item answered after the stem was read and the 

first question was answered. The state transition function includes only transitions 

from the states ‘Stem & Q1’…’Stem & Q3’ to the states ‘Q1’…’Q3’. To simplify 

the implementation of the state machine, we defined an additional guard operator 

‘nearest_event_is’, which was used to switch to the appropriate state according to 

the question (‘Q1’, … ‘Q3’) to which the next ANSWER_SELECT-event belongs 

(see Fig. 6 and Table 3, below).

5.2  Method

5.2.1  Data

We use data from the PISA 2015 context assessment from Switzerland for one item 

battery of the ICT familiarity questionnaire (IC008: ‘How often do you use digi-

tal devices for the following activities outside of school?’, see Appendix) that was 

administered with 12 questions on one screen. The 91.189 log events (see Table 2) 

generated by 5.736 students were used as input to an FSM. For the analysis, we 

created a list of tuples ⟨x, t, i, (e)⟩ described above from XML files provided by the 

platform for each test taker for the selected battery.

Reading 

(stem) & Q010

nearest_event_is(ANSWER_SELECTION, Q…)

Answering Q02

Answering Q03

Reading

(stem) & Q02

Answering Q01

Reading 

(stem) & Q03

Time after 

last answer
End

MOVE_FORWARD

MOVE_BACK

Guards:

is_last_event(ANSWER_SELECTION)

Fig. 6  State diagram for a FSM differentiating states “Reading & Q…”, “Answering Q…” and “Time 

after last answer” used for the decomposition of item-level response times
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5.2.2  FSM

The FSM shown in Fig. 6 was used to create an augmented list of tuples for each 

test taker that contained q′ as the state after each log event was processed, together 

with the time difference td to the previous event. For that purpose we analyzed the 

XML with an implementation of a generic FSM and extracted the indicators using 

R (R Core Team 2016). Event-specific information from (e), especially, the name 

of the question (‘Q01’, …, ‘Q13’) to which an ‘ANSWER_SELECT’-event belongs 

to, were used in the FSM for the two guards, as described above (see Table 3 for 

an annotated example). Consequently, the FSM moved from the start s0 to the state 

‘Stem & Q01’ for test takers which choose question ‘Q01’ as the first question 

and the FSM moved from the state s0 to state ‘Stem & Q02’ for test takers which 

started with ‘Q02’ et cetera. Performing such a look-ahead in the FSM allowed us to 

identify states with a clear meaning and allowed to fit the example into the generic 

framework.7

Item-level response times were extracted from the state summary table. Of all 

possible states that contained the time for reading the question stem, each test taker 

visited only one (this directly followed from the definition of the FSM). The state 

‘Q01’ that corresponds to answering question ‘Q01’ without reading the stem was 

only observed for test takers that started with a question different from ‘Q01’ (oth-

erwise the state machine would have moved from the state s0 to the state ‘Stem & 

Q01’).

5.3  Results

The left part of Fig. 7 presents a plotted adjacency matrix of all transitions between 

states created from the state transition table. Obviously, most test takers answered 

the questions in an ascending order, as the majority of transitions relate start state 

‘Starting’ with ‘Stem_Q01’, the state ‘Stem_Q01’ with ‘Q02’, and so on. This pat-

tern is also reflected in the missing value frequencies (see right part of Fig. 7). The 

time component ‘Q01’, which is only observed for test takers answering question 

‘Q01’ not as the first question, is missing by 87%.

Only 55 test taker started with question ‘Q03’, 24 test taker started with the last 

question and between 2 and 15 test takers started with any of the remaining ques-

tions. The total time on states, i.e., the extracted time measures at the item-level, 

are shown in Fig.  8. Time measures for reading the question stem and answering 

the first, second or third question (i.e., ‘Stem_Q01’, ‘Stem_Q02’ or ‘Stem_Q03’) 

are increasing, suggesting that the decision to omit one question (‘Stem_Q02’) or 

two questions (‘Stem_Q03’) may require time. This clear pattern is not continued 

for the remaining states that represent reading the stem and answering a subsequent 

question (‘Stem_Q04’, … ‘Stem_Q13’), likely due to the small frequencies. Note, 

that this interpretation should also incorporate the items’ content (see Appendix). 

