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Abstract. At Crypto 2005, Coron et al. showed that Merkle-Damg̊ard
hash function (MDHF) with a fixed input length random oracle is not
indifferentiable from a random oracle RO due to the extension attack.
Namely MDHF does not behave like RO. This result implies that there
exists some cryptosystem secure in the RO model but insecure under
MDHF. However, this does not imply that no cryptosystem is secure
under MDHF. This fact motivates us to establish a criteria methodology
for confirming cryptosystems security under MDHF.

In this paper, we confirm cryptosystems security by using the following
approach:

1. Find a variant, ˜RO, of RO which leaks the information needed to
realize the extension attack.

2. Prove that MDHF is indifferentiable from ˜RO.
3. Prove cryptosystems security in the ˜RO model.

From the indifferentiability framework, a cryptosystem secure in the ˜RO
model is also secure under MDHF. Thus we concentrate on finding ˜RO,
which is weaker than RO.

We propose the Traceable Random Oracle (TRO) which leaks enough
information to permit the extension attack. By using TRO, we can easily
confirm the security of OAEP and variants of OAEP. However, there are
several practical cryptosystems whose security cannot be confirmed by
TRO (e.g. RSA-KEM). This is because TRO leaks information that is

irrelevant to the extension attack. Therefore, we propose another ˜RO,
the Extension Attack Simulatable Random Oracle, ERO, that leaks just
the information needed for the extension attack. Fortunately, ERO is
necessary and sufficient to confirm the security of cryptosystems under
MDHF. This means that the security of any cryptosystem under MDHF
is equivalent to that under the ERO model. We prove that RSA-KEM is
secure in the ERO model.

Keywords: Indifferentiability, Merkle-Damg̊ard hash function, Variants
of Random Oracle, Cryptosystems Security.

1 Introduction

Indifferentiability Framework. Maurer et al. [9] introduced the indifferen-
tiable framework as a notion stronger than indistinguishability. This framework
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deals with the security of two systems C(V) and C(U): for cryptosystem C, C(V)
retains at least the same level of provable security of C(U) if primitive V is in-
differentiable from primitive U , denoted by V � U . This definition will allow us
to use construction V instead of U in any cryptosystem C and retain the same
level of provable security due to the indifferentiability framework of Maurer et
al. [9]. We denote “C(V) is at least as secure as C(U)” by C(V) � C(U). More
strictly, V � U ⇔ C(V) � C(U) holds. This result implies that if cryptosystem
C is secure in the U model and V � U holds, C is secure in the V model, and
if U �� V holds, there is some cryptosystem that is secure in the U model but
insecure in the V model.

Indifferentiability and the MD Construction. While many cryptosystems
have been proven to be secure in the random oracle (RO) model [3] (e.g. FDH
[3], OAEP[4], RSA-KEM[11], Prefix-MAC[12] and so on), where RO is modeled
as a monolithic entity (i.e. a black box working in domain {0, 1}∗), in practice
most instantiations that use a hash function are usually constructed by iterating
a fixed input length primitive (e.g. a compression function). There are many
architectures based on iterated hash functions. The most well-known one is the
Merkle-Damg̊ard (MD) construction [6,10]. A hash function with MD construc-
tion iterates underlying compression function f : {0, 1}n × {0, 1}t → {0, 1}n as
follows.

MDf (m1, ..., ml) (|mi| = t, i = 1, ..., l):
let y0 = IV be some n bit fixed value.
for i = 1 to l do yi = f(yi−1, mi)
return yl

There is a significant gap between RO and hash functions, since hash func-
tions are constructed from a small primitive f while RO is a monolithic random
function.

Coron et al. [5] made important observations on the cryptosystems that use
the indifferentiable framework. They introduced the new iterated hash function
property of indifferentiability from RO. In this framework, the underlying primi-
tive, G, is a fixed input length random oracle (denoted here as FILRO or h) or an
ideal block cipher. We say that hash function HG is indifferentiable from RO if
there exists simulator S such that no distinguisher can distinguish HG from RO
(S mimics G). The distinguisher can access RO/HG and S/G; S can access RO.
A hash function that satisfies this property, HG, behaves like RO. Therefore,
replacing the RO of any cryptosystem by HG does not destroy its security.

Coron et al. analyzed the indifferentiability from RO for several specific con-
structions. For example, they have shown that MDh is not indifferentiable from
RO due to the extension attack which uses the following property: The output
value z′ = MDh(M ||m) can be calculated by c = h(z, m) where z = MDh(M),
so z′ = c. On the other hand, no S can return the output value z′ = RO(M ||m)
from query (z, m) where z = RO(M), since no S knows z′ from z and m, and z′ is
chosen at random. Therefore, no S can simulate the extension attack. This result
implies that MDh does not behave like RO and there exists some cryptosystem
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that is secure in the RO model but insecure under MDh due to the indifferen-
tiability framework. Their solution was to propose several constructions such as
Prefix-Free MD, chop MD, NMAC and HMAC. Hash functions with these con-
structions are, under h, indifferentiable from RO. It seems impossible to prove
that the important original MD cryptosystem is secure.

MD Construction Dead? The MD construction is among the most important
foundations of modern cryptosystems [2,5,8]. There are two main reasons:

1. MD construction is employed by many popular hash functions such as SHA-1
and SHA-256, and

2. MD construction is more efficient than other iterated hash functions such as
Prefix-Free MD, and chop MD.

Since MDh �� RO holds, there is some cryptosystem C∗ that is secure in the RO
model but insecure under MDh. Thus the important question is “can we confirm
that a given cryptosystem is secure in the RO model and secure under MDh?”
There might be several cryptosystems that remain secure when RO is replaced
by MDh. If we can confirm this for many cryptosystems that are widely used,
the original MD construction remains alive in the indifferentiability framework!

