
Hoti to Construct Random Functions

ODED GOLDREICH, SHAFI GOLDWASSER,
AND SILVIO MICALI

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. A constructive theory of randomness for functions, based on computational complexity, is
developed, and a pseudorandom function generator is presented. This generator is a deterministic
polynomial-time algorithm that transforms pairs (g, r), where g is any one-way function and r is a
random k-bit string, to polynomial-time computable functionsf,: { 1, . . . , 2’) + { 1, . . . , 2kl. Thesef,‘s
cannot be distinguished from random functions by any probabilistic polynomial-time algorithm that
asks and receives the value of a function at arguments of its choice. The result has applications in
cryptography, random constructions, and complexity theory.

Categories and Subject Descriptors: F.0 [Theory of Computation]: General; F. 1.1 [Computation by
Abstract Devices]: Models of Computation-computability theory; G.0 [Mathematics of Computing]:
General; G.3 [Mathematics of Computing]: Probability and Statistics-probabilistic algorithms; random
number generation

General Terms: Algorithms, Security, Theory

Additional Key Words and Phrases: Cryptography, one-way functions, prediction problems, randomness

I have set up on a Manchester computer a small programme
using only 1000 units ofstorage, whereby the machine supplied
with one sixteen figure number replies with another within two
seconds. I would defy anyone to learn from these replies s&i-
cient about the programme to be able to predict any replies to
untried values.

A. TURING

1. Introduction

What is meant by saying that certain functions “‘behave randomly”?
In this paper we provide a precise answer to the above question. We then present

an efficient way to construct functions that behave randomly, if one-way functions
exist. We conclude by demonstrating applications of our construction.

Randomness has attracted much attention in the second half of this century.
However, most of the previous work focused on measuring the randomness of
strings.

0. Goldreich was supported in part by a Weizmann postdoctoral fellowship; S. Goldwasser was supported
in part by an IBM faculty development award (1983) and National Science Foundation grant DCR
8509905; and S. Micali was supported by a National Science Foundation grant DCR 84-13577 and an
IBM faculty development Award (1984).

Authors’ present addresses: 0. Goldreich, Computer Science Department, Technion, Haifa 32000 Israel;
S. Goldwasser and S. Micali, Laboratory for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02 139.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1986 ACM 0004-541 l/86/1000-0792 $00.75

Journal of the Association for Computing Machinay. Vol. 33, No. 4, October 1986, pp. 792-807.

How to Construct Random Functions 793

In Kolmogorov Com@exity [10, 13, 22, 24-26, 30, 34, 37, and 421 the measure
of randomness of a string is the length of its shortest description. Kolmogorov-
randomness is an inherent property of individual strings. This approach is non-
constructive and far from being applicable to pseudorandom string generation.
Notably, the set of Kolmogorov-random strings is nonrecursive.

Interesting generalizations of Kolmogorov complexity have been considered in
[11, [191, [36], and [38]. Here a string s is “random” if it cannot be produced by a
program that is both efficient (polynomial-time) and shorter than s. The approach
remains far from pseudorandom number generation. In fact no efficient algorithm
that uses less than k truly random bits can output a k-bit string random in the
above sense.

Recently, a constructive approach to the randomness of strings, based on
computational complexity, has emerged [8, 411. In this approach a set S of strings
is polynomial random (poly-random) if programs that run in polynomial time lead
to identical results when fed either with elements randomly selected in S or with
elements randomly selected in the set of all strings. This approach is constructive
in the following way: There exists a deterministic polynomial-time algorithm that,
upon input of a k-bit string, outputs a poly(k)-bit string, such that, if one-way
functions exist, then the set of all output strings is poly-random.

In this paper we further develop this latter approach by introducing a constructive
theory of randomness forfunctions. In particular,

(1) We introduce a computational complexity measure of the randomness of
functions: Loosely speaking, we call a function poly-random if no polynomial-
time algorithm, asking for the values of the function at arguments of its choice,
can distinguish a computation during which it receives the true values of the
function, from a computation during which it receives the outcome of inde-
pendent coin flips. Notice the analogy with the Turing Test for intelligence.

(2) Assuming the existence of one-way functions we present an algorithm for
constructing poly-random functions. Our work was motivated by an open
problem of [9] and [7].,

In the rest of this introduction we informally discuss the notion of a poly-random
collection: a set of functions easy to select and evaluate, which achieve randomness
with respect to polynomial-time computation. We compare this new notion with
the previously considered notions of one-way functions and cryptographically
strong pseudorandom bit generators (CSB generators).

1.1. POLY-RANDOM COLLECTIONS. Let Ik denote the set of all k-bit strings.
Consider the set Hk of all functions from zk into Ik. Note that the cardinality of Hk
is 2k.2k. Thus, to specify a function in Hk, we would need k2k bits: an impractical
task even for a moderately large k. Assume now that for all integer k one randomly
selects a subset & c Hk of cardinality 2k. Let A denote the collection (&I. This
way each function in Dk has a unique k-bit index. However, with probability 1,
there is no polynomial-time algorithm that, given the k-bit index of a function -
fE Hk and x E Ik, evaluates f(x).

Our goal is to make “random functions” accessible for applications. That is, to
construct functions that can be easily specified and evaluated and yet cannot be
distinguished from functions chosen at random in Hk. Thus we restrict ourselves
to choosing functions from a multiset Fk (whose elements are in Hk), where the

794 0. GOLDREICH ET AL.

collection F = (Fk) has the following properties:

(1) Indexing: Each function in Fk has a unique k-bit index associated with it:
Fk = {f;: 1 i E Ik). Thus picking randomly a functionfE Fk is easy, if k random
bits are available.

(2) Poly-time Evaluation: There exists a polynomial algorithm that (for all k L l),
upon input of an index i E Ik and an argument x E Ik, computes&x).

(3) Pseudorandomness: No probabilistic algorithm that runs in time polynomial
in k can distinguish the functions in Fk from the functions in Hk. (See Section
3.1 for a precise definition.)

