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How to Confuse with Statistics or:
The Use and Misuse of Conditional
Probabilities
Walter Krämer and Gerd Gigerenzer

Abstract. This article shows by various examples how consumers of statisti-
cal information may be confused when this information is presented in terms
of conditional probabilities. It also shows how this confusion helps others to
lie with statistics, and it suggests both confusion and lies can be exposed by
using alternative modes of conveying statistical information.
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1. INTRODUCTION

“The notion of conditional probability is a basic
tool of probability theory, and it is unfortunate that its
great simplicity is somehow obscured by a singularly
clumsy terminology” (Feller, 1968, page 114). Below
we argue that what Feller has rightly called a ”sin-
gularly clumsy terminology,” in addition to obscuring
the basic simplicity of concepts and ideas, easily lends
itself to intentional and unintentional misinterpretation
of statistical information of many sorts. Examples in
Darrel Huff’s book are mainly in the chapter on semiat-
tached figures, for instance, when discussing fatalities
on highways on page 78: “Four times more fatalities
occur on the highways at 7 p.m. than at 7 a.m.” Huff
points out that this of course does not imply, as some
newspaper had suggested, that it is more dangerous to
drive in the evening than in the morning. Recast in the
language of conditional probabilities, what Huff ob-
serves is thatP(accident| 7 p.m.) should not be con-
fused withP(7 p.m.| accident). Unfortunately, it was.

Although the termconditional probability does not
appear once in Huff’s remarkable book, it is clear that
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many other examples of statistical abuse that he dis-
covered can be rephrased in terms of conditional prob-
abilities. Below we survey various ways in which such
reasoning can be misleading, and we provide some
fresh examples. We also show that the potential for
confusion is easily reduced by abandoning the conven-
tional, “singularly clumsy terminology” of conditional
probabilities in favor of presentation of information in
terms of natural frequencies.

2. FALLACIES IN ENUMERATION

One class of errors involving conditional probabili-
ties comprises outright mistakes in computing them in
the first place. One instance of consciously exploiting
such computational errors in order to cheat the public is
a game of cards called “Three Cards in a Hat,” which
used to be offered to innocent passers-by at country
fairs in Germany and elsewhere. One card is red on
both sides, one is white on both sides, and the other is
red on one side and white on the other. The cheat draws
one card blindly, and shows, for example, a red face up.
The cheat then offers a wager of 10 Deutschmarks that
the hidden side is also red.

The passer-by is assumed to argue like this: “The
card is not the white-white one. Therefore, its hidden
side is either red or white. As both cases are equally
likely, the probability that the hidden side of the card
on the table is red is 1/2, so the wager is fair and can
be accepted.”

In fact, of course, the red-red card has probabil-
ity 2/3, since it can be drawn in two equally proba-
ble ways (one face up or the other face up, each of
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which will display red). The example therefore boils
down to an incorrect enumeration of simple events in
a Laplace experiment in the subpopulation composed
of the remaining possibilities. As such, it has famous
antecedents: The erroneous assignment by d’Alembert
(1779, entry “Croix ou pile”) of a probability of 1/3
for heads-heads when twice throwing a coin, or the
equally erroneous assertion by Leibniz (in a letter to
L. Bourgnet from March 2, 1714, reprinted in Leibniz,
1887, pages 569–570) that, when throwing two dice,
a sum of 11 is as likely as a sum of 12. A sum of 11,
so he argued, can be obtained by adding 5 and 6, and a
sum of 12 by adding 6 and 6. It did not occur to him that
there are two equally probable ways of adding 5 and 6,
but only one way to obtain 6 and 6.

Given illustrious precedents such as these, it comes
as no surprise that wrongly inferred conditional and
unconditional probabilities are lurking everywhere.
Prominent textbook examples are the paradox of the
second ace or the problem of the second boy (see, e.g.,
Bar-Hillel and Falk, 1982), not to mention the famous
car-and-goat puzzle, also called the Monty Hall prob-
lem, which has engendered an enormous literature of
its own. These puzzles are mainly of interest as mathe-
matical curiosities and they are rarely used for statisti-
cal manipulation. We shall not dwell on them in detail
here, but they serve to point out what many consumers
of statistical information are ill-prepared to master.