Our Contribution. Since MDh �� RO holds, we modify RO such that MDh is
indifferentiable from the modified RO. Then we analyze cryptosystems security
within the modified RO model. Concretely, we adopt the following approach.

1. Find a variant ˜RO of RO that leaks enough information such that S can
simulate the extension attack.

2. Prove that MDh
� ˜RO holds.

3. Prove the cryptosystem’s security in the ˜RO model.

Secure cryptosystems in the ˜RO model are also secure under MDh due to the
indifferentiability framework. Therefore, we concentrate on proposing ˜RO that
can support many applications.

First we propose Traceable Random Oracle TRO as ˜RO.

Traceable Random Oracle. Our proposal of TRO is motivated by the following
points:

– Applications of TRO hide the outputs of hash functions from adversaries.
One example is OAEP encryption: Adversaries cannot know the outputs of
the hash functions that are used for calculating a cipher text, since these
values are hidden by a random value or a trapdoor one-way permutation.

– TRO leaks useful information such that S can run the extension attack.

By considering the above points, it is convenient for S to obtain useful informa-
tion from value z which is the output of RO(M). Thus we define TRO that leaks
input M on query z such that RO(M) = z. Since S can obtain value M such that
z = RO(M), S can know value z′ = RO(M ||m) by using TRO. Therefore, S can
run the extension attack. We will prove that MDh

� TRO holds (Corollary 2).



How to Confirm Cryptosystems Security 385

Since the hash function outputs for OAEP and variants of OAEP (e.g. OAEP+)
are hidden, adversaries cannot use TRO effectively. So we can easily confirm that
these cryptosystems are secure in the TRO model.

Limitation of TRO. Though TRO can easily confirm the security of many cryp-
tosystems under MDh, there are several cryptosystems whose security we can-
not confirm by TRO. For example, RSA-KEM is insecure in the TRO model
(Theorem 7). It is possible that there are cryptosystems that are secure under
MDh because TRO leaks information beyond that needed to simulate the exten-
sion attack. The essential information to simulate the extension attack is just
z′ = RO(M ||m), but TRO leaks M , which is not essential.

Our response is to propose Extension Attack Simulatable Random Oracle ERO

as ˜RO.

Extension Attack Simulatable Random Oracle. We define ERO that leaks just z′

(= RO(M ||m)). By using ERO, S can run the extension attack, since S can know
z′. We will prove that MDh

� ERO holds (Theorem 5). We will also prove that
RSA-KEM is secure in the ERO model (Theorem 8). Therefore, we can confirm
RSA-KEM security under MDh by using ERO. Fortunately, MDh is equivalent to
ERO, since ERO � MDh holds (Theorem 6). Namely, any cryptosystem that is
secure under MDh is equally secure in the ERO model and vice versa. Therefore,
ERO is necessary and sufficient to confirm the security of cryptosystems under
MDh. When we analyze a cryptosystem under MDh, all that is needed is to prove
cryptosystems security in the ERO model.

TRO v.s. ERO. Since TRO leaks more information than ERO, we will prove
ERO � TRO. Since ERO has wider applicability, we recommend that ERO be
used for cryptosystems whose security cannot be proven in the TRO model.

ERO v.s. RO. Since ERO leaks several bits of information in permitting the
simulation of the extension attack, RO � ERO and ERO �� RO explicitly hold.
As evidence of the separation between RO and ERO, we pick up prefix MAC [12]
which is secure in the RO model, and prove that prefix MAC is insecure in the
ERO model (Theorem 4). Since ERO is equivalent to MDh, prefix MAC is also
insecure in the MDh model.

Leakey Random Oracle. Leaky random oracle LRO was proposed by Yoneyama
et al. [13] but with a different motivation. LRO has a function that leaks all
query-response pairs of RO. In this paper, we will prove that TRO � LRO and
LRO �� TRO hold. Therefore, all cryptosystems secure in the LRO model are also
secure in the TRO model and there is some cryptosystem that is insecure in the
LRO model but secure in the TRO model. Since FDH is secure in LRO model
[13], FDH is secure under MDh. Since OAEP is insecure in the LRO model [13]
and secure in the TRO model, OAEP is evidence of the separation between LRO
and TRO.

Remarks. First we compare LRO, TRO and ERO from the viewpoint of security
proofs of cryptosystems. LRO, TRO, and ERO consist of RO and the additional
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oracle (denote LO, TO and EO respectively). Since LO leaks more information to
adversaries than TO, adversaries that are given LRO have more flexible strategies
than adversaries given TRO. That is, security proofs in the LRO model are more
complex than those in the TRO model. The same is true for TRO and ERO.

Finally, for the security proof of cryptosystem C(MDh) we compare the direct
proof in MDh with the proof via ERO. Since MDh has the MD structure, we
must consider this structure in the direct proof. On the other hand, since ERO
does not have this structure, we does not need to consider it. For example we
must consider the events of inner collisions for MDh in the direct proof. However
this is not necessary for the proof in the ERO model. Moreover, since we can
reuse existing proofs for the simulation of RO in the security proof in the ERO
model, we only consider the simulation of EO in the security proof. Therefore,
the security proof in the ERO model is easier than the direct proof in MDh.
Since ERO = MDh holds, we can confirm a cryptosystems security under MDh

by proving its security in ERO, an easier task than a direct proof.

