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Abstract A recent series of papers has examined the extension of disjunctive-
programming techniques to mixed-integer second-order-cone programming. For
example, it has been shown—by several authors using different techniques—that
the convex hull of the intersection of an ellipsoid, E , and a split disjunction,
(l − x j )(x j − u) ≤ 0 with l < u, equals the intersection of E with an additional
second-order-cone representable (SOCr) set. In this paper, we study more general
intersections of the form K ∩ Q and K ∩ Q ∩ H , where K is a SOCr cone, Q is a
nonconvex cone defined by a single homogeneous quadratic, and H is an affine hyper-
plane. Under several easy-to-verify conditions, we derive simple, computable convex
relaxationsK∩S andK∩S ∩ H , where S is a SOCr cone. Under further conditions,
we prove that these two sets capture precisely the corresponding conic/convex hulls.
Our approach unifies and extends previous results, and we illustrate its applicability
and generality with many examples.
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1 Introduction

In this paper, we study nonconvex intersections of the form K ∩ Q and K ∩ Q ∩ H ,
where the cone K is second-order-cone representable (SOCr),Q is a nonconvex cone
defined by a single homogeneous quadratic, and H is an affine hyperplane. Our goal is
to develop tight convex relaxations of these sets and to characterize the conic/convex
hulls whenever possible. We are motivated by recent research on mixed integer conic
programs (MICPs), though our results here enjoy wider applicability to nonconvex
quadratic programs.

Prior to the study of MICPs in recent years, cutting plane theory has been fun-
damental in the development of efficient and powerful solvers for mixed integer
linear programs (MILPs). In this theory, one considers a convex relaxation of the
problem, e.g., its continuous relaxation, and then enforces integrality restrictions to
eliminate regions containing no integer feasible points in their relative interiors—so-
called lattice-free sets. The complement of a valid two-term linear disjunction, say
x j ≤ l ∨ x j ≥ u, is a simple form of a lattice-free set. The additional inequalities
required to describe the convex hull of such a disjunction are known as disjunctive
cuts. Such a disjunctive point of view was introduced by Balas [6] in the context of
MILPs, and it has since been studied extensively in mixed integer linear and nonlinear
optimization [7,8,17,18,20,22,33,48,49], complementarity [29,31,43,51] and other
nonconvex optimization problems [11,17]. In the case of MILPs, several well-known
classes of cuts such as Chvátal-Gomory, lift-and-project, mixed-integer rounding
(MIR), split, and intersection cuts are known to be special types of disjunctive cuts.
Stubbs andMehrotra [50] andCeria andSoares [20] extended cutting plane theory from
MILP tomixed integer convex problems. Theseworkswere followed by several papers
[15,24,25,33,53] that investigated linear-outer-approximation based approaches, as
well as others that extended specific classes of inequalities such as Chvátal-Gomory
cuts [19] for MICPs and MIR cuts [5] for second-order cone (SOC) based MICPs.

Recently there has been growing interest in developing closed-form expressions for
convex inequalities that fully describe the convex hull of a disjunctive set involving
an SOC. In this vein, Günlük and Linderoth [27] studied a simple set involving an
SOC in R

3 and a single binary variable and showed that the resulting convex hull is
characterized by adding a single SOCr constraint. For general SOCs in R

n , this line
of work was furthered by Dadush et al. [23] who derived cuts for ellipsoids based on
parallel two-term disjunctions, that is, split disjunctions. Modaresi et al. [40] extended
this by studying intersection cuts for SOC and all of its cross-sections (i.e., all conic
sections), based on split disjunctions aswell as a number of other lattice-free sets based
on ellipsoids and paraboloids. A theoretical and computational comparison of inter-
section cuts from [40] with extended formulations and conic MIR inequalities from
[5] is given in [39]. Taking a different approach, Andersen and Jensen [2] derived an
SOC constraint describing the convex hull of a split disjunction applied to an SOC.
Belotti et al. [12] studied families of quadratic surfaces having fixed intersections
with two given hyperplanes, and in [13], they identified a procedure for construct-
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How to convexify the intersection of a second order cone... 395

ing two-term disjunctive cuts when the sets defined by the disjunctions are bounded
and disjoint. Kılınç-Karzan [34] introduced and examined conic-minimal valid linear
inequalities for general conic sets with a disjunctive structure and, under a mild tech-
nical assumption, established that they are sufficient to describe the resulting closed
convex hulls. For general two-term disjunctions on regular (closed, convex, pointed
with nonempty interior) cones, Kılınç-Karzan and Yıldız [36] studied the structure of
tight conic-minimal valid linear inequalities. In the particular case of SOCs, based on
conic duality, a class of convex valid inequalities that is sufficient to describe the con-
vex hull were derived in [36] along with conditions for SOCr representability of these
inequalities as well as the sufficiency of a single inequality from this class. This work
was recently extended in Yıldız and Cornuéjols [55] to all cross-sections of SOC that
can be covered by the same assumptions of [36]. Bienstock and Michalka [14] stud-
ied the characterization and separation of valid linear inequalities that convexify the
epigraph of a convex, differentiable functionwhose domain is restricted to the comple-
ment of a convex set defined by linear or convex quadratic inequalities. Although all
of these authors take different approaches, their results are comparable, for example,
in the case of analyzing split disjunctions of the SOC or its cross-sections. We remark
also that thesemethods convexify in the space of the original variables, i.e., they do not
involve lifting. In the context of nonconvex quadratic programming, there are other
convexification approaches which convexify in the lifted space of products xi x j of
variables, we refer the reader to [4,9,16,17,52] for examples of such approaches.

In this paper, our main contributions can be summarized as follows (see Sect. 3 and
Theorem1 in particular). First, we derive a simple, computable convex relaxationK∩S
ofK∩Q, whereS is an additional SOCr cone. This also provides the convex relaxation
K ∩ S ∩ H ⊇ K ∩ Q ∩ H . The derivation relies on several easy-to-verify conditions
(see Sect. 3.2). Second, we identify stronger conditions guaranteeing moreover that
K ∩ S = cl. conic. hull(K ∩Q) and K ∩ S ∩ H = cl. conv. hull(K ∩Q ∩ H), where
cl indicates the closure, conic.hull indicates the conic hull, and conv.hull indicates
the convex hull. Our approach unifies and significantly extends previous results. In
particular, in contrast to the existing literature on cuts based on two-term disjunctions
or lattice-free sets that admit a representation of cross-section of an SOCr cone, here
we allow a generalQwithoutmaking an assumption thatRn\Q is convex.We illustrate
the applicability and generality of our approach with many examples and explicitly
contrast our work with the existing literature.

Our approach can be seen as a variation of the following basic, yet general, idea of
conic aggregation to generate valid inequalities. Suppose that the function f0 = f0(x)

is convex, while f1 = f1(x) is nonconvex, and suppose we are interested in the closed
convex hull of the set Q := {x : f0 ≤ 0, f1 ≤ 0}. For any 0 ≤ t ≤ 1, the inequality
ft := (1 − t) f0 + t f1 ≤ 0 is valid for Q, but ft is generally nonconvex. Hence, it
is natural to seek values of t such that the function ft is convex for all x . One might
even conjecture that some particular convex function of the form fs with 0 ≤ s ≤ 1
guarantees cl. conv. hull(Q) = {x : f0 ≤ 0, fs ≤ 0}. However, it is known that this
approach cannot generally achieve the convex hull even when f0, f1 are quadratic
functions; see [40]. Such aggregation techniques to obtain convex under-estimators
have also been explored in the global-optimization literature, albeit without explicit
results on the resulting convex hull descriptions (see [1] for example).
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396 S. Burer, F. Kılınç-Karzan

In this paper, we follow a similar approach in spirit, but instead of determining
0 ≤ t ≤ 1 guaranteeing the convexity of ft for all x , we only require “almost”
convexity, that is, the function ft is required to be convex on {x : f0 ≤ 0}. This
weakened requirement turns out to be crucial. In particular, it allows us to obtain convex
hulls for many cases where {x : f0 ≤ 0} is SOCr and f1 is a nonconvex quadratic,
and we recover all of the known results regarding two-term disjunctions cited above
(see Sect. 5). We note that using quite different techniques and under completely
different assumptions, a similar idea of aggregation for quadratic functions has been
explored in [13,40] as well. Specifically, our weakened requirement is in contrast
to the developments in [40], which explicitly requires the function ft to be convex
everywhere. Also, our general Q allows us to study general nonconvex quadratics f1
as opposed to the specific ones arising from two-term disjunctions studied in [13]. As
a practical and technical matter, instead of working directly with convex functions in
this paper, we work in the equivalent realm of convex sets, in particular SOCr cones.
Section 2 discusses in detail the features of SOCr cones required for our analysis.

Compared to the previous literature on MICPs, our work here is broader in that we
study a general nonconvex cone Q defined by a single homogeneous quadratic func-
tion. As a result, we assume neither the underlying matrix defining the homogeneous
quadratic Q to be of rank at most 2 nor Rn\Q to be convex. This is in contrast to
a key underlying assumption used in the literature. Specifically, the majority of the
earlier literature on MICPs focus on specific lattice-free sets, e.g., all of the works
[2,5,13,23,36,55] focus on either split or two-term disjunctions on SOCs or its cross-
sections. In the case of two-term disjunctions, the matrix defining the homogeneous
quadratic for Q is of rank at most 2, and moreover, the complement of any two-term
disjunction is a convex set. Even though nonconvex quadraticsQwith rank higher than
2 are considered in [40], unlike general Q, this is done under the assumption that the
complement of the nonconvex quadratic defines a convex set. Our general Q allows
for a unified framework and works under weaker assumptions. In Sects. 3.3 and 5
and the Online Supplement, we illustrate and highlight these features of our approach
and contrast it with the existing literature through a series of examples. Bienstock and
Michalka [14] also consider more generalQ under the assumption that Rn\Q is con-
vex, but their approach is quite different from ours. Whereas [14] relies on polynomial
time procedures for separating and tilting valid linear inequalities, we directly give the
convex hull description. Our study of the general, nonconvex quadratic coneQ allows
its complement Rn\Q to be nonconvex as well.

We remark that our convexification tools for general nonconvex quadratics have
potential applications beyond MICPs, for example in the nonconvex quadratic pro-
gramming domain. We also can, for example, characterize: the convex hull of the
deletion of an arbitrary ball from another ball; and the convex hull of the deletion
of an arbitrary ellipsoid from another ellipsoid sharing the same center. In addition,
we can use our results to solve the classical trust region subproblem [21] using SOC
optimization, complementing previous approaches relying on nonlinear [26,42] or
semidefinite programming [47]. Section 6 discusses these examples.

Another useful feature of our approach is that we clearly distinguish the condi-
tions guaranteeing validity of our relaxation from those ensuring sufficiency. In [2,13,
23,40], validity and sufficiency are intertwined making it difficult to construct convex
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How to convexify the intersection of a second order cone... 397

relaxations when their conditions are only partly satisfied. Furthermore, our derivation
of the convex relaxation is efficiently computable and relies on conditions that are eas-
ily verifiable. Finally, our conditions regarding the cross-sections (that is, intersection
with the affine hyperplane H ) are applicable for general cones other than SOCs.