Such a collection of functions F is called apoly-random collection. Loosely speaking,
despite the fact that the functions in Fk are easy to select and evaluate, they will
exhibit, to an examiner with polynomially bounded resources, all the properties of
functions randomly selected in Hk.

The above definition is highly constructive. We transform any CSB generatoa
(a high-quality pseudorandom bit generator, discussed in Section 2) to a poly-
random collection. It has been shown (see the discussion in Section 2.3) that CSB
generators can be constructed if one-way functions exist.

1.2 COMPARISON WITH ONE-WAY FUNCTIONS. Informally, one-way functions
are functions that are easy to compute, but hard to invert for some nonnegligible
fraction of the instances. We construct random functions from any one-way
function. This confirms the great potential present in the notion of a one-way
function. However, this power needs to be carefully brought out.

Although the inverse of a one-way function is somewhat unpredictable, this does
not mean that it is random. In fact, all functions that are currently believed to be
one-way satisfy various algebraic identities (e.g., the Rivest-Shamir-Adelman
(RSA) function [33] is a multiplicative permutation; thus given its inverse on x
and y, one can easily infer its inverse at x . y). This clearly does not happen with
truly random functions and in fact will not happen with a function randomly
selected from a poly-random collection (FkJ. In particular, our construction hides
all the algebraic identities that may be satisfied by the one-way function upon
which it is based from any observer with polynomially bounded resources. In fact,
the following property holds for poly-random collections:

Randomly choose and fixf~ Fk. Let a probabilistic poly(k)-time algorithm A
ask for the value offon polynomially many (in k) arguments of its choice: ye ,

Y2,‘.., ykr. Then let A choose an argument x (x # yi, for all i’s) as an exam.
If A is now given two numbers in random order, one of which is f(x) and the
other a random k-bit number, it cannot guess which of the two isf(x) with
probability substantially greater than i.

Thus, iffis selected in a poly-random collection, not only the value offat argument
x cannot be computed from the values offat other arguments, but it cannot even
be recognized when given! The above test is a complete characterization of poly-
random collections (see Section 4).

1.3 COMPARISON WITH CSB GENERATORS. In this subsection, we address the
problem of simulating probabilistic polynomial-time computations so as to save
basic resources such as coin tosses and storage. As we shall see, CSB generators
allow one to save coin tosses in probabilistic polynomial-time computations,
whereas poly-random collections allow one to save both coin tosses and storage in
polynomial-time computation with a random oracle.

How to Construct Random Functions 795

CSB generators are efficient deterministic programs that stretch a (random)
k-bit-long input seed to a k’-bit-long output (pseudorandom) sequence, for some
constant t > 0. These sequences are indistinguishable, in polynomial time, from
k’-bit-long truly random sequences (see Section 2.1 for a detailed discussion). Thus,
we can replace the coin tosses in a probabilistic poly(k)-time computation by the
bit sequence generated by a CSB generator on a random k-bit string and still get
almost the same results.

We now address the problem of efficiently simulating more complex probabilistic
computations: computations with a random oracle. A random oracle [4] is a special
case of a random function: it associates the result of a single coin toss to each
string. In computing with a random oracle, an algorithm queries the oracle with a
string q and receives q’s associated bit (denoted b(q)). Since b(q) does not change
with time, the algorithm need not store the pair (q, b(q)) but rather query the
oracle on q whenever it needs b(q). The advantages of computing with a random
oracle are clarified by all the applications listed in Section 5.

A polynomial-time computation that queries a random oracle on k’ strings of
length k can be trivially simulated using a CSB generator and only k coins (see
below). However, this trivial simulation of the oracle requires k’+’ bits of storage.

Store a randomly selected k-bit string s and denote by bi the ith bit produced
by a CSB generator on input s. Let qi be the ith new query (i.e., a query never
asked before). Then set b(qi) = bi, append (an encoding of) qi to a list of past
queries, and answer bi. The ordered list of past queries enables us to recognize
whether a query has occurred before and, if so, to give the same answer.

Note that the list of past queries is indeed necessary. Such a list may not be
significantly compressable (e.g., for randomly selected queries). Thus, in the worst
case the simulation requires at least k”’ bits of storage.

An interesting property of poly-random collections is that they guarantee the
same result for any polynomial-time computation with a random oracle, for k-bit
strings, by using only k coin flips and by storing only k bits! This can be done by
randomly selecting and storing a k-bit index specifying a function fin a poly-
random collection. The bit associated with each string x will be the first bit off(x).

Sharing Randomness in a Distributed Environment. An additional advantage
of poly-random collections is that they enable many parties to share eficiently a
random function fin a distributed environment. By sharingfwe mean that, iffis
evaluated at different times by different parties on the same argument x, the same
value f(x) will be obtained. Such sharing can be achieved by flipping k coins to
specify a function fin a poly-random collection. These k bits are communicated
to and stored by each processor. No further messages need to be exchanged between
the processors to share f:

1.4 NOTATION AND CONVENTIONS. This paper does not deal with Kolmogorov
complexity. Whenever we refer to a random element, we mean an element
randomly selected from the appropriate set.

Let A be a multiset with distinct elements al, . . . , a,, occurring with multiplicities
ml,..., m,, respectively. Then 1 A 1 = ET=, mi. By writing a ER A, we mean that
the element a has been randomly selected from the multiset A. That is, an element
occurring in A with multiplicity m is chosen with probability m/l A I.

For uniformity of notation, the parameter k, when given as input to any algorithm
discussed in this paper, is presented in unary. (We analyze the running time of our

796 0. GOLDREICH ET AL.

algorithms with respect to the length of their input, and some algorithms in this
paper have only k as input.) h

We chose Turing machines as the basic computational model for this paper. One
can easily transform the statements and the proofs of all our results from the
Turing machine model to the circuit model.

1.5 ORGANIZATION OF THE PAPER. In Section 2 we briefly recall the basic
definitions and results concerning CSB generators and the easy-access open prob-
lem. In Section 3 we formally define poly-random collections and show how to
construct them given any one-way function. In Section 4 we characterize poly-
random collections as extremely hard prediction problems. In Section 5 we briefly
discuss various applications of poly-random collections.