Related Works. Recently, Dodis et al. independently proposed a methodology
to salvage the original and modified MD constructions in many applications [7].
They found two properties: one is preimage awareness (PrA), and the other is
public-use random oracle (pub-RO). pub-RO is the same as LRO. The approach
of pub-RO is almost same as our approach of LRO. Dodis et al. pointed out that
the security of cryptosystems that satisfy the following property can be easily
proven in the pub-RO model: all inputs of hash functions are public to the ad-
versaries. Therefore, PSS and the Fiat-Shamir signature scheme, and other, are
easily proven to be secure in the pub-RO model by using existing proofs in the
RO model. Since LRO(pub-RO) �� TRO and TRO � LRO(pub-RO) hold, TRO
and ERO have more applications than LRO(pub-RO) (e.g. OAEP is secure in
the TRO model but insecure in the pub-RO model). The approach of PrA is
interesting in that this approach can treat the case where the compression func-
tion f requirement is relaxed from FILRO to property PrA. It seems, however,
that this approach is not effective in saving the original MD construction, since
this approach modifies MD construction by processing the output of the MD
construction by FILRO.

Cryptosystems Security under the Merkle-Damg̊ard Hash Function.
PSS, Fiat-Shamir, and so on are secure under MDh thanks to pub-RO [7], OAEP
and variants of OAEP are secure under MDh thanks to TRO, and RSA-KEM is
secure under MDh thanks to ERO. Since many cryptosystems are secure under
MDh, the original Merkle-Damg̊ard construction is still alive!

2 Preliminaries

2.1 Merkle-Damg̊ard Construction

We first give a short description of the Merkle-Damg̊ard (MD) construction.
Function MDf : {0, 1}∗ → {0, 1}n is built by iterating compression function
f : {0, 1}n × {0, 1}t→ {0, 1}n as follows.
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– MDf (M):
1. calculate M ′ = pad(M) where pad is a padding function such that pad :
{0, 1}∗ → ({0, 1}t)∗.

2. calculate ci = f(ci−1, mi) for i = 1, ..., l where for i = 1, ..., l, |mi| = t,
M ′ = m1||...||ml and c0 is an initial value (s.t. |c0| = n).

3. return cn

In this paper we ignore the above padding function, this does not degrade gener-
ality, so hereafter we discuss MDf : ({0, 1}t)∗ → {0, 1}n. We use random oracle
compression function h as f where h : {0, 1}n × {0, 1}t → {0, 1}n. Thus we
discuss below hash function MDh with MD construction using h.

2.2 Random Oracle

RO : {0, 1}∗ → {0, 1}n can be realized as follows. RO has initially the empty
hash list LRO. On query M , if ∃(M, z) ∈ LRO, it returns z. Otherwise, it chooses
z ∈ {0, 1}n at random, adds (M, z) to the LRO, hereafter denoted by LRO ←
(M, z), and returns z.

2.3 Leaky Random Oracle

LRO was proposed by Yoneyama et al. [13]. LRO can be realized as follows. LRO
consists of RO and LO. On a leak query to LO, LO outputs the entire contents
of LRO. We can define S that can simulate the extension attack by using LRO,
since S can know M from z by using LO and can know z′ by posing M ||m to
RO.

2.4 Indifferentiability

The indifferentiability framework generalizes the fundamental concept of the
indistinguishability of two cryptosystems C(U) and C(V) where C(U) is the cryp-
tosystem C that invokes the underlying primitive U and C(V) is the cryptosystem
C that invokes the underlying primitive V . U and V have two interfaces: pub-
lic and private interfaces. Adversaries can only access the public interfaces and
honest parties (e.g. the cryptosystem C) can access only the private interface.

We denote the private interface of the system W by Wpriv and the public
interface of the system W by Wpub. The definition of indifferentiability is as
follows.

Definition 1. V is indifferentiable from U , denote V � U , if for any distin-
guisher D with binary output (0 or 1) there is a polynomial time simulator S

such that |Pr[DVpriv,Vpub ⇒ 1]−Pr[DUpriv,S(Upub) ⇒ 1]| < ε. Simulator S has oracle
access to Upub and runs in time at most tS. Distinguisher D runs in time at most
tD and makes at most q queries. ε is negligible in security parameter k.

This definition will allow us to use construction V instead of U in any cryptosys-
tem C and retain the same level of provable security due to the indifferentiability
theory of Maurer et al. [9]. We denote “C(V) is at least as secure as C(U)” by
C(V) � C(U). Namely, C(V) � C(U) denotes the case that if C(U) is secure, then
C(V) is secure. More strictly, V � U ⇔ C(V) � C(U) holds.
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2.5 Extension Attack

Coron et al. showed that MDh is not indifferentiable from RO due to the extension
attack. The extension attack targets MDh where we can calculate a new hash
value from some hash value. Namely z′ = MDh(M ||m) can be calculated from
only z and m by z′ = h(z, m) where z = MDh(M). Note that z′ can be calculated
without using M . The differentiable attack with extension attack is as follows.
Let Oa be MDh or RO and let Ob be h or S. First, a distinguisher poses M to Oa

and gets z from Oa. Second, he poses (z, m) to Ob and gets c from Ob. Finally,
he poses M ||m to Oa and gets z′ from Oa.

If Oa = MDh and Ob = h, then z′ = c, while, if Oa = RO and Ob =
S, then z′ �= c. This is because no simulator can obtain the output value of
RO(M ||m) from just (z, m) and the output value of RO(M ||m) is independently
and randomly defined from c. Therefore, MDh �� RO holds.