3. CONFUSING CONDITIONAL AND
CONDITIONING EVENTS

German medical doctors with an average of 14 years
of professional experience were asked to imagine us-
ing a certain test to screen for colorectal cancer. The
prevalence of this type of cancer was 0.3%, the sensi-
tivity of the test (the conditional probability of detect-
ing cancer when there is one) was 50% and the false
positive rate was 3% (Gigerenzer, 2002; Gigerenzer
and Edwards, 2003). The doctors were asked: “What
is the probability that someone who tests positive
actually has colorectal cancer?” The correct answer
is about 5%. However, the doctors’ answers ranged
from 1% to 99%, with about half of them estimat-
ing this probability as 50% (the sensitivity) or 47%
(the sensitivity minus the false positive rate).

The most common fault was to confuse the condi-
tional probability of cancer, given that the test is pos-
itive, with the conditional probability that the test is
positive, given that the individual has cancer. An anal-
ogous error also occurs when people are asked to in-
terpret the result of a statistical test of significance,

and sometimes there are disastrous consequences. In
the fall of 1973 in the German city of Wuppertal, a lo-
cal workman was accused of having murdered another
local workman’s wife. A forensic expert (correctly)
computed a probability of only 0.027 that blood found
on the defendant’s clothes and on the scene of the
crime by chance matched the victim’s and defendant’s
blood groups, respectively. From this figure the expert
then derived a probability of 97.3% for the defendant’s
guilt, and later, this probability came close to 100% by
adding evidence from textile fibers. Only a perfect alibi
saved the workman from an otherwise certain convic-
tion (see the account in Ziegler, 1974).

Episodes such as this have undoubtedly happened
in many courtrooms all over the world (Gigerenzer,
2002). On a formal level, a probability of 2.7% for the
observed data, given innocence, was confused with a
probability of 2.7% for innocence, given the observed
data. Even in a Bayesian setting with certain a priori
probabilities for guilt and innocence, one finds that a
probability of 2.7% for the observed data given inno-
cence does not necessarily translate into a probability
of 97.3% that the defendant is guilty. And from the fre-
quentist perspective, which is more common in foren-
sic science, it is nonsense to assign a probability to
either the null or to the alternative hypothesis.

Still, students and, remarkably, teachers of statis-
tics, often misread the meaning of a statistical test of
significance. Haller and Krauss (2002) asked 30 sta-
tistics instructors, 44 statistics students and 39 scien-
tific psychologists from six psychology departments
in Germany about the meaning of a significant two-
samplet-test (significance level= 1%). The test was
supposed to detect a possible treatment effect based on
a control group and a treatment group. The subjects
were asked to comment upon the following six state-
ments (all of which are false). They were told in ad-
vance that several or perhaps none of the statements
were correct.

(1) You have absolutely disproved the null hypothesis
that there is no difference between the population
means. ! true/false!

(2) You have found the probability of the null hypoth-
esis being true. ! true/false!

(3) You have absolutely proved your experimental hy-
pothesis that there is a difference between the pop-
ulation means. ! true/false!

(4) You can deduce the probability of the experimental
hypothesis being true. ! true/false!
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(5) You know, if you decide to reject the null hypothe-
sis, the probability that you are making the wrong
decision. ! true/false!

(6) You have a reliable experimental finding in the
sense that if, hypothetically, the experiment were
repeated a great number of times, you would ob-
tain a significant result on 99% of occasions.

! true/false!

All of the statistics students marked at least one of
the above faulty statements as correct. And, quite dis-
concertingly, 90% of the academic psychologists and
80% of the methodology instructors did as well! In par-
ticular, one third of both the instructors and the acad-
emic psychologists and 59% of the statistics students
marked item 4 as correct; that is, they believe that,
given a rejection of the null at level 1%, they can de-
duce a probability of 99% that the alternative is correct.