7 Note that an implementation of the state machine approach without look ahead would be possible, 

requiring to focus on the previous state q from the reconstructed sequence of states in the augmented log 

data table.
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As Fig. 8 reveals, the time components for answering the questions ‘Q01’…’Q13’ 

range between 3.15 and 5.09 s.

To explore whether the extracted measures for the ‘time on state’ contain infor-

mation about the measured construct, we investigate the relationship between this 

item-level response time and the item response: Fig. 9 summarizes the time on states 

‘Stem_Q01’, ‘Stem_Q02’ and ‘Stem_Q03’ conditional on the response to the first 

question (in addition to box plots in the upper part, means and standard errors are 

shown in the lower part of Figs. 9 and 10).8 In particular, for test takers starting with 

‘Q01’ (state ‘Stem_Q01’) an inverse, u-shaped relationship between response and 

time component can be observed. For the state ‘Stem_Q01’ an analysis of variance 

comparing the effect of the response categories ‘Never or hardly never’, ‘Once or 

twice a month’, ‘Once or twice a week’, ‘Almost every day’ and ‘Every day’ on the 
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question Q01

8 Note, that we set all times larger than 120 s to NA prior to the computation of means and standard 

errors and the analysis of variance.
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time revealed significant differences overall F(4,5176) = 47.26 (p < 0.01), represent-

ing a small effect (η2 = 0.04).

A similar trend can be observed for the item-level response times ‘Q01’,…, ‘Q13’ 

for separate question of the item battery (see Fig.  10). For all states except state 

‘Q01’ we found significant differences for the comparison of mean time measures 

between the response categories. Moreover, for most states (i.e., all beside ‘Q01’ 

and ‘Q04’) the smallest response time was found in one of the two extreme cat-

egories (‘Never or hardly never’ or ‘Every day’) together with an inverse, u-shaped 

response time distribution (skewed for some questions, e.g., ‘Q13’).

Following the approach that was chosen by Akrami et  al. (2007) to investigate 

the non-linear association between response and response times, we use polynomial 

regressions with sample weights to support the interpretation of an inverse u-shaped 

relationship. For that purpose, we treated the response category as a numeric 
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variable, trimmed response times larger than the 95% percentile and estimated and 

interpreted the R2 differences between item-level models including a linear, a quad-

ratic and a cubic effect for the response time.

As Table 4 reveals, only for two questions (‘Q04’ and ‘Q05’), the quadratic com-

ponent was not significantly contributing to the explained variance (quadratic ∆R2) 

and for only one question (‘Q04’) the response time did not explain variance in the 

responses at all (total R2). Even though for the remaining questions the amount of 

variance was overall small (the selected response explained between 1.7% for Q07 

and 13.2% for ‘Q11’ of response time variance, see column total R2 in Table 4), the 

quadratic effect was found to be substantial.

5.4  Summary

Item-level response times for item batteries with multiple questions on one computer 

screen were found to be ill-defined in the literature and not provided, for instance, 

in the public use files of the PISA 2015 database. Instead of using the total time 

on page (process-related paradata from subcategory ‘micro’) or the completion time 

for the whole questionnaire (process-related paradata from subcategory ‘macro’) we 

extracted item-level time measures using multiple log events and a decomposition of 

the response process into states. The empirical example demonstrates that the FSM 

approach can be applied directly, and adds to the available tools for the analysis of 

log data and response times.

In our analysis, the extracted response times were nonlinearly related to the 

responses. The inverted u-shaped relationship means that responses indicating 

very high (‘every day’) or low (‘never’) frequency of ICT activities take less time. 