We would like to stress that the inequality describing the SOCr set S is effi-
ciently computable. In other words, given the sets K ∩ Q and K ∩ Q ∩ H, one
can verify in polynomial time the required conditions and then calculate in poly-
nomial time the inequality for S to form the relaxations K ∩ S and K ∩ S ∩ H . The
core operations include calculating eigenvalues/eigenvectors for several symmetric
and non-symmetric matrices and solving a two-constraint semidefinite program. The
computation can also be streamlined in cases when any special structure of K and Q
is known ahead of time; in fact in certain special cases forQ such as two-term or split
disjunctions, explicit formulas that compute S can be given with just simple algebra.

The paper is structured as follows. Section 2 discusses the details of SOCr cones,
and Sect. 3 states our conditions and main theorem. In Sect. 3.2, we provide a detailed
discussion and pseudocode for verifying our conditions and computing the resulting
SOC based relaxation S. Section 3.3 then provides a low-dimensional example with
figures and comparisons with existing literature. We provide more examples with
corresponding figures and comparisons in the Online Supplement accompanying this
article. In Sect. 4, we prove themain theorem, and then in Sects. 5 and 6,we discuss and
prove many interesting general examples covered by our theory. Section 7 concludes
the paper with a few final remarks. Our notation is mostly standard. We will define
any particular notation upon its first use.

2 Second-order-cone representable sets

Our analysis in this paper is based on the concept of SOCr (second-order-cone repre-
sentable) cones. In this section, we define and introduce the basic properties of such
sets.

A cone F+ ⊆ R
n is said to be second-order-cone representable (or SOCr) if there

exists a matrix 0 �= B ∈ R
n×(n−1) and a vector b ∈ R

n such that the nonzero columns
of B are linearly independent, b /∈ Range(B), and

F+ =
{

x : ‖BT x‖ ≤ bT x
}

, (1)

where ‖ · ‖ denotes the usual Euclidean norm. The negative of F+ is also SOCr:

F− := −F+ =
{

x : ‖BT x‖ ≤ −bT x
}

. (2)

Defining A := B BT − bbT , the union F+ ∪ F− corresponds to the homogeneous
quadratic inequality xT Ax ≤ 0:

F := F+ ∪ F− =
{

x : ‖BT x‖2 ≤
(

bT x
)2} =

{
x : xT Ax ≤ 0

}
. (3)
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398 S. Burer, F. Kılınç-Karzan

We also define

int(F+) :=
{

x : ‖BT x‖ < bT x
}

bd(F+) :=
{

x : ‖BT x‖ = bT x
}

apex(F+) :=
{

x : BT x = 0, bT x = 0
}

.

We next study properties of F ,F+, and F− such as their representations and
uniqueness thereof. On a related note, Mahajan and Munson [38] have also stud-
ied sets associated with nonconvex quadratics with a single negative eigenvalue but
from a more computational point of view. The following proposition establishes some
important features of SOCr cones:

Proposition 1 Let F+ be SOCr as in (1), and define A := B BT − bbT . Then
apex(F+) = null(A), A has at least one positive eigenvalue, and A has exactly
one negative eigenvalue. As a consequence, int(F+) �= ∅.

Proof For any x , we have the equation

Ax =
(

B BT − bbT
)

x = B
(

BT x
)

− b
(

bT x
)

. (4)

So x ∈ apex(F+) implies x ∈ null(A). The converse also holds by (4) because,
by definition, the nonzero columns of B are independent and b /∈ Range(B). Hence,
apex(F+) = null(A).

The equation A = B BT − bbT , with 0 �= B BT  0 and bbT  0 rank-1 and
b /∈ Range(B), implies that A has at least one positive eigenvalue and at most one
negative eigenvalue. Because b /∈ Range(B), we can write b = x + y such that
x ∈ Range(B), 0 �= y ∈ null(BT ), and xT y = 0. Then

yT Ay = yT
(

B BT − bbT
)

y = 0 −
(

bT y
)2 = −‖y‖2 < 0,

showing that A has exactly one negative eigenvalue, and so int(F+) contains either y
or −y. ��

We define analogous sets int(F−), bd(F−), and apex(F−) for F−. In addition:

int(F) :=
{

x : xT Ax < 0
}

= int
(
F+) ∪ int

(
F−)

bd(F) :=
{

x : xT Ax = 0
}

= bd
(
F+) ∪ bd

(
F−)

.

Similarly, we have apex(F−) = null(A) = apex(F+), and if A has exactly one
negative eigenvalue, then int(F−) �= ∅ and int(F) �= ∅.

When considered as a pair of sets {F+,F−}, it is possible that another choice
(B̄, b̄) in place of (B, b) leads to the same pair and hence to the sameF . For example,
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(B̄, b̄) = (−B,−b) simply switches the roles of F+ and F−, but F does not change.
However, we prove next that F is essentially invariant up to positive scaling. As a
corollary, any alternative (B̄, b̄) yields A = ρ(B̄ B̄T − b̄b̄T ) for some ρ > 0, i.e., A
is essentially invariant with respect to its (B, b) representation.

Proposition 2 Let A, Ā be two n×n symmetric matrices such that {x ∈ R
n : xT Ax ≤

0} = {x ∈ R
n : xT Āx ≤ 0}. Suppose that A satisfies λmin(A) < 0 < λmax(A). Then

there exists ρ > 0 such that Ā = ρ A.

Proof Since λmin(A) < 0, there exists x̄ ∈ R
n such that x̄ T Ax̄ < 0. Because xT Ax ≤

0 ⇔ xT Āx ≤ 0, there exists no x such that xT Ax ≤ 0 and xT (− Ā)x < 0. Then,
by the S-lemma (see Theorem 2.2 in [45], for example), there exists λ1 ≥ 0 such
that − Ā + λ1A  0. Switching the roles of A and Ā, a similar argument implies the
existence of λ2 ≥ 0 such that −A + λ2 Ā  0. Note λ2 > 0; otherwise, A would be
negative semidefinite, contradicting λmax(A) > 0. Likewise, λ1 > 0. Hence,

A  1

λ1
Ā  1

λ1λ2
A ⇐⇒ (1 − λ1λ2)A  0.

Since λmin(A) < 0 < λmax(A), we conclude λ1λ2 = 1, which in turn implies
A = 1

λ1
Ā, as claimed. ��

Corollary 1 Let {F+,F−} be SOCr sets as in (1) and (2), and define A := B BT −
bbT . Let (B̄, b̄)be another choice in place of (B, b) leading to the same pair {F+,F−}.
Then A = ρ(B̄ B̄T − b̄b̄T ) for some ρ > 0.

We can reverse the discussion thus far to start from a symmetric matrix A with at
least one positive eigenvalue and a single negative eigenvalue and define associated
SOCr cones F+ and F−. Indeed, given such an A, let Q Diag(λ)QT be a spectral
decomposition of A such that λ1 < 0. Let q j be the j-th column of Q, and define

B :=
(
λ
1/2
2 q2 · · · λ

1/2
n qn

)
∈ R

n×(n−1), b := (−λ1)
1/2q1 ∈ R

n . (5)

Then the nonzero columns of B are linearly independent andb /∈ Range(B).Moreover,
A = B BT − bbT ; and F = F+ ∪ F− can be defined as in (1)–(3). An important
observation is that, as a collection of sets, {F+,F−} is independent of the choice of
spectral decomposition.

Proposition 3 Let A be a given symmetric matrix with at least one positive eigenvalue
and a single negative eigenvalue, and let A = Q Diag(λ)QT be a spectral decomposi-
tion such that λ1 < 0. Define the SOCr sets {F+,F−} according to (1) and (2), where
(B, b) is given by (5). Similarly, let {F̄+, F̄−} be defined by an alternative spectral
decomposition A = Q̄ Diag(λ̄)Q̄T . Then {F̄+, F̄−} = {F+,F−}.
Proof Let (B̄, b̄) be given by the alternative spectral decomposition. Because A has a
single negative eigenvalue, b̄ = b or b̄ = −b. In addition, we claim ‖B̄T x‖ = ‖BT x‖
for all x . This holds because B̄ B̄T = B BT is the positive semidefinite part of A. This
proves the result. ��
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400 S. Burer, F. Kılınç-Karzan

To resolve the ambiguity inherent in Proposition 3, one could choose a specific
x̄ ∈ int(F), which exists by Proposition 1, and enforce the convention that, for any
spectral decomposition, F+ is chosen to contain x̄ . This simply amounts to flipping
the sign of b so that bT x̄ > 0.

3 The result and its computability

In Sect. 3.1, we state our main theorem (Theorem 1) and the conditions upon which
it is based. The proof of Theorem 1 is delayed until Sect. 4. In Sect. 3.2, we discuss
computational details related to our conditions and Theorem 1.

3.1 The result

To begin, let A0 be a symmetric matrix satisfying the following:

Condition 1 A0 has at least one positive eigenvalue and exactly one negative eigen-
value.

As described in Sect. 2, we may define SOCr cones F0 = F+
0 ∪F−

0 based on A0. We
also introduce a symmetric matrix A1 and define the cone F1 := {x : xT A1x ≤ 0}
in analogy with F0. However, we do not assume that A1 has exactly one negative
eigenvalue, so F1 does not necessarily decompose into two SOCr cones.

We investigate the setF+
0 ∩F1, which has been expressed asK∩Q in the Introduc-

tion. Specifically, we would like to develop strong convex relaxations ofF+
0 ∩F1 and,

whenever possible, characterize its closed conic hull.We focus on the full-dimensional
case, and so we assume:

Condition 2 There exists x̄ ∈ int(F+
0 ∩ F1).

Note that int(F+
0 ∩ F1) = int(F+

0 ) ∩ int(F1), and so Condition 2 is equivalent to

x̄ T A0 x̄ < 0 and x̄ T A1 x̄ < 0. (6)

In particular, this implies A1 has at least one negative eigenvalue.
We always have cl.conic.hull(F+

0 ∩F1) ⊆ F+
0 and cl.conv.hull(F+

0 ∩F1 ∩ H) ⊆
F+
0 ∩ H without any assumptions. Moreover, the first part of Theorem 1 below estab-

lishes that cl. conic. hull(F+
0 ∩F1) is contained within the convex intersection of F+

0
with a second set of the same type, i.e., one that is SOCr. For this part of Theorem 1,
in addition to Conditions 1 and 2, we require the following condition, which handles
the singularity of A0 carefully via several cases:

Condition 3 Either (i) A0 is nonsingular, (ii) A0 is singular and A1 is positive definite
on null(A0), or (iii) A0 is singular and A1 is negative definite on null(A0).

Conditions 1–3 will ensure (see Proposition 4 in Sect. 4.1) the existence of a max-
imal s ∈ [0, 1] such that

At := (1 − t)A0 + t A1
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has a single negative eigenvalue for all t ∈ [0, s], At is invertible for all t ∈ (0, s),
and As is singular—that is, null(As) is non-trivial. (Actually, As may be nonsingular
when s equals 1, but this is a small detail.) Indeed, we define s formally as follows.
Let T := {t ∈ R : At is singular}. Then

s :=
{
min(T ∩ (0, 1]) under Condition 3(i) or 3(ii)
0 under Condition 3(iii).