2. CSB Generators

A pseudorandom number generator is a deterministic and efficient algorithm that
stretches a random input number (seed) into a long pseudorandom number
sequence. The pseudorandom sequence should have “some” statistical properties
present in truly random sequences (e.g., it should have approximately as many O’s
as 1 ‘s). Many statistical properties of the linear congruential pseudorandom number
sequence xj+l = a . Xi + b(mod n) have been studied by Knuth [21]. However,
unlike truly random sequences, the next number in a linear congruential sequence
can be easily computed from the preceding ones, even when x0, a, b, and n are not
given [31]. See also [12], [20], and [23].

Shamir [35] presents a pseudorandom number generator for which computing
the next number in the sequence from the preceding ones is as hard as inverting
the RSA function. However, though unpredictable, the numbers in such a sequence
may not appear “random” (e.g., their high-order bits may be easy to predict). All
such problems provably do not arise for CSB generators.

2.1 THE NOTION OF A CSB GENERATOR. Blum and Micali [8] introduced
the notion of a cryptographically strong pseudorandom bit generator (CSB gener-
ator). Let P be a polynomial. A CSB generator G is a deterministic poly(k)-time
program that stretches a k-bit-long randomly selected seed into a P(k)-bit-long
sequence (called a CSB sequence) that passes all next-bit-tests:

Let P be a polynomial, Sk a multiset’ consisting of P(k)-bit sequences and
S = Uk Sk. A next-bit-test for S is a probabilistic polynomial-time algorithm
T that on input k and the first i bits in a string s ER Sk outputs a bit b. Let pi
denote the probability that b equals the i + 1 st bit of s. We say that S passes
the next-bit-test T if, for all polynomials Q, for all sufficiently large k, and for
all integers i E [0, P(k));

A more general definition of string randomness has been suggested by Yao [4 I].

’ We use multisets instead of sets since it may be that a CSB generator outputs the same CSB sequence
on two different seeds.
* In the original version of [8] a fixed E > 0 appeared instead of l/Q(k). The replacement by l/Q(k)
was suggested by Yao [41]. This was of crucial importance for proving Theorem 1 [41].

How to Construct Random Functions 797

2.2 POLYNOMIAL-TIME STATISTICAL TESTS FOR STRINGS

Definition (Yao). Let P and PI be polynomials and S = lJk Sk be a multiset of
sequences, where Sk consists of P(k)-bit sequences. A polynomial-time statistical
test for strings is a probabilistic polynomial-time algorithm T that takes as input
P,(k) strings, each P(k)-bit long, and outputs either 0 or 1. We say that S passes
the test T if, for any polynomial Q, for all sufftciently large k,

where pf denotes the probability that T outputs 1 on P,(k) randomly selected
strings in Sk, and pf denotes the probability that T outputs 1 on P,(k) random bit
strings, each of length P(k).

Of special interest is the case in which the polynomial PI(k) is the constant 1, so
that the statistical test receives as an input a single string.

The following definition plays an important role in relating the above definitions
of randomness. We say that a multiset S = Uk Sk is samplable if there is a
probabilistic polynomial-time algorithm that, given as input k, outputs s ER Sk.

THEOREM 1. (Yao [41]). Let S = Uk Sk be a samplable multiset of bit
sequences. Then the following three statements are equivalent:

(i) S passes the next-bit-test.
(ii) S passes all polynomial-time statistical tests for strings.

(iii) S passes all polynomial-time statistical tests whose input consists of a single
string in S.

Notice that CSB sequences form a samplable multiset. Therefore,

(*) CSB sequences pass all polynomial-time statistical tests.

Actually, only statement (*) explicitly appears in [41]. However, its proof
contains all the ideas needed for proving the equivalence of the three conditions of
Theorem 1. The reader can derive a proof of Theorem 1 from the proof of Theorem
4 (which can be viewed as a generalization of Theorem 1).

2.3 IMPLEMENTATION OF CSB GENERATORS. Blum and Micali [8] presented
an algorithmic scheme for constructing.CSB generators based on a general com-
plexity theoretic assumption (a sketch can be found in Section Al of the Appendix).
They also presented the first instance of their scheme based on a specific complexity
assumption: the intractability assumption of the discrete logarithm problem (DLP).
Namely, if the next bit in the sequences produced by their generator could be
predicted with probability greater than $ + t, then there would exist a poly(k, E-‘)
algorithm for solving the DLP for a fraction c of all primes of length k. A more
efficient CSB generator based on the DLP can be derived from [28].

Other instances of CSB generators based on various number-theoretic assump-
tions have been found. CSB generators based on the quadratic residuosity problem
appeared in [41] and [7]. The first CSB generator based on factoring appears in
[4 11. More efficient generators based on factoring have been obtained by a sequence
of stronger results [2; 5, 18, 39,]. As pointed out in [40], the results in [2] imply
that the quadratic residuosity generators in [41] and [7] are in fact also based on
factoring.

798 0. GOLDREICH ET AL.

More generally, Yao [41] has shown how to obtain CSB generators if any one-
way permutation is given. Levin [27] shows how to obtain CSB generators using a
seemingly weaker condition: The existence of one-way functions (defined below).

Definition (Levin). Let Dk C Ik. Let&: D k + Dk be a sequence of functions
and let the function f be defined as follows: f(x) = J&V) if x E Dk. Letf’ denote f
applied i times. Let 0; G Dk such that y E 0; if y = Y(X) for some x E Dk. fis a
one- way function if

(1) fis polynomial-time computable;
(2) fis hard to invert; that is, for every probabilistic polynomial-time algorithm A

and for all sufficiently large k, for every 1 I i I k3, A(x) # j?F’ (x) for at least
a constant fraction of the x E Dk;

(3) UDk is samplable.

THEOREM 2. (Levin [27]). There exists a one-wayfunction ifand only ifthere
exists a CSB generator.

The above theorem is constructive. Levin shows a particular generator that is a
CSB generator if any CSB generator exists. Levin makes use of a construction due
to Yao [41], which is sketeched in Section A2 of the Appendix.