Probably, for fast responders, the respective item content was clearly congruent or 

Table 4  Results of the 

polynomial regression 

analyses with selected answer 

as independent variable and 

trimmed response

Values in boldface are significant at p < 0.05, at least
a All trends including insignificant ones

Question Trend R2  totala

Linear R2 Quadratic ∆R2 Cubic ∆R2

IC008-Q01 0.025 0.026 0.000 0.051

IC008-Q02 0.020 0.055 0.001 0.076

IC008-Q03 0.002 0.056 0.000 0.059

IC008-Q04 0.010 0.000 0.001 0.011

IC008-Q05 0.001 0.022 0.000 0.023

IC008-Q07 0.002 0.013 0.001 0.017

IC008-Q08 0.002 0.055 0.000 0.057

IC008-Q09 0.033 0.034 0.002 0.069

IC008-Q10 0.012 0.072 0.006 0.091

IC008-Q11 0.081 0.046 0.005 0.133

IC008-Q12 0.035 0.029 0.013 0.077

IC008-Q13 0.030 0.075 0.015 0.121
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incongruent to their ICT activities. This result pattern, previously found mainly for 

personality items, is in line with the distance-difficulty hypothesis predicting shorter 

response times for greater differences between item difficulty and trait level. Note, 

that systematic relationships between responses and response times as the one found 

in this application could also be exploited to increase the measurement efficiency of 

trait measures (see, e.g., Ranger and Ortner 2011).

Using the FSM approach, further research is possible to study the usefulness of 

the derived time measures, to provide evidence about the validity of their interpreta-

tion and to investigate, for instance, their potential to increase measurement preci-

sion of PISA context questionnaires. The main purpose of using the FSM approach 

in this empirical example was to overcome the limitations of post hoc defined indi-

cators, such as the simple time difference used by Zhang and Conrad (2013) and to 

provide a method to extract item-level response times for item batteries.

The empirical example was simplified by selecting an item screen which was not 

offering additional features of the platform used in PISA 2015: neither could addi-

tional information be requested (button ‘Help’), nor was a consistency check acces-

sible on the selected question screen. Further extensions of the FSM are necessary 

to apply the suggested procedure to all item batteries of the PISA context question-

naire. As discussed below, this would be much easier if the log data of future PISA 

would fulfill one of the completeness conditions.

6  Conclusion and discussion

In this paper, we presented a taxonomy integrating different paradata typically gath-

ered in the field of survey research and log data used in educational assessments. 

Then, a framework was presented that, in particular, elaborates on the extraction of 

indicators of response- and process-related paradata using FSMs for the retrospec-

tive reconstruction of a sequence of states. Both parts are discussed in the following 

with respect to (i) the completeness of log data, (ii) the verification of log data and 

(iii) the reproducibility of log data analyses. Subsequently, limitations and further 

research will be discussed.

6.1  Completeness of log data

The taxonomy can be used to guide instrument developers in planning upcoming 

assessments regarding the selection of log data that are relevant for the intended use 

of the assessment. Beyond that, the taxonomy pointed to the relationship of differ-

ent data-sources that allows to derive a first set of conditions for defining the com-

pleteness of log data. As the collection of log data might impact the performance of 

an assessment platform, a deliberate selection of all required, but no unnecessary 

log data is relevant for testing programs and empirical research. In the following, 

we describe conditions that can be used to determine the completeness of log data. 

These conditions can be used in test practice for informed decisions about the col-

lection of paradata.
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6.1.1  Response completeness

If the answer changes are completely included in the response-related paradata (sub-

category ‘answer’), the substantive data can be derived from the log data (response-

completeness). This condition might require additional information to be included 

in the log data, for instance, about missing value labels typically used in educational 

assessments. If a specific assessment platform fulfills the requirement of response 

completeness, data cleaning procedures and procedures required to guarantee ano-

nymity of the gathered data could be applied exclusively to the log data, because the 

substantive data can be extracted completely from the log data. Ensuring response 

completeness is expected to be of great value for test practices when it contributes to 

a reduction of the effort needed to process log data separately from the result data.

6.1.2  Progress completeness

If timestamps t are available (i.e., if all answer-change event are not only ordered 

but also allow to reconstruct the substantive data at any particular time), progress-

completeness is fulfilled. Log data that fulfill this requirement allow, for instance, 

to apply posterior time limits (e.g., Partchev et  al. 2013). This means, the recon-

struction of substantive data would only include responses that were given prior 

to the (item specific) time thresholds RT
i
 (e.g., Goldhammer and Kroehne 2014). 