(7)

Sections 3.2 and 4 will clarify the role of Condition 3 in this definition.
With s given by (7), we can then define, for all At with t ∈ [0, s], SOCr sets

Ft = F+
t ∪F−

t as described in Sect. 2. Furthermore, for x̄ of Condition 2, noting that
x̄ T At x̄ = (1−t) x̄ A0 x̄+t x̄ T A1 x̄ < 0 by (6), we can choosewithout loss of generality
that x̄ ∈ F+

t for all such t . Then Theorem 1 asserts that cl. conic. hull(F+
0 ∩ F1) is

contained inF+
0 ∩F+

s . We remark that whileF+
0 ∩F1 ⊆ F+

0 ∩Fs (no “+” superscript
onFs) follows trivially from the definition ofFs , strengthening the inclusion toF+

0 ∩
F1 ⊆ F+

0 ∩ F+
s (with the “+” superscript) is nontrivial.

The second part of Theorem 1 provides an additional condition under which F+
0 ∩

F+
s actually equals the closed conic hull. The required condition is:

Condition 4 When s < 1, apex(F+
s ) ∩ int(F1) �= ∅.

While Condition 4 may appear quite strong, we will actually show (see Lemma 3 in
Sect. 4) that Conditions 1–3 and the definition of s already ensure apex(F+

s ) ⊆ F1.
So Condition 4 is a type of regularity condition guaranteeing that the set apex(F+

s ) =
null(As) is not restricted to the boundary of F1.

We also include in Theorem 1 a specialization for the case when F+
0 ∩ F1 is

intersected with an affine hyperplane H1, which has been expressed as K∩Q∩ H in
the Introduction. For this, let h ∈ R

n be given, and define the hyperplanes

H1 :=
{

x : hT x = 1
}

, (8)

H0 :=
{

x : hT x = 0
}

. (9)

We introduce an additional condition related to H0:

Condition 5 When s < 1, apex(F+
s ) ∩ int(F1) ∩ H0 �= ∅ or F+

0 ∩F+
s ∩ H0 ⊆ F1.

We now state the main theorem of the paper. See Sect. 4 for its proof.

Theorem 1 Suppose Conditions 1–3 are satisfied, and let s be defined by (7). Then
cl. conic. hull(F+

0 ∩F1) ⊆ F+
0 ∩F+

s , and equality holds under Condition 4. Moreover,
Conditions 1–5 imply F+

0 ∩ F+
s ∩ H1 = cl. conv. hull(F+

0 ∩ F1 ∩ H1).

3.2 Computational details

In practice, Theorem 1 can be used to generate a valid convex relaxation F+
0 ∩ F+

s
of the nonconvex cone F+

0 ∩ F1. For the purposes of computation, we assume that
F+
0 ∩ F1 is described as
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402 S. Burer, F. Kılınç-Karzan

F+
0 ∩ F1 =

{
x ∈ R

n : ‖BT
0 x‖ ≤ bT

0 x, xT A1x ≤ 0
}

,

where B0 is nonzero, 0 �= b0 /∈ Range(B0), and A0 = B0BT
0 − b0bT

0 in accordance
with (5). In particular,F+

0 is given in its direct SOC form. Our goal is to calculateF+
s

in terms of its SOC form ‖BT
s x‖ ≤ bT

s x , to which we will refer as the SOC cut.
Before one can apply Theorem 1 to generate the cut, Conditions 1–3 must be

verified. By construction, Condition 1 is satisfied, and verifying Condition 3(i) is easy.
Conditions 3(ii) and 3(iii) are also easy to verify by computing the eigenvalues of
Z T
0 A1Z0, where Z0 is a matrix whose columns span null(A0). Due to (6) and the

fact that F0 and F1 are cones, verifying Condition 2 is equivalent to checking the
feasibility of the following quadratic equations in the original variables x ∈ R

n and
the auxiliary “squared slack” variables s, t ∈ R:

xT A0x + s2 = −1, xT A1x + t2 = −1.

Let us define the underlying symmetric (n +2)× (n +2)matrices for these quadratics
as Â0 and Â1. Since there are only two quadratic equations with symmetric matrices,
by [10, Corollary 13.2], checking Condition 2 is equivalent to checking the feasibility
of the following linear semidefinite system, which can be done easily in practice:

Y  0, trace( Â0Y ) = −1, trace( Â1Y ) = −1. (10)

See also [44] for a similar result.
This equivalence of Condition 2 and the feasibility of system (10) relies on the

fact that every extreme point of (10) is a rank-1 matrix, and such extreme points can
be calculated in polynomial time [44]. Extreme points can also be generated reliably
(albeit heuristically) in practice to calculate an interior point x̄ ∈ int(F+

0 ∩ F1). One
can simply minimize over (10) the objective trace((I + R)Y ), where I is the identity
matrix and R is a randommatrix, small enough so that I + R remains positive definite.
The objective trace((I + R)Y ) is bounded over (10), and hence an optimal solution
occurs at an extreme point. The random nature of the objective also makes it highly
likely that the optimal solution is unique, in which case the optimal Y ∗ must be rank-1.
Then x̄ can easily be extracted from the rank-1 factorization of Y ∗. Note that in certain
specific cases x̄ might be known ahead of time or could be computed by some other
means.

Once Conditions 1–3 have been verified, we are then ready to calculate s according
to its definition (7). If Condition 3(iii) holds, we simply set s = 0. For Conditions 3(i)
and 3(ii), we need to calculate T , the set of scalars t such that At := (1− t)A0+ t A1 is
singular. Let us first consider Condition 3(i), which is the simpler case. The following
calculation with t �= 0 shows that the elements of T are in bijective correspondence
with the real eigenvalues of A−1

0 A1:

At is singular ⇐⇒ ∃ x �= 0 s. t. At x = 0

⇐⇒ ∃ x �= 0 s. t. A−1
0 A1x = − ( 1−t

t

)
x

⇐⇒ − ( 1−t
t

)
is an eigenvalue of A−1

0 A1.
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How to convexify the intersection of a second order cone... 403

So to calculate T , we calculate the real eigenvalues E of A−1
0 A1, and then calculate

T = {(1 − e)−1 : e ∈ E}, where by convention 0−1 = ∞. In particular, |T | is finite.
When Condition 3(ii) holds, we calculate T in a slightly different manner. We

will show in Sect. 4 (see Lemma 1 in particular) that, even though A0 is singular,
Aε is nonsingular for all ε > 0 sufficiently small. Such an Aε could be calculated
by systematically testing values of ε near 0, for example. Then we can apply the
procedure of the previous paragraph to calculate the set T of all t̄ such that (1 −
t̄)Aε + t̄ A1 is singular. Then one can check that T is calculated by the following affine
transformation: T = {(1 − ε)t̄ + ε : t̄ ∈ T }.

Once T is computed, we can easily calculate s = min(T ∩ (0, 1]) according to (7),
and then we construct As := (1− s)A0 + s A1 and calculate (Bs, bs) according to (5).
Then our cut is ‖BT

s x‖ ≤ bT
s x with only one final provision. We must check the sign

of bT
s x̄ , where x̄ ∈ int(F+

0 ∩F1) has been calculated previously. If bT
s x̄ ≥ 0, then the

cut is as stated; if bT
s x̄ < 0, then the cut is as stated but bs is first replaced by −bs .

We summarize the preceding discussion by the pseudocode in Algorithm 1. While
this algorithm is quite general, it is also important to point out that it can be streamlined
if one already knows the structure of ‖BT

0 x‖ ≤ bT
0 x and xT A1x ≤ 0. For example,

one may already know that A0 is invertible, in which case it would be unnecessary
to calculate the spectral decomposition of A0 in Algorithm 1. In addition, for many
of the specific cases that we consider in Sects. 5 and 6, we can explicitly point out
the corresponding value of s without even relying on the computation of the set T .
Because of space considerations, we do not include these closed-form expressions for
s and the corresponding computations.

Finally, we mention briefly the computability of Conditions 4 and 5, which are not
necessary for the validity of the cut but can establish its sufficiency. Given s < 1,
Condition 4 can be checked by computing Z T

s A1Zs , where Zs has columns spanning
null(As). We know Z T

s A1Zs � 0 because apex(F+
s ) ⊆ F1 (see Lemma 3 in Sect. 4),

and then Condition 4 holds as long as Z T
s A1Zs �= 0. On the other hand, it seems

challenging to verify Condition 5 in general. However, in Sects. 5 and 6, we will show
that it can be verified in many special cases of interest such as cuts from two-term
disjunctions. In particular, Sect. 5 of the article is devoted to the important case for
which the dimension n is arbitrary, F+

0 is the second-order cone, and F1 represents a
two-term linear disjunction cT

1 x ≥ d1∨cT
2 x ≥ d2. Section 6 of the article investigates

cases in which F1 is given by a (nearly) general quadratic inequality.

3.3 An ellipsoid and a nonconvex quadratic

In R
3, consider the intersection of the unit ball defined by y21 + y22 + y23 ≤ 1 and the

nonconvex set defined by the quadratic−y21 − y22 + 1
2 y23 ≤ y1+ 1

2 y2. By homogenizing
via x = ( y

x4

)
with x4 = 1, we can represent the intersection as F+

0 ∩ F1 ∩ H1 with

A0 :=

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ , A1 :=

⎛
⎜⎜⎝

−1 0 0 − 1
2

0 −1 0 − 1
4

0 0 1
2 0

− 1
2 − 1

4 0 0

⎞
⎟⎟⎠ , H1 := {x : x4 = 1}.
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Algorithm 1 Calculate Cut (see also Sect. 3.2)
Input: Inequalities ‖BT

0 x‖ ≤ bT
0 x and xT A1x ≤ 0.

Output: Valid cut ‖BT
s x‖ ≤ bT

s x .
1: Calculate A0 = B0BT

0 −b0bT
0 and a spectral decomposition Q0 Diag(λ0)QT

0 . Let Z0 be the submatrix
of Q0 of zero eigenvectors (possibly empty).

2: Minimize trace((I + R)Y over (10). If infeasible, then STOP. Otherwise, extract x̄ ∈ int(F+
0 ∩ F1)

from Y ∗.
3: if Z0 is empty then
4: Calculate the set E of real eigenvalues of A−1

0 A1.

5: Set T = {(1 − e)−1 : e ∈ E}.
6: Set s = min(T ∩ (0, 1]).
7: else if Z T

0 A1Z0 � 0 then
8: Determine ε > 0 small such that Aε = (1 − ε)A0 + ε A1 is invertible.
9: Calculate the set E of real eigenvalues of A−1

ε A1.
10: Set T = {(1 − ē)−1 : ē ∈ E}.
11: Set T = {(1 − ε)t̄ + ε : t̄ ∈ T }.
12: Set s = min(T ∩ (0, 1]).
13: else if Z T

0 A1Z0 ≺ 0 then
14: Set s = 0.
15: else
16: STOP.
17: end if
18: Calculate As = Bs BT

s − bsbT
s and a spectral decomposition Qs Diag(λs )QT

s . Let (Bs , bs ) be given
by (5).

19: If bT
s x̄ < 0, replace bs by −bs .

Conditions 1 and 3(i) are straightforward to verify, and Condition 2 is satisfied with
x̄ = ( 12 ; 0; 0; 1), for example. We can also calculate s = 1

2 from (7). Then

As = 1
8

⎛
⎜⎜⎝

0 0 0 −2
0 0 0 −1
0 0 6 0

−2 −1 0 −4

⎞
⎟⎟⎠ , Fs =

{
x : 3x23 ≤ 2x1x4 + x2x4 + 2x24

}
.

The negative eigenvalue of As is λs1 := − 5
8 with corresponding eigenvector qs1 :=

(2; 1; 0; 5), and so, in accordance with the Sect. 2, we have that F+
s equals all x ∈ Fs

satisfying bT
s x ≥ 0, where

bs := (−λs1)
1/2qs1 = √

5/8

⎛
⎜⎜⎝
2
1
0
5

⎞
⎟⎟⎠ .