3 Variants of Random Oracles

In this section, we will introduce several variants of random oracles in order for S
to simulate the extension attack described above, and then show the relationships
among these oracles within the indifferentiability framework.

3.1 Definition of Variants of Random Oracles

Traceable Random Oracle: TRO consists of RO and TO. On trace query z,

1. If there exist pairs such that (Mi, z) ∈ LRO (i = 1, ..., n), it returns (M1, ...,
Mn).

2. Otherwise, it returns ⊥.

We can define S that can simulate the extension attack by using TRO, since S
can know M from z by using TO and can know z′ by posing M ||m to RO.

Extension Attack Simulatable Random Oracle: TRO leaks too much in-
formation to simulate the extension attack. So we define ERO such that S is given
just the important information. The important information is value z′ such that
z′ = RO(M ||m). Therefore, we define ERO as follows. ERO consists of RO and
EO. EO has initially the empty list LEO and can look into LRO. On simulation
query (m, z) to EO where |m| = t,

1. If (m, z, z′) ∈ LEO, it returns z′.
2. Else if z = IV , EO poses query m to RO, receives z′, LEO ← (m, z, z′), and

returns z′.
3. Else if there exists only one pair (M, z) ∈ LRO, EO poses query M ||m to RO,

receives z′, LEO ← (m, z, z′), and returns z′.
4. Else EO chooses z′ ∈ {0, 1}n at random, LEO ← (m, z, z′) and returns z′.

We can construct S that can simulate the extension attack by using ERO, since
S can obtain z′ from (m, z) where z′ = RO(M ||m) by using EO.
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3.2 Relationships among LRO, TRO, ERO, and RO Models within
the Indifferentiability Framework

LRO leaks more information of LRO than TRO, and TRO leaks more information
of LRO than ERO. Therefore, it seems reasonable to suppose that anything secure
in the LRO model is also secure in the TRO model, anything secure in the TRO
model is also secure in the ERO model, and any cryptosystem secure in the ERO
model is also secure in the RO model. We prove the validity of these suppositions
by using the indifferentiability framework.

First we clarify the relationship between TRO and LRO.

Theorem 1. TRO � LRO and LRO �� TRO.

Proof. We construct S which simulates TO by using LRO as follows. Given query
z, S poses a leak query to LO and receives the entire information of LRO. If
there exists pairs such that (Mi, z) ∈ LRO (i = 1, ..., n), it returns (M1, ..., Mn).
Otherwise it returns ⊥.

It is easy to see that |Pr[DRO,TO ⇒ 1] − Pr[DRO,S(LRO) ⇒ 1]| = 0, since the
output from each step of S is equal to that from each step of TO.

LRO �� TRO is trivial, since no S cannot acquire all values in LRO by using
TRO. ��

Since TRO � LRO, any cryptosystem secure in the LRO model is also secure in
the TRO model by the indifferentiability framework. Since LRO �� TRO, there
exists some cryptosystem that is secure in the TRO model but insecure in the
LRO model. For example, Yoneyama et al. proved that OAEP is insecure in the
LRO model [13]. Since OAEP is secure in the TRO model, OAEP is evidence of
the separation between LRO and TRO.

Next we will clarify the relationship between ERO and TRO.

Theorem 2. ERO � TRO and TRO �� ERO.

Proof. We construct S which simulates EO by using TRO as follows. S initially
has the empty list LS . On query (m, z), if ∃(m, z, z′) ∈ LS , it returns z′. Other-
wise S poses query z to TO, and receives string X . If X consists of one value, it
poses query X ||m to RO, receives z′, LS ← (m, z, z′) and returns z′. Otherwise,
it chooses z′ ∈ {0, 1}n at random, LS ← (m, z, z′) and returns z′.

It is easy to see that |Pr[DRO,EO ⇒ 1] − Pr[DRO,S(TRO) ⇒ 1]| = 0, since the
output from each step of S is equal to that from each step of EO.

TRO �� ERO is trivial, since no S cannot decide whether there exists (M, z)
in LRO or not by using ERO. ��

Since ERO � TRO, any cryptosystem secure in the TRO model is also secure in
the ERO model in the indifferentiability framework. Since TRO �� ERO, there
exists some cryptosystem that is secure in the ERO model but insecure in the
TRO model. We will prove that RSA-KEM is secure in the ERO model but
insecure in the TRO model in Section 5. Therefore, RSA-KEM is evidence of the
separation between TRO and ERO.

Finally we will clarify the relationship between RO and ERO.
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Theorem 3. RO � ERO and ERO �� RO.

This proof of theorem 3 is trivial because ERO consists of RO and the addi-
tional oracle EO which leaks some information of LRO. Since RO � ERO, any
cryptosystem secure in the ERO model is also secure in the RO model by the
indifferentiability framework. Since ERO �� RO, there exists some cryptosystem
which is secure in the RO model but insecure in the ERO model. We can show
simple evidence of the separation between ERO and RO as follows: We consider
the following Prefix-MAC protocol which is unforgeable in the RO model. Note
that the concept of unforgeability with regard to MAC schemes is defined in [1].

Prefix MAC [12]: Alice and Bob share one secret key, K, as an authentication
key. Before sending message M to Bob, Alice sends K||M to RO H to obtain
a MAC value denoted as y. Finally, Alice sends (M, y) to Bob. When Bob
obtains (M, y), he sends K||M to H to obtain another MAC value y′. If y′ is
equal to y, then Bob is convinced that message M is from Alice. Otherwise,
Bob will reject message M .

We will show that Prefix MAC fails to satisfy unforgeability for MAC schemes
in the ERO model.