2.4 CSB GENERATORS WITH EASY ACCESS. Notice that, even though a CSB
sequence generated with a k-bit-long seed consists of polynomially many (in k)
bits, a CSB generator and a seed s define an infinite (ultimately periodic) bit-
sequence b0, bl, An interesting feature first present in the generator of Blum
et al. [7] is that knowledge of the seed allows easy access to each of the first 2k bits;
that is, if log i < k, the ith bit in the string bi can be computed in poly(k) time.
This is due to the special one-way permuation on which the security of their
generator is based. However, this easily accessible exponentially long bit-string may
not appear “random.” Blum et al. only prove that any singIe polynomially long
interval of consecutive bits in the string passes all polynomial-time statistical tests
for strings, provided that squaring mod a Blum-integer3 n is a one-way permutation
(over the squares mod n). Indeed, it may be the case that, given b,, . . . , bk and
&a+, . . . , bzfi+k, it is easy to compute any other bit in the string.

The easy-access open problem consists of whether easy access to exponentially
far away bits in their pseudorandom pad is a “randomness preserving” operation.
This problem was posed by Brassard [9] and Blum et al. [7]. The problem was also
discussed by Angluin and Lichtenstein [3].

Notice that there is a natural one-to-one correspondence between “randomness
preserving” easily accessible k . 2k-bit-long strings and random functions from Ik
to Ik. By COnStrWting a poly-random collection F = (Fk), we virtualiy COnStrUCt

k . 2k-bit strings (SJ =f(l)f(2) . . . f(2k)]fE Fk) which can be easily accessed in a
“randomness preserving” manner. This practically solves the easy-access problem.
In fact, our construction demonstrates a different way to achieve the benefits that
a positive answer to the easy-access problem would have provided. Even better, we
construct poly-random collections not only if squaring modulo a Blum-integer is
a one-way function, but given any one-way function.

3 A Blum-integer is an integer of the form p, . pz where p, and pz are distinct primes both congruent to
3 mod 4.

How to Construct Random Functions 799

3. Constructing Poly-Random Collections

In this section we show how to construct collections of functions that pass all
“polynomially bounded” statistical tests. A collection offunctions F is a collection
(FkJ, such that for all k and allfE Fk,f: Ik + Ik.

3.1 POLYNOMIAL-TIME STATISTICAL TESTS FOR FUNCTIONS

Definition. A polynomial-time statistical test for functions is a probabilistic
polynomial-time algorithm T that, given k as input and access to an oracle
0, for a function f: Ik + Zk, outputs either 0 or 1. Algorithm T can query the
oracle 0~ only by writing on a special query tape some y E Ik and will read the
oracle answer f(y) on a separate answer-tape. As usual, 0~ prints its answer in one
step.

Let F = (FkJ be a collection of functions. We say that F passes the test T if, for
any polynomial Q, for all sufficiently large k;

where pp denotes the probability that T outputs 1 on input k and access to an
oracle 0, for a function f ER Fk and p,$’ denotes the probability that T outputs 1
when given the input k and access to an oracle 0~ for a function f ER Hk (i.e., a
random function). Here the probabilities are taken over all the possible choices of
f E Fk or Hk and the internal coin tosses of T.

The above definition can be interpreted as follows: A function f is “judged” to
be random depending on its input-output relation. The test T consists of two
phases. First it gathers information about f by gettingf’s values at arguments of
its choice. Then it outputs its “verdict”: 0 (if it “thinks” that f ER Fk) or 1 (if it
“thinks” that f ER Hk). If the collection F passes the test T, then the output of T
when given access to an oracle 0~ gives no information on whether f ER Fk or
f ER Hk. In either case Twill output 1 with essentially the same probability.

Passing all polynomial-time statistical tests for functions is an extremely general
randomness criterion. For example, suppose that some efficient algorithm A can
find dependencies among input-output pairs off 6 Fk; then A can be converted
to a statistical test TA that will output 0 upon A’s detection of such dependencies
(i.e., judging that f ER Fk). Since such dependencies cannot be found when
f ER Hk, the collection F = (FkJ will not pass the test TA. (For a more detailed
discussion see Section 4.)

We now exhibit a collection F that passes all polynomial-time statistical tests,
under the assumption that there exists a one-way function.

3.2 THE CONSTRUCTION OF F. In this section we show how to use a CSB
generator to construct a poly-random collection. In other words we show that
pseudorandomness for strings implies pseudorandomness for functions. Since a
CSB generator can be explicitly constructed if one-way functions exist, so can poly-
random collections.

In particular, our construction utilizes any CSB generator G that stretches a seed
x E Ik into the 2k-bit-long sequence G(x) = b’f . . . b&.

Let Sk be the multiset of the 2k-bit sequences output by G on seeds of length k.
Recall that S = lJk Sk passes all polynomial-time statistical tests for strings.

800 0. GOLDREICH ET AL.

Let x E Zk. By Go(x) we denote the first k bits output by G on input X. That is,
G,,(x) = b; . . . b$. By G,(x) we denote the next k bits output by G. That is,
G,(x) = bf+l --. bk. Let (Y = (Y~LY~ . . . (Ye be a binary string. We define

Go(x) = G,,(- - Ga,Ga,(xN)- - -1.
For x E Zk, the function fX: Zk + Zk is defined as follows:

L(Y) = G(x).

Let Fk = (&EI~. Then F = (Fk) is the desired collection.4

The reader may find it useful to picture a function fx: Zk + Zk as a rooted full
binary tree of depth k with k-bit strings stored in the nodes and edges labeled 0 or
1. The k-bit string x will be stored in the root. If a k-bit string s is stored in an
internal node, u, then Go(s) is stored in u’s left-son ~1, and G,(s) is stored in u’s
right-son ur. The edge (u, ul) is labeled 0 and the edge (u, u,) is labeled 1. The string
f,(y) is then stored in the leaf reachable from the root following the edge path
labeled y. See Figure 1.

We remark that computingf,(y) on inputs x and y requires k - Tk steps, where
Tk denotes the number of steps for computing G(x) on input x E Zk. Also note
that the functions in Fk may not be one-to-one.