Ironically, one finds that this misconception is per-
petuated in many textbooks. Examples from the Amer-
ican market include Guilford (1942, and later editions),
which was probably the most widely read textbook
in the 1940s and 1950s, Miller and Buckhout (1973,
statistical appendix by Brown, page 523) or Nunnally
(1975, pages 194–196). Additional examples are col-
lected in Gigerenzer (2000, Chapter 13) and Nickerson
(2000). On the German market, there is Wyss (1991,
page 547) or Schuchard-Fischer et al. (1982), who on
page 83 of their best-selling textbook explicitly advise
their readers that a rejection of the null at 5% implies a
probability of 95% that the alternative is correct.

In one sense, this error can be seen as a proba-
bilistic variant of a classic rule of logic (modus tol-
lens): (1) “All human beings will eventually die” and
(2) “Socrates is a human being” implies (3) “Socrates
will die.” Now, what if (1) is not necessarily true,
only highly probable [in the sense that the statement
“If A(= human being) then B(= eventual death)”
holds not always, only most of the time]? Does this im-
ply that its logical equivalent “If notB then notA” has
the same large probability attached to it? This question
has led to a lively exchange of letters inNature (see
Beck-Bornholdt and Dubben, 1996, 1997; or Edwards,
1996), which culminated in the scientific proof that the
Pope is an alien: (1) A randomly selected human be-
ing is most probably not the Pope (the probability of
selecting the Pope is 1 : 6 billion= 0.000 000 000 17).
(2) John Paul II is the Pope. (3) Therefore, John Paul II
is most probably not a human being.

Setting aside the fact that John Paul II has not
been randomly selected from among all human be-
ings, one finds that this argument again reflects the

confusion that results from interchanging conditioning
and conditional events. It is based on taking as equal
the conditional probabilitiesP(not Pope| human) and
P(not human| Pope). Since

P(Ā | B) = P(B̄ | A) ⇐⇒ P(A | B) = P(B | A),

this is equivalent to taking as equal, in a universe com-
prised of humans and aliens, the conditional probabil-
ities P(Pope| human) andP(human| Pope), which is
nonsense. Or in terms of rules of logic: If the statement
“If human then not Pope” holds most of the time, one
cannot infer, but sometimes does, that its logical equiv-
alent “If Pope then not human” likewise holds most of
the time.

Strange as it may seem, this form of reasoning has
even made its way into the pages of respectable jour-
nals. For instance, it was used by Leslie (1992) to prove
that doom is near (the “doomsday argument”; see also
Schrage, 1993). In this case the argument went: (1) If
mankind is going to survive for a long time, then all
human beings born so far, including myself, are only a
small proportion of all human beings that will ever be
born (i.e., the probability that I observe myself is neg-
ligible). (2) I observe myself. (3) Therefore, the end is
near.

This argument is likewise based on interchanging
conditioning and conditional events. While it is per-
fectly true that the conditional probability that a ran-
domly selected human being (from among all human
beings that have ever been and will ever be born) hap-
pens to be me, given that doom is near, is much larger
that the conditional probability of the same event, given
that doom is far away, one cannot infer from this in-
equality that the conditional probability that doom is
near, given my existence, is likewise much larger than
the conditional probability that doom is far away, given
my existence. More formally: while the inequality in
the following expression is correct, the equality signs
are not:

P(doom is near| me) = P(me| doom is near)

� P(me| doom far away)

= P(doom far away| me).

4. CONDITIONAL PROBABILITIES AND
FAVORABLE EVENTS

The tendency to confuse conditioning and condi-
tional events can also lead to other incorrect con-
clusions. The most popular one is to infer from a
conditional probabilityP(A | B) that is seen as “large”
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that the conditional eventA is “favorable” to the con-
ditioning eventB. This term was suggested by Chung
(1942) and means that

P(B | A) > P(B).

This confusion occurs in various contexts and is possi-
bly the most frequent logical error that is found in the
interpretation of statistical information. Here are some
examples from the German press (with the headlines
translated into English):

• “Beware of German tourists” (according toDer
Spiegel magazine, most foreign skiers involved in
accidents in a Swiss skiing resort came from Ger-
many).