Theorem 4 (Insecurity of Prefix MAC in the ERO model). Prefix MAC
does not satisfy unforgeability for MAC schemes where H is modeled as ERO.

Proof. A forgery procedure is as follows: forger F obtains a valid pair of (M, h)
from MAC, where h = H(K||M). F sends (h, m) to EO, and obtains h′ =
H(K||M ||m). Since M ||m is not queried to MAC, F succeeds in Existential
forgery of known message attack (EF-KMA) attack using ERO H . ��

Therefore, Prefix-MAC is secure in the RO model but insecure in the ERO model.
Consequently, Prefix-MAC is evidence of the separation between ERO and RO.

From the above discussions, the following corollary is obtained.

Corollary 1. RO � ERO � TRO � LRO, and LRO �� TRO �� ERO �� RO.

4 Relationship between MDh and ERO in the
Indifferentiability Framework

In this section we prove that MDh
� ERO and ERO � MDh hold as follows. In

theorem 5, we use statements σH and qh instead of the total number of queries
q. σH is the total number of message blocks for RO/MDh and qh is the total
number of queries to S/h

Theorem 5. MDh
� ERO, for any tD, with tS = O(q2

h) and ε ≤
4(σH+qh)2+2(σH+qh)

2n .

This proof is given in subsection 4.1.
In theorem 6, we use statements σH and qEO instead of the total number of

queries q. σH is the total number of message blocks for RO/MDh and qEO is the
total number of queries to EO/S
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Theorem 6. ERO � MDh, for any tD, with tS = O(qEO) and ε ≤
2(σH+qEO)2+(σH+qEO)

2n .

This proof is given in subsection 4.2.
From Theorem 5 and Theorem 6, ERO is equivalent to MDh in the indifferen-

tiability framework. From Corollary 1, Theorem 5 and Theorem 6, the following
corollary is obtained.

Corollary 2. RO � MDh = ERO � TRO � LRO, and LRO �� TRO �� ERO =
MDh �� RO

4.1 Proof of Theorem 5

First we define simulator S as follows. S has a list T which is initially empty. We
define chain triples as follows.

Definition 2 (Chain Triples). Triples (x1, m1, y1), ..., (xi, mi, yi) are chain
triples if x1 = IV and yj = xj+1 (j = 1, ..., j − 1) holds.

Simulator S: On a query (x, m),

1. If ∃(x, m, y) ∈ T , it outputs y.
2. Else if chain triples ∃(x1, m1, y1), ..., (xi, mi, yi) ∈ T such that x = yi, y ←

RO(m1||...||mi||m).
3. Else, y ← EO(m, x).
4. T ← (x, m, y).
5. S returns y.

Since S needs to search pairs in T , this requires at most O(q2
h) time.

We need to prove that S cannot tell apart two scenarios, ERO and MDh. In one
scenario D has oracle access to RO and S while in the other D has access to MDh

and h. The proof involves a hybrid argument starting in the ERO scenario, and
ending in the MDh scenario through a sequence of mutually indistinguishable
hybrid games.

We give six events that allow D to distinguish MDh from ERO. These events
arise from the fact that MDh has the MD construction but ERO does not. We
explain these events as follows. Details of these events are given in Game 3.

First we discuss distinguishing events that occur due to differences among RO
and MDh. RO and MDh return a random value unless collision occurs. There-
fore, distinguishing events occur when collision occurs. When a collision of MDh

occurs, one of following events occurs due to the MD construction: an output of
h is equal to IV (event E1) or a collision of h occurs (event E2). On the other
hand, since RO is a monolithic function, these events don’t occur. Therefore,
these events are distinguishing events between MDh and ERO.

Second, we discuss distinguishing events that occur due to differences among
S and h. Since for h there is the relation that h(x, m) = RO(M ||m) where
MDh(M) = x, S must simulate the relation such that S(x, m) = RO(M ||m)
where RO(M) = x. On query (x, m) to S, if only one pair exists (M, x) ∈ LRO
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such that x �= IV holds, S can know MDh(M ||m) by using EO. Therefore, S
can simulate the relation. If such a pair does not exist ((M, x) �∈ LRO), since S
cannot know M , S cannot know the value of RO(M ||m). Therefore, S cannot
simulate the relation (event E3 and event E5). If two or more such pairs exist
((M, x), (M ′, x), · · · ∈ LRO), S must simulate the relation such that RO(M ||m) =
RO(M ′||m) =, · · ·. However, since S cannot control the outputs of RO, it cannot
simulate the relation (event E4).

On the other hand, if ∃(M, x) ∈ LRO such that x = IV , S must simulate the
relation such that RO(m) = RO(M ||m). However, since S cannot control the
outputs of RO, it cannot simulate the relation (event E6).

In following game transforms, since the MD construction is considered in
Game 3 for the first time, we discuss these events in the transform from Game 2
to Game 3. In this discussion, we show that if distinguishing events don’t occur,
Game 3 is identical to Game 2, and the probability that one of the events will
occur is negligible.

Game 1: This is the random oracle model, where D has oracle access to RO
and S. Let G1 denote the event that D outputs 1 after interacting with RO and
S. Thus Pr[G1] = Pr[DRO,S(ERO) = 1].

Game 2: In this game, we give the distinguisher oracle access to a dummy relay
algorithm R0 instead of direct oracle access to RO. R0 is given oracle access to
RO. On query M to R0, it queries M to RO and returns RO(M). Let G2 denote
the event that D outputs 1 in Game 2. Since the view of D remains unchanged
in this game, Pr[G2] = Pr[G1].