In other words,

F+
s :=

{
x : 3x23 ≤ 2x1x4 + x2x4 + 2x24

2x1 + x2 + 5x4 ≥ 0

}
.
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Fig. 1 An ellipsoid and a nonconvex quadratic. a F+
0 ∩ F1 ∩ H1. b F+

s ∩ H1. c F+
0 ∩ F+

s ∩ H1

Note that x̄ ∈ F+
s . In addition, apex(F+

s ) = null(As) = span{d}, where d =
(1;−2; 0; 0). Clearly, d ∈ H0 and dT A1d < 0, which verifies Conditions 4 and 5
simultaneously. Setting x4 = 1 and returning to the original variables y, we see

{
y : y21 + y22 + y23 ≤ 1

3y23 ≤ 2y1 + y2 + 2

}
= cl. conv. hull

{
y : y21 + y22 + y23 ≤ 1

−y21 − y22 + 1
2 y23 ≤ y1 + 1

2 y2

}
,

where the now redundant constraint 2y1+ y2 ≥ −5 has been dropped. Figure 1 depicts
the original set, F+

s ∩ H1, and the closed convex hull.
Of the earlier, related approaches, this example can be handled by [40] only. In

particular, [2,13,23,35,36,55] cannot handle this example because they deal with
only split or two-termdisjunctions but cannot cover general nonconvex quadratics. The
approach of [14] is based on eliminating a convex region from a convex epigraphical
set, but this example removes a nonconvex region (specifically,Rn\F1). So [14] cannot
handle this example either.

In actuality, the results of [40] do not handle this example explicitly since the authors
only state results for: the removal of a paraboloid or an ellipsoid from a paraboloid;
or the removal of an ellipsoid (or an ellipsoidal cylinder) from another ellipsoid with
a common center. However, in this particular example, the function obtained from the
aggregation technique described in [40] is convex on all ofR3. Therefore, their global
convexity requirement on the aggregated function is satisfied for this example.

4 The proof

In this section, we build the proof of Theorem 1, and we provide important insights
along the way. The key results are Propositions 5–7, which state

F+
0 ∩ F1 ⊆ F+

0 ∩ F+
s ⊆ conic. hull

(
F+
0 ∩ F1

)

F+
0 ∩ F1 ∩ H1 ⊆ F+

0 ∩ F+
s ∩ H1 ⊆ conv. hull

(
F+
0 ∩ F1 ∩ H1

)
,
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where s is given by (7). In each line here, the first containment depends only on
Conditions 1–3, which proves the first part of Theorem 1. On the other hand, the
second containments require Condition 4 and Conditions 4–5, respectively. Then the
second part of Theorem 1 follows by simply taking the closed conic hull and the closed
convex hull, respectively, and noting that F+

0 ∩ F+
s and F+

0 ∩ F+
s ∩ H1 are already

closed and convex.

4.1 The interval [0, s]

Our next result, Lemma 1, is quite technical but critically important. For example, it
establishes that the line of matrices {At } contains at least one invertible matrix not
equal to A1. As discussed in Sect. 3, this proves that the set T used in the definition
(7) of s is finite and easily computable. The lemma also provides additional insight
into the definition of s. Specifically, the lemma clarifies the role of Condition 3 in (7).

Lemma 1 For ε > 0 small, consider Aε and A−ε . Relative to Condition 3:

– if (i) holds, then Aε and A−ε are each invertible with one negative eigenvalue;
– if (ii) holds, then only Aε is invertible with one negative eigenvalue;
– if (iii) holds, then only A−ε is invertible with one negative eigenvalue.

Since the proof of Lemma 1 is intricate, we delay it until the end of this subsection.
If Condition 3(i) or 3(ii) holds, then Lemma 1 shows that the interval (0, ε) contains

invertible At , eachwith exactly one negative eigenvalue, and (7) takes s to be the largest
ε with this property. By continuity, As is singular (when s < 1) but still retains exactly
one negative eigenvalue, a necessary condition for defining F+

s in Theorem 1. On the
other hand, if Condition 3(iii) holds, then A0 is singular and no ε > 0 has the property
just mentioned. Yet, s = 0 is still the natural “right-hand limit” of invertible A−ε , each
with exactly one negative eigenvalue. This will be all that is required for Theorem 1.

With Lemma 1 in hand, we can prove the following key result, which sets up the
remainder of this section. The proof of Lemma 1 follows afterwards.

Proposition 4 Suppose Conditions 1–3 hold. For all t ∈ [0, s], At has exactly one
negative eigenvalue. In addition, At is nonsingular for all t ∈ (0, s), and if s < 1,
then As is singular.

Proof Condition 2 implies (6), and so x̄ T At x̄ = (1 − t) x̄ T A0 x̄ + t x̄ T A1 x̄ < 0 for
every t . So each At has at least one negative eigenvalue. Also, the definition of s
ensures that all At for t ∈ (0, s) are nonsingular and that As is singular when s < 1.

Suppose that some At with t ∈ [0, s] has two negative eigenvalues. Then by Con-
dition 1 and the facts that the entries of At are affine functions of t and the eigenvalues
depend continuously on the matrix entries [28, Section 2.4.9], there exists some r such
that 0 ≤ r < t ≤ s with at least one zero eigenvalue, i.e., with Ar singular. From
the definition of s, we deduce that r = 0 and Aε has two negative eigenvalues for
ε > 0 small. Then Condition 3(ii) holds since s > 0. However, we then encounter a
contradiction with Lemma 1, which states that Aε has exactly one negative eigenvalue.

��
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Proof of Lemma 1 The lemma holds under Condition 3(i) since A0 is invertible with
exactly one negative eigenvalue and the eigenvalues are continuous in ε.

Suppose Condition 3(ii) holds. Let V be the subspace spanned by the zero and
positive eigenvectors of A0, and consider

θ := inf
{

xT A0x : xT (A0 − A1)x = 1, x ∈ V
}

.

Clearly θ ≥ 0. We further claim θ > 0. If θ = 0, then there exists {xk} ⊆ V
with (xk)T A0xk → 0 and (xk)T (A0 − A1)xk = 1 for all k. If {xk} is bounded, then
passing to a subsequence if necessary, we have xk → x̂ such that x̂ T A0 x̂ = 0 and
x̂ T (A0−A1)x̂ = 1,which implies x̂ T A1 x̂ = −1, a contradiction ofCondition 3(ii).On
the other hand, if {xk} is unbounded, then the sequence dk := xk/‖xk‖ is bounded, and
passing to a subsequence if necessary, we see that dk → d̂ with ‖d̂‖ = 1, d̂T A0d̂ = 0
and d̂T (A0− A1)d̂ = 0. This implies d̂T A1d̂ = 0, violating Condition 3(ii). So θ > 0.

Now choose any 0 < ε ≤ θ/2, and consider any nonzero x ∈ V . Note that

xT Aεx = (1 − ε)xT A0x + εxT A1x = xT A0x − εxT (A0 − A1)x . (11)

We wish to show xT Aεx > 0, and so we consider three subcases. First, if xT (A0 −
A1)x = 0, then it must hold that xT A0x > 0. If not, then xT A1x = 0 also, violating
Condition 3(ii). So xT Aεx = xT A0x > 0 follows from (11). Second, if xT (A0 −
A1)x < 0, then because x ∈ V we have xT Aεx > 0. Third, if xT (A0 − A1)x > 0,
then we may assume without loss of generality by scaling that xT (A0 − A1)x = 1 in
which case xT Aεx ≥ θ − ε > 0 holds where the nonstrict inequality follows from
the definition of θ and the strict one from ε ≤ θ/2.

So we have shown that Aε is positive definite on a subspace of dimension n − 1,
which implies that Aε has at least n−1 positive eigenvalues. In addition, we know that
Aε has at least one negative eigenvalue because x̄ T Aε x̄ < 0 according to Condition 2
and (6). Hence, Aε is invertible with exactly one negative eigenvalue, as claimed.

By repeating a very similar argument for vectors x ∈ W where W is the subspace
spanned by the negative and zero eigenvectors of A0 (note that W is at least two-
dimensional because Condition 3(ii) holds), and once again using the relation (11),
we can show that A−ε has at least two negative eigenvalues, as claimed.

Finally, suppose Condition 3(iii) holds and define

Āε :=
(

1
1+2ε

)
A−ε =

(
1

1+2ε

)
((1 + ε)A0 − ε A1) =

(
1+ε
1+2ε

)
A0 +

(
ε

1+2ε

)
(−A1)

Ā−ε :=
(

1
1−2ε

)
Aε =

(
1

1−2ε

)
((1 − ε)A0 + ε A1) =

(
1−ε
1−2ε

)
A0 +

( −ε
1−2ε

)
(−A1).

Then Āε and Ā−ε are on the line generated by A0 and−A1 such that−A1 is positive
definite on the null space of A0. Applying the previous case for Condition 3(ii), we
see that only Āε is invertible with a single negative eigenvalue. This proves the result.

��
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4.2 The containment F+
0 ∩ F1 ⊆ F+

0 ∩ F+
s

For each t ∈ [0, s], Proposition 4 allows us to define analogs Ft = F+
t ∪ F−

t as
described in Sect. 2 based on any spectral decomposition At = Qt Diag(λt )QT

t .
It is an important technical point, however, that in this paper we require both λt and

Qt to be defined continuously in t .While it is well known that the vector of eigenvalues
λt can be defined continuously, it is also known that—if the eigenvalues are ordered,
say, such that [λt ]1 ≤ · · · ≤ [λt ]n for all t—then the corresponding eigenvectors,
i.e., the ordered columns of Qt , cannot be defined continuously in general. On the
other hand, if one drops the requirement that the eigenvalues in λt stay ordered, then
the following result of Rellich [46] (see also [32]) guarantees that λt and Qt can be
constructed continuously—in fact, analytically—in t :

Theorem 2 (Rellich [46]) Because At is analytic in the single parameter t , there exist
spectral decompositions At = Qt Diag(λt )QT

t such that λt and Qt are analytic in t .

So we define F+
t and F−

t using continuous spectral decompositions provided by
Theorem 2:

F+
t :=

{
x : ‖BT

t x‖ ≤ bT
t x

}

F−
t :=

{
x : ‖BT

t x‖ ≤ −bT
t x

}
,

where Bt and bt such that At = Bt BT
t − bt bT

t are derived from the spectral decom-
position as described in Sect. 2. Recall from Proposition 3 that, for each t , a different
spectral decomposition could flip the roles of F+

t and F−
t , but we now observe that

Theorem 2 and Condition 2 together guarantee that each F+
t contains x̄ from Condi-

tion 2. In this sense, every F+
t has the same “orientation.” Our observation is enabled

by a lemma that will be independently helpful in subsequent analysis.

Lemma 2 Suppose Conditions 1–3 hold. Given t ∈ [0, s], suppose some x ∈ F+
t

satisfies bT
t x = 0. Then t = 0 or t = s.

Proof Since xT At x ≤ 0 with bT
t x = 0, we have 0 = (bT

t x)2 ≥ ‖BT
t x‖2 which

implies At x = (Bt BT
t − bt bT

t )x = Bt (BT
t x) − bt (bT

t x) = 0. So At is singular. By
Proposition 4, this implies t = 0 or t = s. ��
Observation 1 Suppose Conditions 1–3 hold. Let x̄ ∈ int(F+

0 ∩ F1). Then for all
t ∈ [0, s], x̄ ∈ F+

t .