• “Boys more at risk on bicycles” (the newspaper
Hannoversche Allgemeine Zeitung reported that
among children involved in bicycle accidents the
majority were boys).

• “Soccer most dangerous sport” (the weekly maga-
zine Stern commenting on a survey of accidents in
sports).

• “Private homes as danger spots” (the newspaperDie
Welt musing about the fact that a third of all fatal
accidents in Germany occur in private homes).

• “German shepherd most dangerous dog around”
(the newspaperRuhr-Nachrichten on a statistic ac-
cording to which German shepherds account for a
record 31% of all reported attacks by dogs).

• “Women more disoriented drivers” (the newspaper
Bild commenting on the fact that among cars that
were found entering a one-way-street in the wrong
direction, most were driven by women).

These examples can easily be extended. Most of
them result from unintentionally misreading the statis-
tical evidence. When there are cherished stereotypes to
conserve, such as the German tourist bullying his fel-
low vacationers, or women somehow lost in space, per-
haps some intentional neglect of logic may have played
a role as well. Also, not all of the above statements are
necessarily false. It might, for instance, well be true
that when 1000 men and 1000 women drivers are given
a chance to enter a one-way street the wrong way, more
women than men will actually do so, but the survey by
Bild simply counted wrongly entering cars and this is
certainly no proof of their claim. For example, what
if there were no men on the street at that time of the
day? And in the case of the Swiss skiing resort, where
almost all foreign tourists came from Germany, the at-
tribution of abnormal dangerous behavior to this class
of visitors is clearly wrong.

In terms of favorable events,Der Spiegel, on ob-
serving that, among foreigners,P(German tourist|
skiing accident) was “large,” concluded that the re-
verse conditional probability was also large, in partic-
ular, that being a German tourist increases the chances
of being involved in a skiing accident:

P(skiing accident| German tourist)

> P (skiing accident).

Similarly, Hannoversche Allgemeine Zeitung conclu-
ded fromP(boy | bicycle accident) = large that

P(bicycle accident| boy) > P (bicycle accident)

and so on. In all these examples, the point of departure
always was a large value ofP(A | B), which then led
to the—possibly unwarranted—conclusion thatP(B |
A) > P(B). From the symmetry

P(B | A) > P(B) ⇐⇒ P(A | B) > P(A)

it is however clear that one cannot infer anything
on A’s favorableness forB from P(A | B) alone, and
that one needs information onP(A) as well.

The British Home Office nevertheless once did so
in its call for more attention to domestic violence
(Cowdry, 1990). Among 1221 female murder victims
between 1984 and 1988, 44% were killed by their
husbands or lovers, 18% by other relatives, and an-
other 18% by friends or acquaintances. Only 14% were
killed by strangers. Does this prove that

P(murder| encounter with husband)

> P (murder| encounter with a stranger),

that is, that marriage is favorable to murder? Evidently
not. While it is perfectly fine to investigate the causes
and mechanics of domestic violence, there is no evi-
dence that the private home is a particularly dangerous
environment (even though, asThe Times mourns, “as-
saults . . . often happen when families are together”).

5. FAVORABLENESS AND SIMPSON’S PARADOX

Another avenue through which the attribute of favor-
ableness can be incorrectly attached to certain events is
Simpson’s paradox (Blyth, 1973), which in our context
asserts that it is possible thatB is favorable toA when
C holds,B is favorable toA whenC does not hold, yet
overall,B is unfavorable toA. Formally, one has

P(A | B ∩ C) > P(A)

and

P(A | B ∩ C̄) > P (A),
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yet

P(A | B) < P(A).

This paradox also extends to situations whereC1 ∪
· · · ∪ Cn = �, Ci ∩ Cj = φ (i �= j ). For real-life exam-
ples see Wagner (1982) or Krämer (2002, 2004), e.g.

One instance where Simpson’s paradox (to be pre-
cise: the refusal to take account of Simpson’s paradox)
has been deliberately used to mislead the public is the
debate on the causes of cancer in Germany. The offi-
cial and fiercely defended credo of the Green move-
ment has it that the increase in cancer deaths from well
below 20% of all deaths after the war to almost 25%
nowadays is mostly due to industrial pollution and
chemical waste of all sorts. However, as Table 1 shows,
among women, the probability of dying from cancer
has actuallydecreased for young and old alike! Simi-
lar results hold for men.