3.3 THE POLY-RANDOMNESS OF F. The collection F just defined satisfies con-
ditions 1 (indexing) and 2 (poly-time evaluation) of a poly-random collection (see
Section 1.1). The main theorem shows that condition 3 (pseudorandomness) is
also satisfied.

THEOREM 3 (MAIN THEOREM). Let F be a collection offunctions constructed as
in Section 3.2 using a CSB generator G. Then F passes all polynomial-time
statistical tests for functions.

PROOF. Let us first give an overview of the proof. We assume, for contradiction,
that there exists some probabilistic polynomial-time statistical test for functions T
that F does not pass. We then use T to construct a polynomial-time statistical test
for strings, AT. We reach a contradiction by showing that the set of CSB sequences
produced by G does not pass AT.

Let us consider computations of the statistical test T in which T’s queries are
answered by one of the following probabilistic algorithms Ai (i = 0, 1, . . . , k)
(instead of being answered by an oracle 0,).

Algorithm Ai answers T’s queries as follows.5 Let y = y1 y2 . . - yk be a query of
T. Then

if y is the first query with prefix y, . - - y,
then Ai selects a string r E Zk at random, stores the pair (yI . . . yi, r), and answers

else
G,+, :,dr)
Ai retrieves the pair (yI . - . yi, u) and answers Gy,+,__.,(u).

(Conceptually, algorithm Ai starts with a full binary tree of depth k and stores
random k-bit strings in all nodes of level i. In the nodes of succeeding levels, it
stores k-bit strings deterministically computed by applying G as follows. If the
k-bit string s is stored in an internal node u, then GO(S) is stored in u’s left-son and
G,(s) is stored in u’s right-son. The algorithm answers query q with the string
stored in the leaf reachable from the root following the edge path q.)

4 In the next subsection we show that I;’ is a poly-random collection. We do not know whether this is
also true when one defines&y) = G,(JJ).
’ We extend our notation by letting GA(x) = x, where X denotes the empty string.

How to Construct Random Functions 801

FIG. 1. The stringfx(y) is then stored in the leaf reachable from the
root following the edge-path labeled y.

Define pk to be the probability that T outputs 1 when given k as input and its
queries are answered by algorithm Ai, 0 5 i 5 k.

Define p[(pf, respectively) to be the probability that T outputs 1 when given k
as input and access to an oracle 0~ for a functionf& Fk (f5 Hk, respectively).
Note that pi = pp and that pi = pf’.

As F is assumed not to pass T, there exists a polynomial Q and infinitely many
k so that 1 pf - pf 1 > l/Q(k). Equivalently, 1 p2 - pi 1 > l/Q(k). We denote by
K the set of all such k’s.

We are now ready to describe the polynomial-time statistical test AT for strings.
Let PI be a polynomial such that the test T makes at most PI(k) queries on input
k. On input k E K and a set uk of P,(k) strings, each 2k bits long, the test AT
performs a two-stage computation. In the first stage, AT picks i between 0 and
k - 1 with uniform probability. In stage two, algorithm AT gives k as input to
algorithm T and answers T’s oracle queries consistently using the set uk as follows.

Assume T writes y = yI . . . yk on the oracle tape.

if y is the first query with prefix yI . . . yi
then AT picks the next string in Uk. Let u = uoul be such a string (uou, is the concatena-

tion of u,, and ul, and 1 ~0 1 = 1 u1 1 = k). Then AT stores the pairs (y, . . . yiO, ~0) and
(Yl . . . yil, u,) and answers

Gi,,. .&o) if yi+,=O and Gi+z...,&~) if yi+l=l.

else AT retrieves the pair (y, . . ’ yi+I, u) and answers Gyi+2.. .,(u).

Note that, if uk consists of 2k-bit strings output by the CSB generator G on
randomly selected k-bit input seeds, then AT simulates a computation of T with
oracle Ai. If, instead, uk consists of randomly selected 2k-bit strings, then AT
simulates a computation of T with oracle Ai+, .

802 0. GOLDREICH ET AL.

The probability that AT outputs 1 when Uk is a randomly chosen subset of the
2k-bit strings output by the CSB generator G is C.!zJ (l/k) . pk. On the other hand,
the probability that AT outputs 1 when Uk is a randomly chosen subset of all
2k-bit strings, is Cf:, (l/k) - pi+‘. When k E K, these probabilities differ by at
least (l/k) . 1 pg - pi 1 > l/(k . Q(k)). Thus, the sequences produced by G do not
pass the statistical test AT and we reach a contradiction. 0

3.4 GENERALIZED POLY-RANDOM COLLECTIONS. Let P, and Pz be poly-
nomials. In some applications we would like to have random functions from
UP, + ZP2(k) (e.g., in hashing we might want functions from Iloo into Ilo). We
meet this need by constructing a generalized poly-random collection (F$~~}.
The modified construction can be simply described in terms of two different CSB
generators: G mapping k bit strings into 2k bit strings and G’ mapping k random
input bits into Pz(k) pseudorandom bits. For x E Zk the function fX E Fph is
defined as follows: on input y E Z p,(k), fX(y) = G’(G,(x)). By a proof similar to
that of the Main Theorem, we can prove that the collection, (F$vp2) possesses
properties (1)-(3) of poly-random collections.

4. Prediction Problems and Poly-Random Collections

Physics may be viewed as a prediction problem. This problem may seem to be
tractable if

(1) There is an a priori guarantee that the “laws of nature” are “simple.”
(2) It is possible to conduct selected experiments.
(3) The goal is only to approximately infer the “laws of nature.”

Similarly, in complexity theory, one may conjecture that all functions f that are
“simple” (i.e., that are easy to evaluate given some hidden key) can be “approxi-
mately inferred” after temporary access to an oracle for J: In this section we show
that this is not the case, under the assumption that one-way functions exist.