Proof Condition 2 implies bT
0 x̄ > 0. Let t ∈ (0, s] be fixed. Since x̄ T At x̄ < 0 by

(6), either x̄ ∈ F+
t or x̄ ∈ F−

t . Suppose for contradiction that x̄ ∈ F−
t , i.e., bT

t x̄ < 0.
Then the continuity of bt by Theorem 2 implies the existence of r ∈ (0, t) such that
bT

r x̄ = 0. Because x̄ T Ar x̄ < 0 as well, x̄ ∈ F+
r . By Lemma 2, this implies r = 0 or

r = s, a contradiction. ��
In particular, Observation 1 implies that our discussion in Sect. 3 on choosing x̄ ∈ F+

t
to facilitate the statement of Theorem 1 is indeed consistent with the discussion here.
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The primary result of this subsection, F+
0 ∩ F+

s is a valid convex relaxation of
F+
0 ∩ F1, is given below.

Proposition 5 Suppose Conditions 1–3 hold. Then F+
0 ∩ F1 ⊆ F+

0 ∩ F+
s .

Proof If s = 0, the result is trivial. So assume s > 0. In particular, Condition 3(i)
or 3(ii) holds. Let x ∈ F+

0 ∩ F1, that is, xT A0x ≤ 0, bT
0 x ≥ 0, and xT A1x ≤ 0. We

would like to show x ∈ F+
0 ∩ F+

s . So we need xT As x ≤ 0 and bT
s x ≥ 0. The first

inequality holds because xT As x = (1 − s) xT A0x + s xT A1x ≤ 0. Now suppose
for contradiction that bT

s x < 0. In particular, x �= 0. Then by the continuity of bt

via Theorem 2, there exists 0 ≤ r < s such that bT
r x = 0. Since xT Ar x ≤ 0 also,

x ∈ F+
r , and Lemma 2 implies r = 0. Then Condition 3(ii) must hold. However,

x ∈ F1 also, contradicting that A1 is positive definite on null(A0). ��

4.3 The containment F+
0 ∩ F+

s ⊆ conic.hull(F+
0 ∩ F1)

Proposition 5 in the preceding subsection establishes that F+
0 ∩F+

s is a valid convex
relaxation ofF+

0 ∩F1 under Conditions 1–3.We now show that, in essence, the reverse
inclusion holds under Condition 4 (see Proposition 6). Indeed, when s = 1, we clearly
have F+

0 ∩ F+
1 ⊆ F+

0 ∩ F1 ⊆ conic. hull(F+
0 ∩ F1). So the true case of interest is

s < 1, for which Condition 4 is the key ingredient. (However, we present our results
to cover the cases s < 1 and s = 1 simultaneously.)

As mentioned in Sect. 3, Condition 4 is a type of regularity condition in light of
Lemma 3 next. The proof of Proposition 6 also relies on Lemma 3.

Lemma 3 Suppose Conditions 1–3 hold. Then apex(F+
s ) ⊆ F1.

Proof By Proposition 1, the claimed result is equivalent to null(As) ⊆ F1. Let d ∈
null(As). If s = 1, then dT A1d = 0, i.e., d ∈ bd(F1) ⊆ F1, as desired. If s = 0, then
Condition 3(iii) holds, that is, A0 is singular and A1 is negative definite on null(A0).
Then d ∈ null(A0) implies dT A1d ≤ 0, as desired.

So assume s ∈ (0, 1). If d /∈ int(F0), that is, dT A0d ≥ 0, then the equation
0 = (1 − s) dT A0d + s dT A1d implies dT A1d ≤ 0, as desired.

We have thus reduced to the case s ∈ (0, 1) and d ∈ int(F0), and we proceed
to derive a contradiction. Without loss of generality, assume that d ∈ int(F+

0 ) and
−d ∈ int(F−

0 ). We know −d ∈ null(As) = apex(F+
s ) ⊆ F+

s . In total, we have
−d ∈ F+

s ∩ int(F−
0 ). We claim that, in fact, F+

t ∩ int(F−
0 ) �= ∅ as t → s.

Note that F+
t is a full-dimensional set because x̄ T At x̄ < 0 by (6). Also, F+

t is
defined by the intersection of a homogeneous quadratic xT At x ≤ 0 and a linear
constraint bT

t x ≥ 0 and (At , bt ) → (As, bs) as t → s. Then the boundary of F+
t

converges to the boundary ofF+
s as t → s. SinceF+

t is a full-dimensional, convex set
(in fact SOC), F+

t then converges as a set to F+
s as t → s. So there exists a sequence

yt ∈ F+
t converging to −d. In particular, F+

t ∩ int(F−
0 ) �= ∅ for t → s.

We can now achieve the desired contradiction. For t < s, let x ∈ F+
t ∩ int(F−

0 ).
Then xT A0x ≤ 0, bT

0 x < 0 and xT At x ≤ 0, bT
t x ≥ 0. It follows that xT Ar x ≤

0, bT
r x = 0 for some 0 < r ≤ t < s. Hence, Lemma 2 implies r = 0 or r = s, a

contradiction. ��
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Proposition 6 Suppose Conditions 1–4 hold. ThenF+
0 ∩F+

s ⊆ conic. hull(F+
0 ∩F1).

Proof First, suppose s = 1. Then the result follows because F+
0 ∩F+

1 ⊆ F+
0 ∩F1 ⊆

conic. hull(F+
0 ∩ F1). So assume s ∈ [0, 1).

Let x ∈ F+
0 ∩ F+

s , that is, xT A0x ≤ 0, bT
0 x ≥ 0 and xT As x ≤ 0, bT

s x ≥ 0. If
xT A1x ≤ 0, we are done. So assume xT A1x > 0.

By Condition 4, there exists d ∈ null(As) such that dT A1d < 0. In addition, d is
necessarily perpendicular to the negative eigenvector bs . For all ε ∈ R, consider the
affine line of points given by xε := x + ε d. We have

xT
ε As xε = (x + ε d)T As(x + ε d) = xT As x ≤ 0

bT
s xε = bT

s (x + ε d) = bT
s x ≥ 0

}
�⇒ xε ∈ F+

s .

Note that xT
ε A1xε = xT A1x + 2 ε dT A1x + ε2 dT A1d. Then xT

ε A1xε defines a

quadratic functionof ε and its roots are givenby ε±= −dT A1x±
√

(dT A1x)2−(xT A1x)(dT A1d)

dT A1d
.

Since xT A1x > 0 and dT A1d < 0, the discriminant is greater than |dT A1x |. Hence,
one of the roots will be positive and the other one will be negative. Thus, there exist
l := ε− < 0 < ε+ =: u such that xT

l A1xT
l = xT

u A1xu = 0, i.e., xl , xu ∈ F1. Then
s < 1 and xT

l As xl ≤ 0 imply xT
l A0xl ≤ 0, and hence xl ∈ F0. Similarly, xT

u A0xu ≤ 0
leading to xu ∈ F0. We will prove in the next paragraph that both xl and xu are in
F+
0 , which will establish the result because then xl , xu ∈ F+

0 ∩F1 and x is a convex
combination of xl and xu .

Suppose that at least one of the two points xl or xu is not a member of F+
0 . With-

out loss of generality, say xl /∈ F+
0 . Then xl ∈ F−

0 with −bT
0 xl > 0. Similar to

Proposition 5, we can prove F−
0 ∩ F1 ⊆ F−

0 ∩ F−
s , and so xl ∈ F−

0 ∩ F−
s . Then

xl ∈ F+
s ∩F−

s ,which impliesbT
s xl = 0 and BT

s xl = 0,which in turn implies As xl = 0,
i.e., xl ∈ null(As). Then x + l d = xl ∈ null(As) implies x ∈ null(As) also. Then
x ∈ F1 by Lemma 3, but this contradicts the earlier assumption that xT A1x > 0. ��

4.4 Intersection with an affine hyperplane

As discussed at the beginning of this section, Propositions 5–6 allow us to prove the
first two statements of Theorem 1. In this subsection, we prove the last statement of
the theorem via Proposition 7 below. Recall that H1 and H0 are defined according to
(8) and (9), where h ∈ R

n . Also define

H+ :=
{

x : hT x ≥ 0
}

.

Our first task is to prove the analog of Propositions 5–6 under intersection with
H+. Specifically, we wish to show that the inclusions

F+
0 ∩ F1 ∩ H+ ⊆ F+

0 ∩ F+
s ∩ H+ ⊆ conic. hull

(
F+
0 ∩ F1 ∩ H+)

(12)
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How to convexify the intersection of a second order cone... 411

hold under Conditions 1–5. As Condition 5 consists of two parts, we break the proof
into two corresponding parts (Lemma 4 and Corollary 2). Note that Condition 5 only
applies when s < 1, although results are stated covering both s < 1 and s = 1
simultaneously.

Lemma 4 Suppose Conditions 1–4 and the first part of Condition 5 hold. Then (12)
holds.

Proof Proposition 5 implies that F+
0 ∩ F1 ∩ H+ ⊆ F+

0 ∩ F+
s ∩ H+. Moreover, we

can repeat the proof of Proposition 6, intersecting with H+ along the way. However,
we require one key modification in the proof of Proposition 6.

Let x ∈ F+
0 ∩ F+

s ∩ H+ with xT A1x > 0. Then, mimicking the proof of
Proposition 6 for s ∈ [0, 1) and d ∈ apex(F+

s ) ∩ int(F1) from Condition 4,
x ∈ {xε := x + ε d : ε ∈ R} ⊆ F+

s . Moreover, x is a strict convex combination
of points xl , xu ∈ F+

0 ∩ F1 where xl , xu are as defined in the proof of Proposition 6.
Hence, the entire closed interval from xl to xu is contained in F+

0 ∩ F+
s .

Under the first part of Condition 5, if there exists d ∈ apex(F+
s ) ∩ int(F1) ∩ H0,

then hT d = 0, and this particular d can be used to show that xl , xu identified in
the proof of Proposition 6 also satisfy hT xl = hT (x + l d) = hT x ≥ 0 (recall that
x ∈ H+) and hT xu = hT (x + u d) = hT x ≥ 0, i.e., xl , xu ∈ F+

0 ∩ F1 ∩ H+. Then
this implies x ∈ F+

0 ∩ F1 ∩ H+, as desired. ��
Regarding the second part of Condition 5, we prove Corollary 2 using the following

more general lemma involving cones that are not necessarily SOCr:

Lemma 5 LetG0,G1, andGs be cones such thatG0,Gs are convex,G0∩G1 ⊆ G0∩Gs ⊆
conic. hull(G0 ∩ G1) and G0 ∩ Gs ∩ H0 ⊆ G1. Then

G0 ∩ G1 ∩ H+ ⊆ G0 ∩ Gs ∩ H+ ⊆ conic. hull
(
G0 ∩ G1 ∩ H+)

.

Proof For notational convenience, define G01 := G0 ∩ G1 and G0s := G0 ∩ Gs . We
clearly haveG01∩H+ ⊆ G0s∩H+ ⊆ conic. hull(G01)∩H+.Wewill showG0s∩H+ ⊆
conic. hull(G01 ∩ H+). Consider x ∈ G0s ∩ H+. Either hT x = 0 or hT x > 0.