These data refer only to mortality from cancer, not
to the incidence of cancer, and therefore have to be in-
terpreted with care. Still, the willful disregard of the
most important explanatory variable “age” has turned
the overall increase in cancer deaths into a potent pro-
paganda tool.

If B is favorable toA, then by a simple calculationB
is unfavorable toĀ. However,B can still be favor-
able to subsets of̄A. This is also known as Kaigh’s

TABLE 1
Probability of dying from cancer. Number of women
(among 100,000in the respective age groups) who

died from cancer in Germany

Age 1970 2001

0–4 7 3
5–9 6 2

10–14 4 2
15–19 6 2
20–24 8 4
25–29 12 6
30–34 21 13
35–39 45 25
40–44 84 51
45–49 144 98
50–54 214 161
55–59 305 240
60–64 415 321
65–69 601 468
70–74 850 656
75–79 1183 924
80–84 1644 1587

Source: Statistisches Jahrbuch für die Bundesrepublik
Deutschland.

(1989) paradox. In words: If knowing thatB has oc-
curred makes some other eventA more probable, it
makes the complementary eventĀ less probable. How-
ever, we cannot infer that subsets ofĀ have likewise
become less probable.

Schucany (1989, Table 1) gives a hypothetical ex-
ample where Kaigh’s paradox is used to misrepresent
the facts. Suppose a firm hires 158 out of 1000 appli-
cants (among which 200 are black, 200 are Hispanic
and 600 white). Of these, 38 non-whites and 120 whites
are hired, amounting to 6.3% and 20% of the respec-
tive applicants. Being white is therefore favorable to
being hired. But this does not imply that being in some
non-white population is necessarily unfavorable to be-
ing hired. Assume for instance, that 36 of 38 non-
whites who are hired are Hispanics. This implies that
being Hispanic is likewise favorable for being hired.
Although the selection rate for Hispanics is less than
that for whites, we still have

P(being hired| Hispanic) = 36/200= 18%

> P(being hired)

= 158/1000= 15.8%.

Schucany (1989, page 94) notes: “Regardless of whet-
her we call it a paradox, that such situations will
be misconstrued by the statistically naive is a fairly
safe bet.”

A final and formally trivial example for faulty in-
ferences from conditional probabilities concerns the
inequality

P(A | B ∩ D) > P(A | C ∩ D).

Plainly, this does not imply

P(A | B) > P(A | C),

but this conclusion is still sometimes drawn by some
authors. A German newspaper (quoted in Swoboda,
1971, page 215) once claimed that people get happier
as they grow older. The paper’s “proof” runs as fol-
lows: Among people who die at age 20–25, about 25%
commit suicide. This percentage then decreases with
advancing age; thus, for instance, among people who
die aged over 70, only 2% commit suicide. Formally,
one can put these observations as

P(suicide| age 20–25 anddeath)

> P (suicide| age> 70 anddeath),

and while this is true, it certainly does not imply

P(suicide| age 20–25) > P (suicide| age> 70).
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In fact, a glance at any statistical almanac shows that
quite the opposite is true.

Here is a more recent example from the U.S., where
likewise P(A | B) is confused withP(A | B ∩ D).
This time the confusion is spread by Alan Dershowitz,
a renowned Harvard Law professor who advised the
O. J. Simpson defense team. The prosecution had
argued that Simpson’s history of spousal abuse re-
flected a motive to kill, advancing the premise that
“a slap is a prelude to homicide” (see Gigerenzer, 2002,
pages 142–145). Dershowitz, however, called this ar-
gument “a show of weakness” and said: “We knew
that we could prove, if we had to, that an infinitesi-
mal percentage—certainly fewer than 1 of 2,500—of
men who slap or beat their domestic partners go on to
murder them.” Thus, he argued that the probability of
the eventK that a husband killed his wife if he battered
her was small,

P(K | battered) = 1/2,500.