4.1 FORMAL SETTING. Let F = (FkJ be a collection of functions and A a
probabilistic polynomial-time algorithm capable of oracle calls. On input k and
access to an oracle 0~ for a function fE Fk, algorithm A carries out a computation
during which it queries 0, about xl, . . . , Xi. Then algorithm A outputs x E Zk
such thatx#x,, Xj. This x is called the chosen exam. At this point A is
disconnected from O/and is presented the two valuesf(x) and y ER Zk in random
order. We say that A passes the exam if it correctly guesses which of the two values
is f(x). Let Q be a polynomial. We say that A Q-infers the collection F if,
given input k, for infinitely many k, it passes the exam with probability at least
l/2 + l/Q(k). Here the probability is taken over all the possible choices of

fE Fk, the internal coin tosses of A, all possible choices of y, and the random order
between f(x) and y.

We say that a collection of functions F can be polynomially inferred if there exist
a polynomial Q and a probabilistic polynomial-time algorithm A that Q-infers F.

Polynomially inferring a collection F is a very weak kind of a prediction problem.
However, if one-way functions exist, it is still an infeasible task, as follows from
Theorems 3 and 4.

How to Construct Random Functions 803

THEOREM 4. Let F = (Fkj be a collection offunctions satisfying the conditions
1 (indexing) and 2 (polynomial-time evaluation) of a poly-random collection. Then
F cannot be polynomially inferred if and only if it passes all polynomial-time
statistical tests for functions.

PROOF. Assume, first, that there exists a probabilistic polynomial-time algo-
rithm A that Q-infers the collection F. Then F does not pass the statistical test for
functions, TA , described here:

On input k and access to an oracle O,(f ER Fk or f ER Hk), the test TA-invokes
the inferring algorithm A with input k. For every query q made by A, the test
TA asks 0~ for f(q) and returns the answer to A. Finally, when A outputs the
string x as its chosen exam, TA queries 0, on x, randomly picks y E Ik, and
returns y and f(x) to A in random order. If A correctly identifies f(x), then TA
outputs 1; otherwise TA outputs 0.

For all k, when f ER Hk the probability that TA outputs 1 is exactly 4. On the
other hand, for infinitely many k, when f ER Fk the probability that TA outputs 1
is greater than i + l/Q(k). Thus, F does not pass the test TA.

Conversely, assume that F does not pass a statistical test T. That is, there exists
a polynomial Q such that for infinitely many k, 1 pf - pr 1 > l/Q(k), where pf
(pf, respectively) is the probability that T outputs 1 on input k and access to an
Oracle 0~ for f ER Fk (fR ER I&, respectively). Without loss of generality, we may
assume that, for infinitely many k, pf - pf > l/Q(k), and let K denote the set of
all such k. Also, without loss of generality, during the same computation, T never
asks the same query twice and, on input k, asks exactly P(k) queries (for some
polynomial P).

We construct a probabilistic polynomial-time algorithm AT that uses T as a
subroutine and 2 . P(k) . Q(k)-infers F. On input k and access to an oracle
O,(f ER Fk), the algorithm AT proceeds as follows. It first chooses i between 0 and
P(k) - 1 with uniform probability. (We later refer to i as the index.) Next AT
invokes T with input k and uses the oracle 0, to answer T’s first i queries. When
T asks for its i + 1st query, x;+~, then AT outputs Xi+1 as its chosen exam. Upon
receiving f(xi+l) and y, where y ER zk, AT randomly chooses z E (f(Xi+l), y) and
gives z as an answer to query xi+]. Next, algorithm AT continues to answer the
queries Xi+2 through xP(k) of T by randomly selected k-bit strings. Finally, T outputs
a bit and halts. If T’s output was a 0, then AT guesses that z ER Ik; otherwise AI,
guesses that z = f(xi+l).

In analyzing the probability that AT makes a correct guess, the following concept
of a (k, i, g)-experiment (where g E Fk) will be useful:

Run T with input k and answer its queries as follows. Let Xj be the jth query
of T.

if j 5 i, then answer g(Xj); else answer with a random k-bit string.

Let pi be the probability that T outputs 1 in a (k, i, g)-experiment when
g ER Fk. Note that p! = pf and pfck) = p[.

Let us calculate the probability that AT makes a correct guess on input k E K
and access to oracle 0, for f ER Fk. (In this calculation, k is fixed and the
probabilities are taken over all possible choices off E Fk and the internal coin
tosses of AT with uniform distribution.) Consider executions of AT. Let AiT denote

804

the event “Algorithm AT chose index = i”. Then,

prob(AT) is correct

P(k)- 1

0. GOLDREICH ET AL.

= ,zO prob(A ir) . prob(AT is correct] AiT)

= & * ‘F;’ [prob(z ER Ik] A;)
. prob(AT @zKXSeS Z ER Ik] Z ER Ik and A ;)

+ proI@ = f(xi+ I) I A 6-1
. prob(AT guesses z = f(Xi+ 1)] z = f(Xi+ 1) and A $)I

1 =-.
P(k)

. prob(T outputs 0] z ER Ik and AiT)

+ i . prob(T outputs 1] z = f(Xi+ 1) and A $) 1
1 P(k)- 1

=-.

2 . P(k) r, ((1 -PI) + pi+“) 2 ; + 2 P(k; Q(k).
i=O

0

COROLLARY. Poly-random collections can not be polynomially inferred.

Remark. Our construction of poly-random collections has a “strengthening
effect.” Assume that Ftg) is a poly-random collection constructed given the one-
way function g. Then the functions in F@ cannot be polynomially inferred, even
if g and/or g-’ is polynomially inferable.

5. Cryptographic Applications and Further Improvements

Poly-random collections constitute a very powerful tool in a cryptographic setting.
The functions in such collections are easy to select and compute with, but retain
all the desired statistical properties of random functions with respect to adversaries
that are bounded to polynomial-time computation. This suggests the following
methodology for protocol design. First, design a protocol that (magically) uses truly
random functions and prove it correct. This step is often very easy. Then, replace
the truly random functions by functions randomly selected from a poly-random
collection. This replacement will provably maintain all properties of the original
protocol with respect to polynomially bounded adversaries.

This methodology has provided rigorous solutions to such cryptographic prob-
lems as message authentication with time stamping, storageless distribution of
secret identification numbers, identifying friend or foe systems, and cryptographi-
cally strong hashing. A detailed discussion of these applications is presented in

[151.
Levin and Goldreich pointed out in [17a] that poly-random collections can be

used to make the Goldwasser-Micali-Rivest [171 signature scheme “memoryless.”
The use of poly-random collections is crucial in the fair contract signing protocol
of Ben-Or et al. [6].