If hT x = 0, then x ∈ G0s ∩ H0 ⊆ G1 by the premise of the lemma. Thus,
x ∈ G0s ∩ H+ ∩ G1 ⊆ conic. hull(G01 ∩ H+), as desired.

When hT x > 0, because G0s ⊆ conic. hull(G01), we know that x can be expressed
as a finite sum x = ∑

k λk xk , where each xk ∈ G01 ⊆ G0s andλk > 0.Define I := {k :
hT xk ≥ 0} and J := {k : hT xk < 0}. If J = ∅, then we are done as we have shown
x ∈ conic. hull(G01∩H+). If not, then for all j ∈ J , let y j be a strict conic combination
of x and x j such that y j ∈ H0. In particular, there exists α j ≥ 0 and β j > 0 such that
y j = α j x+β j x j . Note also that y j ∈ G0s becauseG0s is convex and x, x j ∈ G0s . Then
y j ∈ G0s ∩H0 ⊆ G1. As a result, for all j ∈ J , we have y j ∈ G01∩H+. Rewriting x as

x =
∑
i∈I

λi x i +
∑
j∈J

λ j

β j

(
y j − α j x

)

⇐⇒
⎛
⎝1 +

∑
j∈J

λ jα j

β j

⎞
⎠ x =

∑
i∈I

λi x i +
∑
j∈J

λ j

β j
y j ,
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we conclude that x is a conic combination of points in G01 ∩ H+, as desired. ��
Corollary 2 Suppose Conditions 1–4 and the second part of Condition 5 hold. Then
(12) holds.

Proof Apply Lemma 5 with G0 := F+
0 , G1 := F1, and Gs := F+

s . Propositions 5–6
and the second part of Condition 5 ensure that the hypotheses of Lemma 5 are met.
Then the result follows. ��

Even though our goal in this subsection is Proposition 7, which involves intersec-
tion with the hyperplane H1, we remark that Lemmas 4–5 can help us investigate
intersections with homogeneous halfspaces H+ for SOCr cones (Lemma 4) or more
general cones (Lemma 5). Further, by iteratively applying Lemmas 4–5, we can con-
sider intersections with multiple halfspaces, say, H+

1 , . . . , H+
m .

Given Lemma 4 and Corollary 2, we are now ready to prove our main result for this
subsection, Proposition 7, which establishes the second part of Theorem 1. It requires
the following simple lemmas which are applicable to general sets and cones:

Lemma 6 Let S be any set, and let rec. cone(S) be its recession cone. Then
conv. hull(S) + conic. hull(rec. cone(S)) = conv. hull(S).

Proof The containment ⊇ is clear. Now let x + y be in the left-hand side such that

x =
∑

k

λk xk, xk ∈ S, λk > 0,
∑

k

λk = 1, and

y =
∑

j

ρ j y j , y j ∈ rec. cone(S), ρ j > 0.

Without loss of generality, we may assume the number of xk’s equals the number of
y j ’s by splitting some λk xk or some ρ j y j as necessary. Then

x + y =
∑

k

(λk xk + ρk yk) =
∑

k

λk

(
xk + λ−1

k ρk yk

)
∈ conv. hull(S).

��
Lemma 7 Let G01 and G0s be cones (not necessarily convex) such that G01 ∩ H+ ⊆
G0s∩H+ ⊆ conic. hull(G01∩H+). ThenG01∩H1 ⊆ G0s∩H1 ⊆ conv. hull(G01∩H1).

Proof We have G01 ∩ H1 ⊆ G0s ∩ H1 ⊆ conic. hull(G01 ∩ H+) ∩ H1. We claim
further that

conic. hull(G01 ∩ H+) ∩ H1 ⊆ conic. hull(G01 ∩ H0) + conv. hull(G01 ∩ H1). (13)

Then applying Lemma 6 with S := G01 ∩ H1 and rec. cone(S) = G01 ∩ H0, we see
that conic. hull(G01 ∩ H+) ∩ H1 ⊆ conv. hull(G01 ∩ H1), which proves the lemma.
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To prove the claim (13), let x ∈ conic. hull(G01 ∩ H+) ∩ H1. Then

hT x = 1 and x =
∑

k

λk xk, xk ∈ G01 ∩ H+, λk > 0,

which may further be separated as

x =
∑

k : hT xk>0

λk xk

︸ ︷︷ ︸
:=y

+
∑

k : hT xk=0

λk xk

︸ ︷︷ ︸
:=r

= y + r.

Note that r ∈ conic. hull(G01 ∩ H0), and so it sufficies to show y ∈ conv. hull(G01 ∩
H1). Rewrite y as

y =
∑

k : hT xk>0

λk xk =
∑

k : hT xk>0

(
λk · hT xk

)
︸ ︷︷ ︸

:=λ̃k

(
xk/hT xk

)
︸ ︷︷ ︸

:=x̃k

=:
∑

k : hT xk>0

λ̃k x̃k .

By construction, each x̃k ∈ G01 ∩ H1. Moreover, each λ̃k is positive and

∑

k : hT xk>0

λ̃k =
∑

k : hT xk>0

λk · hT xk = hT y = hT (x − r) = 1 − 0 = 1,

since x ∈ H1. So y ∈ conv. hull(G01 ∩ H1). ��
Proposition 7 Suppose Conditions 1–5 hold. ThenF+

0 ∩F1∩H1 ⊆ F+
0 ∩F+

s ∩H1 ⊆
conv. hull(F+

0 ∩ F1 ∩ H1).

Proof Define G01 := F+
0 ∩F1 and G0s := F+

0 ∩F+
s . Lemma 4 and Corollary 2 imply

G01 ∩ H+ ⊂ G0s ∩ H+ ⊆ conic. hull(G01) ∩ H+. Then Lemma 7 implies the result.
��

As with Lemma 5, we have stated Lemma 7 in terms of general cones, extending
beyond just SOCr cones. In particular, in future research, these results may allow the
derivation of conic and convex hulls for the intersects with more general cones.

5 Two-term disjunctions on the second-order cone

In this section (specifically Sects. 5.1–5.4), we consider the intersection of the canon-
ical second-order cone

K := {x : ‖x̃‖ ≤ xn} , where x̃ = (x1; . . . ; xn−1) ,

and a two-term linear disjunction defined by cT
1 x ≥ d1 ∨ cT

2 x ≥ d2. Without loss of
generality, we take d1, d2 ∈ {0,±1} with d1 ≥ d2, and we work with the following
condition:

123



414 S. Burer, F. Kılınç-Karzan

Condition 6 The disjunctive sets K1 := K ∩ {x : cT
1 x ≥ d1} and K2 := K ∩ {x :

cT
2 x ≥ d2} are non-intersecting except possibly on their boundaries, e.g.,

K1 ∩ K2 ⊆
{

x ∈ K : cT
1 x = d1

cT
2 x = d2

}
.

This condition ensures that, on K, the disjunction cT
1 x ≥ d1 ∨ cT

2 x ≥ d2 is
equivalent to the quadratic inequality (cT

1 x − d1)(cT
2 x − d2) ≤ 0. Condition 6 is

satisfied, for example,when the disjunction is a proper split, i.e., c1 ‖ c2 with cT
1 c2 < 0,

K1 ∪K2 �= K, and d1 = d2. (In this case of a split disjunction, if d1 �= d2, then it can
be shown that the closed conic hull of K1 ∪ K2 is just K.)

Becaused1, d2 ∈ {0,±1}withd1 ≥ d2,we can break our analysis into the following
three cases with a total of six subcases:

(a) d1 = d2 = 0, covering subcase (d1, d2) = (0, 0);
(b) d1 = d2 nonzero, covering subcases (d1, d2) ∈ {(−1,−1), (1, 1)};
(c) d1 > d2, covering subcases (d1, d2) ∈ {(0,−1), (1,−1), (1, 0)}.
Case (a) is the homogeneous case, inwhichwe take A0 = J := Diag(1, . . . , 1,−1)

and A1 = c1cT
2 + c2cT

1 to match our set of interest K∩F1. Note that K = F+
0 in this

case. For the non-homogeneous cases (b) and (c), we can homogenize via y = ( x
xn+1

)

with hT y = xn+1 = 1. Defining

A0 :=
(

J 0
0 0

)
, A1 :=

(
c1cT

2 + c2cT
1 −d2c1 − d1c2

−d2cT
1 − d1cT

2 2d1d2

)
,

we then wish to examine F+
0 ∩ F1 ∩ H1.

In fact, by the results in [36, Section 5.2], case (c) implies that cl. conic. hull(F+
0 ∩

F1) cannot in general be captured by two conic inequalities, making it unlikely that our
desired equality cl. conv. hull(F+

0 ∩F1 ∩ H1) = F+
0 ∩F+

s ∩ H1 will hold in general.
So we will focus on cases (a) and (b). Nevertheless, we include some comments on
case (c) in Sect. 5.4.

Later on, in Sect. 5.3, we will also revisit Condition 6 to show that it is unnecessary
in some sense. Precisely, even when Condition 6 does not hold, we can derive a
related convex valid inequality, which, together with F+

0 , gives the complete convex
hull description. This inequality precisely matches the one already described in [36],
but it does not have an SOC form.

In contrast to Sects. 5.1–5.4, Sect. 5.5 examines two-term disjunctions on conic
sections of K, i.e., intersections of K with a hyperplane.

5.1 The case (a) of d1 = d2 = 0

As discussed above, we have A0 := J and A1 := c1cT
2 + c2cT

1 . If either ci ∈ K, then
the corresponding side of the disjunction Ki simply equals K, so the conic hull is K.
In addition, if either ci ∈ int(−K), then Ki = {0}, so the conic hull equals the other
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K j . Hence, we assume both ci /∈ K ∪ int(−K), i.e., ‖c̃i‖ ≥ |ci,n|, where ci = ( c̃i
ci,n

)
.

Since the example in Section 4 of the Online Supplement violates Condition 4 with
‖c̃2‖ = |c2,n|, we further assume that both ‖c̃i‖ > |ci,n|.

Conditions 1 and 3(i) are easily verified. In particular, s > 0. Condition 2 describes
the full-dimensional case of interest. It remains to verify Condition 4. (Note that
Condition 4 is only relevant when s < 1 and that Condition 5 is not of interest in this
homogeneous case.) So suppose s < 1, and given nonzero z ∈ null(As), we will show

zT A1z = 2
(

cT
1 z

) (
cT
2 z

)
< 0,

verifying Condition 4.We already know from Lemma 3 that zT A1z ≤ 0. So it remains
to show that both cT

1 z and cT
2 z are nonzero.

Since z ∈ null(As), we know
( 1−s

s

)
A0z = −A1z, i.e.,

( 1−s
s

) ( z̃

−zn

)
= −c1

(
cT
2 z

)
− c2

(
cT
1 z

)
. (14)

Note that cT
1 z = ( c̃1−c1,n

)T ( z̃
−zn

)
, so multiplying both sides of equation (14) with

( c̃1−c1,n

)T
and rearranging terms, we obtain

[
1−s

s + c̃T
1 c̃2 − c1,nc2,n

] (
cT
1 z

)
=

(
c21,n − ‖c̃1‖2

) (
cT
2 z

)
.

Similarly, using
( c̃2−c2,n

)T
, we obtain:

[
1−s

s + c̃T
1 c̃2 − c1,nc2,n

] (
cT
2 z

)
=

(
c22,n − ‖c̃2‖2

) (
cT
1 z

)
.