The relevant probability, however, is not this one, as
Dershowitz would have us believe. Instead, the relevant
probability is that of a man murdering his partner given
that he battered herand that she was murdered,

P(K | battered and murdered).

This probability is about 8/9 (Good, 1996). It must
of course not be confused with the probability that
O. J. Simpson is guilty; a jury must take into account
much more evidence than battering. But it shows that
battering is a fairly good predictor of guilt for murder,
contrary to Dershowitz’s assertions.

6. HOW TO MAKE THE SOURCES OF
CONFUSION DISAPPEAR

Fallacies can sometimes be attributed to the un-
warranted application of what we have elsewhere
called “fast and frugal heuristics” (Gigerenzer, 2004).
Heuristics are simple rules that exploit evolved men-
tal capacities, as well as structures of environments.
When applied in an environment for which they were
designed, heuristics often work well, often outperform-
ing more complicated optimizing models. Neverthe-
less, when applied in an unsuitable environment, they
can easily mislead.

When a heuristic misleads, it is not always the
heuristic that is to blame. More often than not, it is the
structure of the environment that does not fit (Hoffrage
et al., 2000). The examples we have seen here amount
to what has elsewhere been called a shift of base or the

base-rate fallacy (Borgida and Brekke, 1981). In fact,
this environmental change underlies most of the mis-
leading arguments with conditional probabilities.

Consider for instance the question: “What is the
probability that a woman with a positive mammogra-
phy result actually has breast cancer?” There are two
ways to represent the relevant statistical information:
in terms of conditional probabilities, or in terms of nat-
ural frequencies.

Conditional probabilities: The probability that a
woman has breast cancer is 0.8%. If she has breast
cancer the probability that a mammogram will show a
positive result is 90%. If a woman does not have breast
cancer the probability of a positive result is 7%. Take,
for example, a woman who has a positive result. What
is the probability that she actually has breast cancer?

Natural frequencies: Our data tells us that eight out
of every 1000 women have breast cancer. Of these eight
women with breast cancer seven will have a positive
result on mammography. Of the 992 women who do
not have breast cancer some 70 will still have a positive
mammogram. Take, for example, a sample of women
who have positive mammograms. How many of these
women actually have breast cancer?

Apart from rounding, the information is the same
in both of these summaries, but with natural frequen-
cies the message comes through much more clearly.
We see quickly that only seven of the 77 women who
test positive actually have breast cancer, which is one
in 11 (9%).

Natural frequencies correspond to the way humans
have encountered statistical information during most
of their history. They are called “natural” because, un-
like conditional probabilities or relative frequencies, on
each occurrence the numerical quantities in our sum-
mary refer to the same class of observations. For in-
stance, the natural frequencies “seven women” (with
a positive mammogram and cancer) and “70 women”
(with a positive mammogram and no breast cancer)
both refer to the same class of 1000 women. In con-
trast, the conditional probability 90% (the sensitivity)
refers to the class of eight women with breast can-
cer, but the conditional probability 7% (the specificity)
refers to a different class of 992 women without breast
cancer. This switch of reference class easily confuses
the minds of both doctors and patients.

To judge the extent of the confusion consider Fig-
ure 1, which shows the responses of 48 experienced
doctors who were given the information cited above,
except that in this case the statistics were a base rate
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FIG. 1. Doctors’ estimates of the probability of breast cancer in women with a positive result on mammography (Gigerenzer, 2002).

of cancer of 1%, a sensitivity of 80%, and a false posi-
tive rate of 10%. Half the doctors received the informa-
tion in conditional probabilities and half received the
data as expressed by natural frequencies. When asked
to estimate the probability that a woman with a posi-
tive screening mammogram actually has breast cancer,
doctors who received conditional probabilities gave an-
swers that ranged from 1% to 90%; very few of them
gave the correct answer of about 8%. In contrast, most
of the doctors who were given natural frequencies gave
the correct answer or were close to it. Simply con-
verting the information into natural frequencies was
enough to turn much of the doctor’s innumeracy into
insight. Presenting information in natural frequencies
is therefore a simple and effective mind tool to reduce
the confusion resulting from conditional probabilities.
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