Recently, Luby and Rackoff [29] used poly-random collections to construct
collections of poly-random permutations. This result leads to the construction of
“ideal private key cryptosystems.”

Levin [27] proposed a modification of our poly-random construction, that can
be carried out in poly(log k) steps. This implies that, if there exists a CSB generator

How to Construct Random Functions 805

that works in NC, then there exists a poly-random collection of functions that can
be evaluated in NC.

Appendix

Al. SUFFICIENT CONDITIONS FOR CONSTRUCTING CSB GENERATORS. Let
Dk c Ik and Bk: Dk + (0, 1). Let gk be a permutation over Dk. Let D = uk Dk,
B = (Bk} and g = (gk). Blum and Micali [8] showed that CSB generators can be
constructed under the following conditions:

(1) The domain is accessible: There exists a probabilistic polynomial-time algo-
rithm that on input k, chooses x E Dk with uniform probability distribution.

(2) The permutation is easy to evaluate: There exists a polynomial-time algorithm
that on input k and x E Dk, compute g,&).

(3) The predicate is inapproximable: Let A be any probabilistic polynomial-time
algorithm and Q be any polynomial. Then for all sufftciently large k:

A(x) # Bk(x)
1 1

for at least a fraction - - -
2 Q(k)

of the x E Dk.

(4) There exists a polynomial-time algorithm that on input k and x E Dk, computes

84 g&N.

Note that the above conditions imply that g is a one-way permutation as defined
in Section 2.3. Yao [41] showed that the existence of a one-way permutation is a
sufficient condition for constructing CSB generators.

A2. A SKETCHOFYAO'SCONSTRUCTION. Yao’s construction [4 I] can be viewed
as a method to construct B and g as above, when given any one-way permutation
h = (hkj over the accessible domain E = uk Ek. By the definition of a one-way
permutation [41], no polynomial algorithm can invert h without being mistaken
on a l/k’ fraction of the domain, for some constant c, when k is sufficiently large.

Set Dk to be the Cartesian product of kzc+’ copies of Ek.
set gk(xIx2 - - - x@e+l) = hk(x~)hk(&) * * * h&,$+I), where Xj E &.
Set Bi(x) to be the ith bit of hi’(x), where x E Ek and

k k2=

&(X,X2 . . * xka+l) = @ @ Bi(Xkzqi-l)+j)
i=l j=l

where 6I3 denotes the exclusive-OR function.

ACKNOWLEDGMENTS. Our greatest thanks go to Benny Chor for sharing with us
much of the labor involved in this research.

Leonid Levin relentlessly encouraged us to get this result and, once obtained,
helped us to better understand it in the course of so many inspiring discussions.
Thank you Lenia!

We are particularly grateful to Ron Rivest who assisted us all along with many
insights and precious criticism and to Albert Meyer for quickly rescuing us from a
fearful dead end. Many thanks to Michael Ben-Or, Steve Cook, Tom Leighton,
Mike Luby, Gary Miller, Charles Rackoff, and Mike Sipser for several helpful
discussions.

806 0. GOLDREICH ET AL.

REFERENCES

(Note: References [I I], [141, [161, and [32] are not cited in text.)
1. ADELMAN, L. Time, Space and Randomness. Tech. Memo 13 1, Laboratory for Computer Science

MIT, Cambridge, Mass., 1979.
2. ALEXI, W., CHOR, B., GOLDREICI-~, O., AND SCHNORR, C. P. RSA and Rabin functions: Certain

parts are as hard as the whole. SIAM J. Comput., to appear. (An earlier version appeared in

Proceedings of the 25th IEEE Symposium on Foundations of Computer Science. IEEE, New York,

1984, pp. 449-457.)

3. ANGLUIN, D., AND LICHTENSTEIN, D. Provable security of cryptosystems: A survey. Tech. Rep.

288, Dept. of Computer Science, Yale Univ. New Haven, Conn., 1983.

4. BENNETT, C. H., AND GILL, J. Relative to a random oracle, A, PA # NPA # co-NPA with

probability 1. SIAM J. Comput. 10 (1981), 96-l 13.

5. BEN-OR, M., CHOR, B., AND SHAMIR, A. On the cryptographic security of single RSA bits. In

Proceedings of the 15th ACM Symposium on Theory of Computing (Boston, Mass., Apr. 25-27).

ACM, Newwork, 1983, pp. 421-430.

6. BEN-OR, M., GOLDREICH, O., MICALI, S., AND RIVEST, R. L. A fair protocol for signing contracts.

In Automata, Languages and Programming, 12th Colloquium, W. Brauer, Ed. Lecture Notes in

Computer Science, vol. 194. Springer-Verlag, New York, 1985, pp. 43-52.

7. BLUM, L., BLUM, M., AND SHUB, M. A simplk unpredictable pseudo-random number generator.

SIAM J. Comput. 15 (May 1986), 364-383.

8. BLUM, M., AND MICALI, S. How to generate cryptographically strong sequences of pseudo-random

bits. SIAM J. Comput. 13 (Nov. 1984), 850-864.

9. BRASSARD, G. On computationally secure authentication tags requiring short secret shared keys.

In Advances in Cryptology: Proceedings of Crypto-82, D. Chaum, R. L. Rivest and A. T. Sherman,

Eds. Plenum Press, New York, 1983, pp. 79-86.

10. CHAITIN, G. J. On the length of programs for computing finite binary sequences. J. ACM 13, 4
(Oct. 1966), 547-570.

11. DIFFIE, W., AND HELLMAN, M. E. New directions in cryptography. IEEE Trans. If: Theory
IT-22 (Nov. 1976), 644-654.

12. FREIZE, A. M., KANNAN, R., AND LAGARIAS, J. C. Linear congruential generators do not produce

random sequences. In Proceedings of the 25th Symposium on Foundations of Computer Science.
IEEE, New York, 1984, pp. 480-4841

13. GACX, P. On the symmetry of algorithmic information. Sov. Math. Dokl. I5 (1974), 1477.

14. GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. How to construct random functions. Tech.

Memo 244, Laboratory for Computer Science, MIT, Cambridge, Mass., Nov. 1983.