The inequalities ‖c̃1‖ > |c1,n| and ‖c̃2‖ > |c2,n| thus imply cT
1 z �= 0 ⇔ cT

2 z �= 0.
Moreover, cT

1 z and cT
2 z cannot both be 0; otherwise, z would be 0 by (14).

Note that [35,36] give an infinite family of valid inequalities in this setup but do not
prove the sufficiency of a single inequality from this family. In this case, the sufficiency
proof for a single inequality from this family is given recently in [55]. None of the
other papers [2,23,40] are relevant here because they consider only split disjunctions,
not general two-term disjunctions. Because of the boundedness assumption used in
[13], [13] is not applicable here either. Similar to the example in Section 1 of the
Online Supplement, as long as the disjunction can be viewed as removing a convex
set, we can try to apply [14] to this case by considering the SOC as the epigraph of the
norm ‖x̃‖. However, the authors’ special conditions for polynomial-time separability
such as differentiability or growth rate are not satisfied; see Theorem IV therein.

5.2 The case (b) of nonzero d1 = d2

In [36], it was shown that c1 − c2 ∈ ±K implies one of the sets Ki defining the
disjunction is contained in the other K j , and thus, the desired closed convex hull
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trivially equals K j . So we assume c1 − c2 /∈ ±K, i.e., ‖c̃1 − c̃2‖2 > (c1,n − c2,n)2,

where ci = ( c̃i
ci,n

)
.

Defining σ = d1 = d2, we have

A0 :=
(

J 0
0 0

)
, A1 :=

(
c1cT

2 + c2cT
1 −σ(c1 + c2)

−σ(c1 + c2)T 2

)
.

Conditions 1 and 3(ii) are easily verified, and Condition 2 describes the full-
dimensional case of interest. It remains to verify Conditions 4 and 5. So assume
s < 1, and note s > 0 due to Condition 3(ii).

For any z+ ∈ R
n+1, write z+ = ( z

zn+1

)
and z = ( z̃

zn

) ∈ R
n . Suppose z+ �= 0. Then

z+ ∈ null(As) ⇐⇒ ( 1−s
s

)
A0z+ = −A1z+

⇐⇒ ( 1−s
s

)
A0z+ = −( c1−σ

)( c2−σ

)T
z+ − ( c2−σ

)( c1−σ

)T
z+

=: α
( c1−σ

) + β
( c2−σ

)
.

Since the last component of A0z+ is zero, we must have β = −α. We claim α �= 0.
Assume for contradiction that α = 0. Then z = 0, but zn+1 �= 0 as z+ is nonzero. On
the other hand, because z+ ∈ null(As), Lemma 3 implies 0 ≥ (z+)T A1z+ = 2z2n+1,
a contradiction. So indeed α �= 0.

Because z+ ∈ null(As) and s ∈ (0, 1), the equation

0 = (
z+)T

As z+ = (1 − s)
(
z+)T

A0z+ + s
(
z+)T

A1z+,

implies Condition 4 holds if and only if (z+)T A0z+ > 0. From the previous paragraph,
we have

( 1−s
s

)
A0z+ = α

(c1−c2
0

)
with α �= 0. Then

( 1−s
s

) (
z+)T

A0z+ =
⎛
⎝

α (c̃1 − c̃2)
−α

(
c1,n − c2,n

)
zn+1

⎞
⎠

T ⎛
⎝

α (c̃1 − c̃2)
α
(
c1,n − c2,n

)
0

⎞
⎠

= α2
(
‖c̃1 − c̃2‖2 − (

c1,n − c2,n
)2)

> 0,

as desired.
However, it seems difficult to verifyCondition 5 generally. For example, consider its

second partF+
0 ∩F+

s ∩ H0 ⊆ F1. In the current context, we haveF+
0 ∩ H0 = K×{0},

and it is unclear if its intersectionwithF+
s would be contained inF1. Letting

(ĥ
0

) ∈ F+
s

with ĥ ∈ K, we would have to check the following:

0 ≥
(

ĥ

0

)T

As

(
ĥ

0

)
= (1 − s) ĥT J ĥ + 2s

(
cT
1 ĥ

) (
cT
2 ĥ

)
�⇒

(
ĥ

0

)
∈ F1.
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If ĥ were in the interior of K, then ĥT J ĥ < 0 could still allow (cT
1 ĥ)(cT

2 ĥ) > 0,

so that
(ĥ
0

) ∈ F1 would not be achieved. So it seems Condition 5 will hold under
additional conditions only.

One such set of conditions ensuringCondition5 is as follows: there existsβ1, β2 ≥ 0
such that β1c1 + c2 ∈ −K and β2c1 + c2 ∈ K. These hold, for example, for split
disjunctions, i.e., when c2 is a negative multiple of c1. To prove Condition 5, take
ĥ ∈ K. Then cT

1 ĥ ≥ 0 implies

cT
2 ĥ = −β1cT

1 ĥ + (β1c1 + c2)
T ĥ ≤ 0 + 0 = 0,

and similarly cT
1 ĥ ≤ 0 implies cT

2 ĥ ≥ 0. Then overall ĥ ∈ K implies (cT
1 ĥ)(cT

2 ĥ) ≤ 0.
In the context of the previous paragraph, this ensuresF+

0 ∩F+
s ∩H0 ⊆ F+

0 ∩H0 ⊆ F1,
thus verifying Condition 5.

Note that [35,36] cover this case. In the case of split disjunctions with d1 = d2 = 1,
these results are also presented in [2,40]. Whenever the boundedness assumption of
[13] is satisfied, one can use their result as well, but the papers [23,55] are not relevant
here. Similar to the previous subsection, [14] is limited in its application to this case.

5.3 Revisiting Condition 6

For the cases d1 = d2 of Sects. 5.1 and 5.2, we know that F+
0 ∩F+

s is a valid convex
relaxation of F+

0 ∩ F1 under Conditions 1–3 and 6. The same holds for the cross-
sections: F+

0 ∩ F+
s ∩ H1 is a relaxation of F+

0 ∩ F1 ∩ H1. Because Condition 3(i)
is verified in the case of d1 = d2 = 0 and Condition 3(ii) is verified in the case of
nonzero d1 = d2, we have s > 0. However, when Condition 6 is violated, it may
be possible that F+

s is invalid for points simultaneously satisfying both sides of the
disjunction, i.e., points x with cT

1 x ≥ d1 and cT
2 x ≥ d2. This is because such points

can violate the quadratic (cT
1 x − d1)(cT

2 x − d2) ≤ 0 from which F+
s is derived. In

such cases, the set F+
s should be relaxed somehow.

Recall that, by definition, F+
s = {x : xT As x ≤ 0, bT

s x ≥ 0}. Let us examine the
inequality xT As x ≤ 0, which can be rewritten as

0 ≥ (1 − s) xT J x + 2s
(

cT
1 x − d1

) (
cT
2 x − d2

)

⇐⇒ 0 ≥ 2(1 − s) xT J x + s([(
cT
1 x − d1

)
+

(
cT
2 x − d2

)]2 −
[(

cT
1 x − d1

)
−

(
cT
2 x − d2

)]2)

⇐⇒ s
[
(c1 − c2)

T x − (d1 − d2)
]2 − 2(1 − s) xT J x

≥ s
[
(c1 + c2)

T x − (d1 + d2)
]2

.
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Note that the left hand-side of the third inequality is nonnegative for any x ∈ K
since xT J x ≤ 0. Therefore, x ∈ K implies xT As x ≤ 0 is equivalent to
√[

(c1 − c2)T x − (d1 − d2)
]2 − 2

( 1−s
s

)
xT J x ≥ | (c1 + c2)

T x − (d1 + d2) |.
(15)

An immediate relaxation of (15) is
√[

(c1 − c2)T x − (d1 − d2)
]2 − 2

( 1−s
s

)
xT J x ≥ (d1 + d2) − (c1 + c2)

T x (16)

since |(c1 + c2)T x − (d1 + d2)| ≥ (d1 + d2) − (c1 + c2)T x . Note also that (16) is
clearly valid for any x satisfying cT

1 x ≥ d1 and cT
2 x ≥ d2 since the two sides of the

inequality have different signs in this case. In total, the set

G+
s :=

{
x : (16) holds, bT

s x ≥ 0
}

is a valid relaxation when Condition 6 does not hold. Although not obvious, it follows
from [36] that (16) is a convex inequality. In that paper, (16) was encountered from
a different viewpoint, and its convexity was established directly, even though it does
not admit an SOC representation. So in fact G+

s is convex.
Now let us assume that Condition 4 holds as well so that F+

s captures the conic
hull of the intersection ofF+

0 and (cT
1 x −d1)(cT

2 x −d2) ≤ 0. We claim thatF+
0 ∩G+

s
captures the conic hull when Condition 6 does not hold. (A similar claimwill also hold
when Condition 5 holds for the further intersection with H1.) So let x̂ ∈ F+

0 ∩ G+
s be

given. If (15) happens to hold also, then x̂ T As x̂ ≤ 0 ⇒ x̂ ∈ F+
s . Then x̂ is already

in the closed convex hull given by (cT
1 x − d1)(cT

2 x − d2) ≤ 0 by assumption. On the
other hand, if (15) does not hold, then it must be that (c1 + c2)T x̂ > d1 +d2. So either
cT
1 x̂ > d1 or cT

2 x̂ > d2. Whichever the case, x̂ satisfies the disjunction. Therefore, x̂
is in the closed convex hull, which gives the desired conclusion.

We remark that, despite their different forms, (16) and the inequality defining
F+

s both originate from xT As x ≤ 0 and match precisely on the boundary of
conic. hull(F+

0 ∩ F1)\(F+
0 ∩ F1), e.g., the points added due to the convexification

process. Moreover, (16) can be interpreted as adding all of the recessive directions
{d ∈ K : cT

1 d ≥ 0, cT
2 d ≥ 0} of the disjunction to the set F+

0 ∩ F+
s . Finally, the

analysis in [36] shows in addition that the linear inequality bT
s x ≥ 0 is in fact redundant

for G+
s .

Note that [35,36] cover this case. Because the resulting convex hull is not conic
representable [13] is not applicable in this case. The papers [23,55] are not relevant
here, and none of the other papers [2,40] cover this case because they focus on split
disjunctions only. As in the previous two subsections, [14] is limited in its application.

5.4 The case (c) of d1 > d2

As mentioned above, the results of [36] ensure that cl. conic. hull(F+
0 ∩ F1) requires

more than two conic inequalities, making it highly likely that the closed convex hull
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of F+
0 ∩ F1 ∩ H1 requires more than two also. In other words, our theory would not

apply in this case in general. So we ask: which conditions are violated in this case?
Let us first consider when d1d2 = 0, which covers two subcases. Then

A0 :=
(

J 0
0 0

)
, A1 :=

(
c1cT

2 + c2cT
1 −d2c1 − d1c2

−d2cT
1 − d1cT

2 0

)
,

and it is clear that Condition 3 is not satisfied.
Now consider the remaining subcase when (d1, d2) = (1,−1). Then

A0 :=
(

J 0
0 0

)
, A1 :=

(
c1cT

2 + c2cT
1 c1 − c2

cT
1 − cT

2 −2

)
.