Note, progress-completeness requires timestamps being available for all incremental 

differences of the status before and after a particular answer-change event (see, for 

instance, Almond et al. 2012, for a discussion of technical challenges in capturing 

all keystroke events). Progress-completeness is mainly of interest for psychometric 

research, for instance, on the relationship between response times and trait as shown 

in the empirical example.

6.1.3  Replay-completeness

Computer-based tests may be administered in web browsers on heterogeneous 

devices in unstandardized online assessments (Kroehne et  al. 2018). The avail-

able display size in terms of pixels and inch will differ very likely between vari-

ous devices. Replay-completeness will be fulfilled, if all information is contained in 

the log data required to recreate a hypothetical ‘screen cast’ (i.e., representing the 

progression of visual information presented on screen during the whole session). 

Replay-completeness is achieved more easily, when the assessment is administered 

using identical hardware and scrolling is consequently avoided (Dadey et al. 2018). 

Replay-completeness implies process-completeness under the assumption that all 

entered responses are presented visually by the platform, and process-completeness 

implies response-completeness.
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6.1.4  State-completeness

The FSM approach contributes to the taxonomy as it shifts the focus from collecting 

complete paradata to the importance of collecting relevant log events (e.g., relevant for 

addressing a certain research question, cf. Goldhammer and Zehner 2017). The rel-

evance of log events depends on the set of states that are supposed to be differentiated 

by FSMs, because the sequence of states can only be recreated retrospectively, if and 

only if, the states of a particular machine can be distinguished by observed log events. 

State-completeness, always defined with respect to a FSM or a set of states S , respec-

tively, requires to have all log events available that are needed to identify the transi-

tions defined in the partial state-transition function. When the set of states S becomes 

part of a study-specific framework that describes how log data are planned to be used 

for further analysis, the condition of state-completeness can guide instrument devel-

opers to formulate requirements with respect to the assessment platform. The FSM 

shown in Fig. 4 from the empirical application can be understood as an example for 

missing state-completeness with respect to the specific state ‘List of Items’.

State-completeness complements response- and progress-completeness, as it 

allows to judge which indicators can be computed from the reconstructed sequence 

of states. However, as the strength of the property state-completeness depends on 

the substantive meaning of the set S , no direct implications can be deduced regard-

ing the relationship of state-completeness and the completeness conditions derived 

from the taxonomy of paradata. However, the property of state-completeness is cru-

cial regarding the potential value of log data analyses for psychometric research as 

well as practical applications. As soon as states of interest can be identified using 

available log events, methods developed in the field of educational data mining can 

be used.

6.2  Veri�cation of log data

Two of the completeness conditions provide possibilities to verify log data required 

for data cleaning and editing of log data.

6.2.1  Implications of response-completeness

Response-completeness can be used to verify existing log data, if the substantive 

data are stored and successfully cleaned independently from the log data. Existing 

substantive-data can be compared to the substantive data extracted from the log 

data, and a perfect match between both representations of the substantive data is 

expected, whereas differences can be used to identify potential issues that should be 

resolved before interpreting the data.
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6.2.2  Implications of state-completeness

State-completeness allows to use FSMs to verify the match of log events obtained 

from a platform and the expected transitions, formulated in the state-transition func-

tion, allowing to identify both: unexpected log events that might indicate misbehav-

ior of the platform and conceptual errors that resulted in an incomplete state-transi-

tion function. The log data are valid with respect to a state machine M , if M accepts 

log events and all reaches an end state.9

6.3  Reproducibility of log data analyses

Indicators in log data analyses are prone to be constructed ad hoc from the avail-

able, sometimes severely limited log data stored by a particular platform. Until now, 

standards for the storage of log data have not been developed, or the standardization 

to user-specific keys and values is restricted (Hao et al. 2016), impeding the com-

parability of approaches and threatening the generalizability and validity of results 

obtained from log data analyses. An important feature of the FSM approach is the 

possibility to define indicators such as the ‘average frequency of clicks’ (e.g., Greiff 

et al. 2016) or the ‘number of (relevant) page visits’ (e.g., Hahnel et al. 2016) with-

out knowledge about the assessment platform or empirical data. Hence, we hope that 

the presented approach adds to the tool-kit of methods available for the analysis of 

log data. Even though state machines will not cover all possible approaches of log 

file analyses and (educational) data mining, they might become a versatile tool for 

the feature extraction step (see, e.g., Mislevy et al. 2012).