15. GOLDREICH, O., GOLDWASSER, S., AND MICALI, S. On the cryptographic applications of random

functions. In Advances in Cryptology: Proceedings of Crypto-84. B. Blakely, Ed. Lecture Notes in

Computer Science, vol. 196. Springer-Verlag, New York, 1985, pp. 276-288.
16. GOLDWASSER, S. Probabilistic encryption: Theory and applications. Ph.D. dissertation, Dept. of

Computer Science, Univ. of California, Berkeley, Calif., 1984.

17. GOLDWASSER, S., MICALI, S., AND RIVEST, R. L. A “paradoxical” signature scheme. In Proceedings
of the 25th IEEE Symposium on Foundations of Computer Science. IEEE, New York, 1984,

pp. 441-448.

17a. GOLDWASSER, A., MICALI, S., AND RIVEST, R. L. A digital signature scheme secure against

adaptive chosen method attack. SIAMJ. Comput. to appear.
18. GOLDWASSER, S., MICALI, S., AND TONG, P. Why and how to establish a private code on a public

network. In Proceedings of the 23rd IEEE Symposium on Foundations of Computer Science. IEEE,

New York, 1982, pp. 134-144.

19. HARTMANIS, J. Generalized Kolmogorov complexity and the structure of feasible computations.

In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science. IEEE, New

York, 1983, pp. 439-445.

20. HASTAD, J., AND SHAMIR, A. The cryptographic security of truncated linearly related variables. In

Proceedings of the 17th ACM Symposium on Theory of Computing (Providence, R.I., May 6-8).

ACM, New York, 1985, pp. 356-362.
21. KNUTH, D. The Art of Computer Programming: Seminumerical Algorithms, vol. 2. 2nd ed.

Addison-Wesley, Reading, Mass. 198 1.

22. KOLMOCOROV, A. Three approaches to the concept of “The amount of information,” Prob. If:
Transm. I, l(1965).

23. LAGARIAS, J., AND REEDS, J. Extrapolation of nonlinear recurrences. Submitted for publication.

24. LEVIN, L. A. On the notion of a random sequence. Sov. Math. Dokl. 14, 5 (1973), 1413.

How to Construct Random Functions 807

25. LEVIN, L. A. Various measures of complexity for finite objects (axiomatic descriptions). Sov.
Math. Dokl. 17, 2 (1976), 522-526.

26. LEVIN, L. A. Randomness conservation inequalities, information and independence in mathe-
matical theories. InJ Control 61 (1984), 1 S-37.

27. LEVIN, L. A. One-way function and pseudorandom generators. In Proceedings of the 17th ACM
Symposium on Theory of Computing (Providence, R.I., May 6-8). ACM, New York, 1985,
pp. 363-365.

28. LONG, D. L., AND WIGDERSON, A. How discreet is discrete log? In preparation. A preliminary
version appeared in Proceedings ofthe 15th ACM Symposium on Theory of Computing (Boston,
Mass., Apr. 25-27). ACM, New York, 1983, pp. 413-420.

29. LUBY, M., AND RACKOFF, C. Pseudo random permutation generators and cryptographic compo-
sition. In Proceedings of the 18th ACM Symposium on Theory of Computing (Berkeley, Calif., May
28-30). ACM, New York, 1986, pp. 356-363.

30. MARTIN-L• F, P. The definition of random sequences. Inky Control 9 (1966), 602-619.
3 1. PLUMSTEAD, J. Inferring a sequence generated by a linear congruence. In Proceedings of the 23rd

IEEE Symposium on Foundations of Computer Science. IEEE, New York, 1982, pp. 153- 159.
32. RABIN, M. 0. Digitalized signatures and public key functions as intractable as factoring. Tech.

Rep. 212, Laboratory for Computer Science, Cambridge, Mass., 1979.
33. RIVEST, R., SHAMIR, A., AND ADLEMAN, L. A method for obtaining digital signatures and public

key cryptosystems. Commun. ACM, 21, 2 (Feb. 1978), 120- 126.
34. SCHNORR, C. P. Zufaelligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics, vol. 218.

Springer-Verlag, New York, 197 1.
35. SHAMIR, A. On the generation of cryptographically strong pseudorandom sequences. ACM Trans.

Comput. Syst. I, 1 (Feb. 1983), 38-44.
36. SIPSER, M. A complexity theoretic approach to randomness. In Proceedings of the 15th ACM

Symposium on Theory of Computing (Boston, Mass., Apr. 25-27). ACM, New York, 1983,
330-335.

37. SOLOMONOFF, R. J. A formal theory of inductive inference. Inj Control, 7, 1 (1964), l-22.
38. WILBER, R. E. Randomness and the density of hard problems. In Proceedings of 24th IEEE

Symposium on Foundations of Computer Science. IEEE, New York, 1983, pp. 335-342.
39. VAZIRANI, U. V., AND VAZIRANI, V. V. RSA bits are .732 + e secure. In Advances in Cryptology:

Proceedings of Crypto-83, D. Chaum, Ed. Plenum Press, New York, 1984, pp. 369-375.
40. VAZIRANI, U. V., AND VAZIRANI, V. V. Efficient and secure pseudo-random number generation.

In Proceedings of the 25th IEEE Symposium on Foundations of Computer Science. IEEE, New
York, 1984, pp. 458-463.

41. YAO, A. C. Theory and applications of trapdoor functions. In Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science. IEEE, New York, 1982, pp SO-9 1.

42. ZVONKIN, A. K., AND LEVIN, L. A. The complexity of finite objects and the algorithmic concepts
of randomness and information. UMN (Russian Math. Surveys), 25, 6 (1970), 83-124.

RECEIVED OCTOBER 1984; REVISED NOVEMBER 1985; ACCEPTED NOVEMBER 1985

Journal of the Association for Computing Machinq, Vol. 33, No. 4, October 1986.