Game 3: In this game, we modify the relay algorithm R0 into R1 as follows.
For hash oracle query M , R1 applies the MD construction to M by querying S.
R1 is essentially the same as MDh except that R1 is based on S instead of the
fixed input length random oracle h.

We show that Game 3 is identical with Game 2 unless the following bad events
occur. In response to query (x, m), S chooses response y ∈ {0, 1}n:

– E1: It is the case that y = IV .
– E2: There is a triple (x′, m′, y′) ∈ T , with (x′, m′) �= (x, m), such that y′ = y.
– E3: There is a triple (x′, m′, y′) ∈ T , with (x′, m′) �= (x, m), such that x′ = y

and (x′, m′, y′) is defined exept for step 3 of EO.

and in a response to a query M to RO, RO returns z:

– E4: There is a pair (M ′, z′) ∈ LRO, with M �= M ′ such that z = z′.
– E5: There is a triple (x′, m′, y′) ∈ T such that z = x′.
– E6: z = IV .

We demonstrate that Game 3 is identical with Game 2 unless bad events occur
and the probability that bad events occur is negligible. Before we demonstrate
these facts, we give an useful property as follows.
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Lemma 1. For any chain triples (x1, m1, y1), ..., (xi, mi, yi) in T , yi =
RO(m1||...||mi) holds unless bad events occur.

Proof. To contrary, assume that yi �= RO(m1||...||mi). Since yi is defined in step
2 of S (case A), step 2 of EO (case B), step 3 of EO (case C), or step 4 of EO
(case D), we show that when yi is defined in each step, bad events occur.

First, we discuss the case A. In this case, we divided two case: When (xi, mi, yi)
is stored, another chain triples (x′

1, m
′
1, y

′
1), ..., (x′

t, m
′
t, y

′
t) are already stored in

T such that yt = yi−1 (case A-1) and chain triples are not stored in T (case
A-2). The case A-1 is equal to collision of MDS. Therefore a collision of S occurs
or an output of S is equal to IV in this case. Therefore event E1 or E2 occurs.
In the case A-2, since yi = RO(m1||...||mi) holds from the definition of S, this is
contrary to the assumption.

We discuss the case B. In this case, we divided two cases: i = 1 (case B-1) and
i �= 1 (case B-2). In the case B-1, y1 = RO(m1) holds due to the definition of S.
This is contrary to the assumption. In the case B-2, since xi = IV , yi−1 = IV
holds. Therefore event E1 or E6 occurs.

We discuss the case C. In this case, (M, xi) is already in LRO, when yi

is defined. We consider two cases: M = m1||...||mi−1 (case C-1) and M �=
m1||...||mi−1 (case C-2). In the case C-1, yi = RO(m1||...||mi) holds and this
is contrary to the assumption. In the case C-2, we consider two case: yi−1 is
chosen at random by EO (case C-2-1) and yi−1 is defined by RO (case C-2-2).
For the case C-2-1, from the definition of S, when (xi−1, m−1i, yi−1) is stored in
T , some triple (xj , mj, yj) is not in T . Assume that j is the maximum number.
Therefore yj+1, ..., yi−1 are defined at random by EO and independent from RO.
(xj+1, mj+1, yj+1) is stored in T before (xj , mj, yj) is stored in T . If yj is defined
at random by EO and independent from RO, event E3 occurs. If yj is defined by
RO (yi = RO(m1||...||mj)), event E5 occurs. The case C-2-2 is equal to event E4.

Finally we discuss the case D. From the same discussion of the case C-2-1,
bad event E3 or E5 occurs. ��

For the view of D for R0 and R1, from Lemma 1, for any M , R1(M) = RO(M)
holds unless bad events occur. Therefore the view of D for R0 is equal to that
for R1. For consistency in Game 2, from the definition of S and Lemma 1,
for any chain triples (x1, m1, y1), ..., (xi, mi, yi) ∈ T , yi = RO(m1||...||mi) =
R0(m1||...||mi) holds unless bad events occur. Therefore, the answers given by
S are consistent with those given by R0. For consistency in Game 3, from
the definition of S, the definition of R1 and Lemma 1, for any chain triples
(x1, m1, y1), ..., (xi, mi, yi) ∈ T , yi = R1(m1||...||mi) = RO(m1||...||mi) holds
unless bad events occur. Therefore, the answers given by S are consistent with
those given by R1. Therefore, Game 3 is identical with Game 2 unless bad events
occur.

Next we examine the probability that bad events occur as follows.

Lemma 2. Pr[E1∨E2∨E3∨E4∨E5∨E6] ≤ 2q2
1+q2

2+q1q2+q1+q2
2n where q1 is the

maximum number of invoking the simulator and q2 is the maximum number of
invoking RO.
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Proof. We will examine each of the three events and bound their probability.
Since outputs of S are chosen at random, Pr[E1] ≤ q1

2n . Since E2 is the event

where a collision occurs, Pr[E2] ≤ 1− 2n−1
2n · · · 2n−q1+1

2n ≤ q2
1

2n . Since y is chosen

at random, the probability that event E3 ≤ q2
1

2n . Since E4 is the event that a

RO collision occurs, Pr[E4] ≤ q2
2

2n . Since E5 is the event that a random value is
equal to some fixed value, Pr[E5] ≤ q1q2

2n . Since E6 is the event that a random
value is equal to IV , Pr[E6] ≤ q2

2n . Therefore Pr[E1 ∨ E2∨ E3 ∨ E4 ∨ E5∨ E6] ≤
Pr[E1] + Pr[E2] + Pr[E3] + Pr[E4] + Pr[E5] + Pr[E6] ≤ 2q2

1+q2
2+q1q2+q1+q2

2n . ��
Let G3 denote the event that the distinguisher D outputs 1 in Game 3, B2 be the
event wherein E1∨E2∨E3∨E4∨E5∨E6 occurs in Game 2 and B3 be the event
wherein E1∨E2∨E3∨E4∨E5∨E6 occurs in Game 3. From Lemma 2, the prob-
ability that bad events occur in Game 2 is less than σ2

H+3q2
h+3qjσH+2qh+σH

2n and

the probability that bad events occur in Game 3 is less than 4(σH+qh)2+2(σH+qh)
2n .