6.4  Limitations and further research

The analysis of log data from technology-based assessments is still in the fledgling 

stages and the taxonomy as well as the framework described in this paper are limited 

in many respects, requiring further research and empirical applications, as discussed 

in the following.

6.4.1  Taxonomy of paradata

Although the distinction in access-, response- and process-related paradata is appar-

ently useful for instrument developers, the description of subcategories by enumer-

ating prototypical examples is certainly not complete and cannot present a complete 

overview about the literature. For instance, sensor data such as eye-tracking, heart 

9 Technically, the underlying idea is, that the FSM will either accept an input x ∈
∑

 , if a transition is 

defined for the current state q ∈ S (i.e., the partial state-transition function δ(q, x) returns a new state q′ ) 

or reject the input, if for a particular input element x ∈ Σ no transition is defined for q ∈ S . Note that if 

input elements (i.e., log events) should be ignored for a particular application of a state machine to ana-

lyze log data, the partial state-transition function δ(q, x) can contain transitions from state q to the identi-

cal state q for those input elements x ∈
∑

.
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rate and motion tracking data are not included in the taxonomy, calling for another 

extension in the upcoming research. An additional limitation is, that the taxonomy 

does not cover the needed meta-data for log data. Further research might hook up 

with defining meta-data for the different components of the presented taxonomy.

6.4.2  Finite state machine approach

The FSM approach should facilitate theory-guided data mining by requiring the 

definition and enumeration of meaningful states that represent distinct parts of the 

interplay between test taker and assessment platform. The choice of the formaliza-

tion using finite state machines seems to some extent arbitrary, because extensions 

such as guards, variables and orthogonal regions and, in particular, look-ahead oper-

ations that are desirable for practical applications go beyond the formal definition of 

state machines presented in this paper. However, key aspects, i.e., the differentiation 

between a finite number of states that can be described theoretically, and log events 

that are used to identify transitions to retrospectively reconstruct the sequence of 

states can be applied also with extended state machines.

Further applications of the framework might incorporate formal properties of the 

more powerful state machines that include hierarchically nested states and orthogo-

nal regions (see, e.g., Alagar and Periyasamy 2011). Integrating multiple machines 

(i.e., orthogonal regions) is expected to allow the recognition of more complex 

behavioral patterns. For instance, if computer-based instruments are designed to 

distinguish different solution behaviors of test takers (e.g., exploration of a system 

versus application of the knowledge about a system; see, e.g., Tóth et al. 2014) and 

if log events can be used to identify transitions between corresponding states, the 

classification of solution behavior with finite state machines can help to increase the 

diagnostic usage of log data.

Further applications are needed to show, whether the approach can help to sim-

plify the analysis of log data while strengthening the relationship to domain knowl-

edge and assessment frameworks at the same time.
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Appendix

The question text for IC008 was ‘How often do you use digital devices for the fol-

lowing activities outside of school?’ Students were instructed to select ‘Never or 

hardly never’, ‘Once or twice a month’, ‘Once or twice a week’, ‘Almost every day’ 

or ‘Every day’ to each of the following activities:

Q01: Playing one-player games.

Q02: Playing collaborative online games.

Q03: Using email.

Q04: <Chatting online> (e.g., <MSN®>).

Q05: Participating in social networks (e.g., <Facebook>, <MySpace>).

Q07: Playing online games via social networks (e.g., <Farmville®>, <The Sims 

Social>).

Q08: Browsing the Internet for fun (such as watching videos, e.g., 

<YouTube™>).

Q09: Reading news on the Internet (e.g., current affairs).

Q10: Obtaining practical information from the Internet (e.g., locations, dates of 

events).

Q11: Downloading music, films, games or software from the internet.

Q12: Uploading your own created contents for sharing (e.g., music, poetry, vid-

eos, computer programs).

Q13: Downloading new apps on a mobile device.
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