Therefore |Pr[G3]−Pr[G2]| = |Pr[G3∧B3]+Pr[G3∧¬B3]−Pr[G2∧B2]−Pr[G2∧
¬B2]| ≤ |Pr[G3|B3] × Pr[B3] − Pr[G2|B2] × Pr[B2]| ≤ max{Pr[B2], P r[B3]} =
4(σH+qh)2+2(σH+qh)

2n .

Game 4: In this Game, we modify simulator S to S1. RO is removed from
simulator S1 as follows.

Simulator S1: On query (x, m),

1. If ∃(x, m, y) ∈ T , it responds with y.
2. Else S1 chooses y ← {0, 1}n at random.
3. T ← (x, m, y).
4. S1 responds with y.

The output of S is chosen at random or chosen by RO. Therefore, for any fresh
query to S, the response is chosen at random. Since RO is invoked only by S, no
D can access RO. Namely, no D distinguish S1 from S, though RO is removed in
S1, so Game 4 is identical to Game 3. Let G4 denote the event that distinguisher
D outputs 1 in Game 4. Pr[G4] = Pr[G3] holds.

Game 5. This is the final game of our argument. Here we finally replace
S1 with the fixed input length random oracle h. Let G5 denote the event that
distinguisher D outputs 1 in Game 5. Since for a new query S1 responds with a
random value and for a repeated query S1 responds a repeated value, Game 5 is
identical to Game 4. Therefore, we can deduce that Pr[G5] = Pr[G4].

Now we can complete the proof of Theorem by combining Games 1 to 5, and
observing that Game 1 is the same as ERO scenario while Game 5 is same as
MDh scenario. Hence we can deduce that ε ≤ 4(σH+qh)2+2(σH+qh)

2n . ��

4.2 Proof of Theorem 6

We define simulator S that simulates EO. S has initially empty list LS . On query
(m, z), S is defined as follows: z′ ← h(z, m), and it returns z′. The simulator’s
running time requires at most O(qEO) time.
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We need to prove that S cannot tell apart two scenarios, MDh and ERO
scenarios, one where D has oracle access to MDh and S and the other where D
has access to RO and EO. The proof involves a hybrid argument starting in the
MDh scenario, and ending in the ERO scenario through a sequence of mutually
indistinguishable hybrid games.

Game 1: This is the MDh scenario, where D has oracle access to MDh and
S(h). Let G1 denote the event that D outputs 1 after interacting with MDh and
S(h). Thus Pr[G1] = Pr[DMDh,S(h) = 1].

Game 2: In this game, we change the underlying primitive of MD from h
to S. Thus D interacts with MDS and S(h). For any query to S, S poses it
to h and returns the value received from h. Let G2 denote the event that D
outputs 1 in Game 2. Since the view of D remains unchanged in this game, so
Pr[G2] = Pr[G1].

Game 3: In this game, we remove S and h and insert EO and RO. In this
game, D interacts with MDEO and EO and does not access to RO. Since for a
fresh query EO returns a fresh random value and for a repeated query EO returns
the corresponding value, Game 3 is identical with Game 2. Let G3 denote the
event that D outputs 1 in Game 3. Since the view of D remains unchanged in
this game, so Pr[G3] = Pr[G2].

Game 4. This is the final game of our argument. In this game, we remove
MDEO and D interacts with RO and EO. We show that Game 4 is identical with
Game 3 unless following bad events occur and probability that bad events occur
is negligible.

Bad events are as follows. On query (m, x), EO returns y:

– Bad1: y = IV .

On query M , RO returns z:

– Bad2: There is a pair (M ′, z′) in LEO, with M �= M ′, such that z = z′.
– Bad3: There is a triple (m, x, y) in LEO such that z = x.

We demonstrate that Game 4 is identical with Game 3 unless bad events occur
and the probability that bad events occur is negligible. Before we demonstrate
these facts, we give an useful property as follows.

Lemma 3. For any chain triples (x1, m1, y1), ..., (xi, mi, yi) in LEO, yi =
RO(m1||...||mi) holds unless bad events occur.

Due to lack of space, we omit this proof. We will show this in the full version.
For the view of D for MDEO and RO, from Lemma 3, the view of D for

MDEO is equal to that for RO. For consistency in Game 3, from the definition of
MD and Lemma 3, for any chain triples (m1, x1, y1), ..., (mi, xi, yi) ∈ LEO, yi =
RO(m1||...||mi) = MDEO(m1||...||mi) holds unless bad events occur. Therefore,
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the answers given by S are consistent with those given by MDEO. For consistency
in Game 4, from Lemma 3, for any chain triples (x1, m1, y1), ..., (xi, mi, yi) ∈
LEO, yi = RO(m1||...||mi) holds unless bad events occur. Therefore, the answers
given by S are consistent with those given by RO. Therefore, Game 4 is identical
with Game 3 unless bad events occur.

Next we examine the probability that bad events occur as follows.

Lemma 4. Pr[Bad1 ∨ Bad2 ∨ Bad3] ≤ q1+q2
2+q1q2
2n where q1 is the maximum

number of invoking EO and q2 is the maximum number of invoking RO.

Due to lack of space we omit this proof.
Let G4 denote the event that the distinguisher D outputs 1 in Game 4, B3

be the event that Bad1 ∨ Bad2 ∨ Bad3 occurs in Game 3 and B4 be the event
that Bad1 ∨ Bad2 ∨ Bad3 occurs in Game 4. Therefore |Pr[G4] − Pr[G3]| ≤
max{Pr[B3], P r[B4]} = 2(σH+qEO)2+(σH+qEO)

2n . ��

4.3 MGF1 Transform

In the above discussions, we ignored range extension algorithms such as MGF1
which is an instantiated hash function of OAEP. When we consider these algo-
rithms, we need to modify TRO and ERO. Due to the lack of space, we only
modify TRO for MGF1 as follows and will discuss ERO in the full paper.

Let H : {0, 1}∗ → {0, 1}n be some hash function and MGF1 : {0, 1}∗ →
{0, 1}jn be H(M ||[1])||H(M ||[2])||...||H(M ||[j]) where M is the input of the
hash function and [s] is the encoding value of s. We confirm the security of
cryptosystems that use MGF1 transform with MDh by the following approach.
Let MGF1 : {0, 1}∗ → {0, 1}jn.

– Propose the modification of TRO (denote TRO′ that consists of random
oracle RO′ : {0, 1}∗ → {0, 1}jn and TO of RO′) such that MGF1(TRO) �

TRO′.
– Prove cryptosystems security in TRO′ model.

If we can find above TRO′, since MDh
� TRO, cryptosystems that are secure in

TRO′ model are secure under MDh.
TRO′ is as follows. TRO′ consists of random oracle RO′ : {0, 1}∗ → {0, 1}jn

and TO′, a variant of TO. Let z[s] be the s-th block of z. On trace query (j, w)
to TO′,

– If there exist pairs such that (M, z) ∈ LRO such that z[j] = w, TO′ returns
all such pairs.

– Otherwise, TO′ returns ⊥.

When H is a random oracle, we can see H(∗||[1]), ..., H(∗||[j]) as independent
random oracles RO1, ..., ROj . In order to prove MGF1(TRO) � TRO′, we need
to find a simulator that simulates each TO of RO1, ..., ROj . The simulator of TO
of ROs can be easily shown by using queries (s, ∗) to TO′. Therefore, we can
prove MGF1(TRO) � TRO′.



How to Confirm Cryptosystems Security 397

Cryptosystems that are secure in the TRO model are also secure in the TRO′

model by discussions similar to those for the cases of TRO. Note that security
bound of these cryptosystems is dependent on n, not jn.

The same discussion can be applied to KDF3 which is an instantiated hash
function of RSA-KEM[11].

5 Security Analysis of RSA-KEM in TRO and ERO
Models

The RSA-based key encapsulation mechanism (RSA-KEM) scheme [11] is a se-
cure KEM scheme in the RO model. In this section, we consider the security of
RSA-KEM in the TRO and ERO models.

The notation of the scheme follows that in [11]. The security of RSA-KEM in
the RO model is proved as follows;

Lemma 5 (Security of RSA-KEM in the RO model [11]). If the RSA
problem is hard, then RSA-KEM satisfies IND-CCA for KEM where KDF is
modeled as RO.

5.1 Insecurity of RSA-KEM in TRO Model

Though RSA-KEM is secure in the RO model, it is insecure in the TRO model.
More specifically, we can show that RSA-KEM does not even satisfy IND-CPA
for KEM in the TRO model. Note that IND-CPA means IND-CCA without DO.

Theorem 7 (Insecurity of RSA-KEM in the TRO model). Even if the
RSA problem is hard, RSA-KEM does not satisfy IND-CPA for KEM where
KDF is modeled as TRO.

Proof. We construct an adversary, A, which successfully plays the IND-CPA by
using TRO KDF . The construction of A is as follows;

Input : (n, e) as the public key
Output : b′ as the guessed bit
Step 1 : Return state and receive (K∗

b , C∗
0 ) as the challenge. Pose the trace

query K∗
b to KDF , and obtain {r}.

Step 2 : For all r in {r}, check whether re ?≡ C∗
0 (mod n). If there is r∗ that

satisfies the relation, output b′ = 0. Otherwise, output b′ = 1.

We estimate the success probability of A. When challenge ciphertext C∗
0 is gen-

erated, r∗ such that K∗
0 = KDF (r∗) is certainly posed to KDF because C∗

0 is
generated following the protocol description. Thus, LKDF contains (r∗, C∗

0 , K∗
0 ).

If (r∗, C∗
0 , K∗

b ) is not in LKDF , then b = 1. Therefore, A can successfully play
the IND-CPA game. ��

5.2 Security of RSA-KEM in ERO Model

We can also prove the security of RSA-KEM in the ERO model as well as in the
RO model.
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Theorem 8 (Security of RSA-KEM in the ERO model). If the RSA prob-
lem is (t′, ε′)-hard, then RSA-KEM satisfies (t, ε)-IND-CCA for KEM as follows:
t′ = t + (qRKDF + qEKDF ) · expo, ε′ ≥ ε− qD

n , where KDF is modeled as ERO,
qRKDF is the number of hash queries posed to the RO of KDF , qEKDF is the
number of extension attack queries posed to the EO of KDF , qD is the number
of queries posed to the decryption oracle DO and expo is the running time of
exponentiation modulo n.

The proof will be described in the full paper.
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