Condition 1 holds, and Condition 2 is the full-dimensional case of interest. Con-
dition 3(iii) holds as well, so s = 0. Then Condition 4 requires vT A1v < 0, where
v = (0; . . . ; 0; 1), which is true. On the other hand, Condition 5 might fail. In fact, the
example in Section 5 of the Online Supplement provides just such an instance. This
being said, the same stronger condition discussed in Sect. 5.2 can be seen to imply
Condition 5, that is, when there exists β1, β2 ≥ 0 such that β1c1 + c2 ∈ −K and
β2c1 + c2 ∈ K. This covers the case of split disjunctions, for example.

Of course, even when all conditions do not hold, just Conditions 1–3, which hold
when d1d2 = −1, are enough to ensure the validity of the relaxations F+

0 ∩ F+
s and

F+
0 ∩F+

s ∩ H1. However, these relaxations may not be sufficient to describe the conic
and convex hulls.

If necessary, another way to generate valid conic inequalities when d1 > d2 is
as follows. Instead of the original disjunction, consider the weakened disjunction
cT
1 x ≥ d2 ∨ cT

2 x ≥ d2, where d2 replaces d1 in the first term. Clearly, any point
satisfying the original disjunction will also satisfy the new disjunction. Therefore any
valid inequality for the new disjunction will also be valid for the original one. In
Sects. 5.1 and 5.2, we have discussed the conditions under which Conditions 1–5 are
satisfied when d1 = d2.

Regarding the existing literature, the conclusions at the end of Sect. 5.3 also apply
here.

5.5 Conic sections

Let ρT
1 x ≥ d1 ∨ ρT

2 x ≥ d2 be a disjunction on a cross-sectionK∩ H1 of the second-
order cone, where H1 = {x : hT x = 1}. We work with an analogous of Condition 6:

Condition 7 The disjunctive sets K1 := K ∩ H1 ∩ {x : ρT
1 x ≥ d1} and K2 :=

K ∩ H1 ∩ {x : ρT
2 x ≥ d2} are non-intersecting except possibly on their boundaries,

e.g.,
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K1 ∩ K2 ⊆
{

x ∈ K ∩ H1 : ρT
1 x = d1

ρT
2 x = d2

}
.

We would like to characterize the convex hull of the disjunction, which is the same
as the convex hull of the disjunction (ρ1 − d1h)T x ≥ 0 ∨ (ρ2 − d2h)T x ≥ 0 on
K∩ H1. Defining c1 := ρ1 − d1h, c2 := ρ2 − d2h, A0 := J , and A1 := c1cT

2 + c2cT
1 ,

our goal is to characterize cl. conv. hull(K ∩ F1 ∩ H1). This is quite similar to the
analysis in Sect. 5.1 except that here we also must verify Condition 5.

Conditions 1 and 3(i) are easily verified, and Condition 2 describes the full-
dimensional case of interest. Following the development in Sect. 5.1, we can verify
Condition 4 when ‖ρ̃1 − d1h̃‖2 > |ρ1,n − d1hn| and ‖ρ̃2 − d2h̃‖2 > |ρ2,n − d2hn|,
and otherwise the convex hull is easy to determine. For Condition 5, we consider the
cases of ellipsoids, paraboloids, and hyperboloids separately.

Ellipsoids are characterized by h ∈ int(K), and so K ∩ H0 = {0}. Thus, K ∩
F+

s ∩ H0 = {0} ⊆ F1 easily verifying Condition 5. On the other hand, paraboloids
are characterized by 0 �= h ∈ bd(K), and in this case, K ∩ H0 = cone{ĥ}, where
ĥ := −J h = (−h̃

hn

)
. Thus, to verifyCondition5, it suffices to show ĥ ∈ F+

s ⇒ ĥ ∈ F1.

Indeed ĥ ∈ F+
s implies

0 ≥ ĥT As ĥ = (1 − s) ĥT J ĥ + s ĥT A1ĥ = s ĥT A1ĥ

because h ∈ bd(K) ensures ĥT J ĥ = 0. So ĥ ∈ F1.
It remains only to verify Condition 5 for hyperboloids, which are characterized by

h /∈ ±K, i.e., h = ( h̃
hn

)
satisfies ‖h̃‖ > |hn|. However, it seems difficult to verify

Condition 5 generally. Still, we note that ĥ ∈ H0 implies

ĥT A1ĥ = 2
(

cT
1 ĥ

) (
cT
2 ĥ

)
= 2

(
ρT
1 ĥ − d1hT ĥ

) (
ρT
2 ĥ − d2hT ĥ

)

= 2
(
ρT
1 ĥ

) (
ρT
2 ĥ

)
.

Then Condition 5 would hold, for example, when ρ1 and ρ2 satisfy the following,
which is identical to conditions discussed in Sects. 5.2 and 5.4: there exists β1, β2 ≥ 0
such thatβ1ρ1+ρ2 ∈ −K andβ2ρ1+ρ2 ∈ K. This covers the case of split disjunctions,
for example.

We remark that our analysis in this subsection covers all of the various cases of split
disjunctions found in [40] andmore. In particular,we handle ellipsoids and paraboloids
for all possible general two-term disjunctions (including the non-disjoint ones). On the
other hand, the cases we can cover for hyperboloids is a subset of those recently given
in [55]. Note that [23] covers only split disjunctions on ellipsoids. [13] covers two-term
disjunctions on ellipsoids and certain specific two-term disjunctions on paraboloids
and hyperboloids satisfying their disjointness and boundedness assumptions. None
of the papers [2,35,36] are relevant here. Finally, when the disjunction correspond
to the deletion of a convex set, the paper [14] applies to the cases for ellipsoids and
paraboloids because those sets canbeviewed as epigraphs of strictly convexquadratics.
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6 General quadratics with conic sections

In this section, we examine the case of (nearly) general quadratics intersected with
conic sections of the SOC. For simplicity of presentation, we will employ affine
transformations of the sets F+

0 ∩F1 ∩ H1 of interest. It is clear that our theory is not
affected by affine transformations.

6.1 Ellipsoids

Consider the set

{
y ∈ R

n : yT y ≤ 1
yT Qy + 2 gT y + f ≤ 0

}
,

where λmin[Q] < 0. Note that if λmin[Q] ≥ 0, then the set is already convex. Allowing
an affine transformation, this set models the intersection of any ellipsoid with a general
quadratic inequality. We can model this set in our framework by homogenizing x =( y

xn+1

)
and taking

A0 :=
(

I 0

0T −1

)
, A1 :=

(
Q g

gT f

)
, H1 := {x : xn+1 = 1} .

We would like to compute cl. conv. hull(F+
0 ∩ F1 ∩ H1).

Conditions 1 and 3(i) are clear, and Condition 2 describes the full-dimensional case
of interest. When s < 1, Condition 5 is satisfied because, in this case,F+

0 ∩ H0 = {0}
making the containment F+

0 ∩F+
s ∩ H0 ⊆ F1 trivial. In Sects. 6.1.1 and 6.1.2 below,

we break the analysis of verifying Condition 4 into two subcases that we are able to
handle: (i) when λmin[Q] has multiplicity k ≥ 2; and (ii) when λmin[Q] ≤ f and
g = 0.

Subcase (i) covers, for example, the situation of deleting the interior of an arbitrary
ball from the unit ball. Indeed, consider

{
x ∈ R

n : xT x ≤ 1
(x − c)T (x − c) ≥ r2

}
,

where c ∈ R
n and r > 0 are the center and radius of the ball to be deleted. Then

case (i) holds with (Q, g, f ) = (−I, c, r2 − cT c). On the other hand, subcase (ii)
can handle, for example, the deletion of the interior of an arbitrary ellipsoid from the
unit ball—as long as that ellipsoid shares the origin as its center. In other words, the
portion to delete is defined by xT Ex < r2, for some E � 0 and r > 0, and we take
(Q, g, f ) = (−E, 0, r2). Note that λmin[Q] ≤ − f ⇔ λmax[E] ≥ r2, which occurs if
and only if the deleted ellipsoid contains a point on the boundary of the unit ball. This
is the most interesting case because, if the deleted ellipsoid were either completely
inside or outside the unit ball, then the convex hull would simply be the unit ball itself.
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The subcase (ii) was also studied in Corollary 9 of [40] and in [14]. Moreover, none
of the other papers [2,13,23,35,36,55] can handle this case.

6.1.1 When λmin[Q] has multiplicity k ≥ 2

Define Bt := (1− t)I + t Q to be the top-left n × n corner of At . Since λmin[B1] < 0
with multiplicity k ≥ 2, there exists r ∈ (0, 1) such that: (i) Br  0; (ii) λmin[Br ] = 0
with multiplicity k; (ii) Bt � 0 for all t < r . We claim that s = r as a consequence of
the interlacing of eigenvalues with respect to At and Bt . Indeed, let λt

n+1 := λmin[At ]
and λt

n denote the two smallest eigenvalues of At , and let ρt
n and ρt

n−1 denote the
analogous eigenvalues of Bt . It is well known that

λt
n+1 ≤ ρt

n ≤ λt
n ≤ ρt

n−1.

When t < r , we have λt
n+1 < 0 < ρt

n ≤ λt
n , and when t = r , we have λr

n+1 < 0 ≤
λr

n ≤ 0, which proves s = r .
Since dim(null(Bs)) = k ≥ 2 and dim(span{g}⊥) = n − 1, there exists 0 �= z ∈

null(Bs) such that gT z = 0. We can show that
(z
0

) ∈ null(As):

As

(
z

0

)
=

(
Bs s g

s gT (1 − s)(−1) + s f

)(
z

0

)
=

(
Bs z

s gT z

)
=

(
0

0

)
.

Moreover,
(z
0

)T
A1

(z
0

) = zT B1z = zT Qz < 0 because z ∈ null(Bs) if and only if z
is a eigenvector of B1 = Q corresponding to λmin[Q]. This verifies Condition 4.

6.1.2 When λmin[Q] ≤ − f and g = 0

The argument is similar to the preceding subcase in Sect. 6.1.1. Note that

At =
(

(1 − t)I + t Q 0
0 (1 − t)(−1) + t f

)
=:

(
Bt 0
0 βt

)

is block diagonal, so that the singularity of At is determined by the singularity of Bt

and βt . Bt is first singular when t = 1/(1 − λmin[Q]), while βt is first singular when
t = 1/(1 + f ) (assuming f > 0; if not, then βt is never singular). Then

1

1 − λmin[Q] ≤ 1

1 + f
⇐⇒ λmin[Q] ≤ − f,

whichholds by assumption. So Bt is singular beforeβt , leading to s = 1/(1−λmin[Q]).
Let 0 �= z ∈ null(Bs). Then, we have Qz = − 1−s

s z, and thus,
(z
0

) ∈ null(As) with(z
0

)T
A1

(z
0

) = zT B1z = zT Qz < 0. Condition 4 is hence verified.
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6.2 The trust-region subproblem

We show in this subsection that our methodology can be used to solve the trust-region
subproblem (TRS)

min
ỹ∈Rn−1

{
ỹT Q̃ ỹ + 2 g̃T ỹ : ỹT ỹ ≤ 1

}
, (17)

where λmin[Q̃] < 0. Without loss of generality, we assume that Q̃ is diagonal with
Q̃(n−1)(n−1) = λmin[Q̃] after applying an orthogonal transformation that does not
change the feasible set.

Our intention is not necessarily to argue that the TRS should be solved numerically
with our approach, although this is an interesting question left as future work. Our goal
is to illustrate that the well-known problem (17) can be handled by our machinery.
We also believe that the corresponding SOCP formulation for the TRS as opposed to
its usual SDP formulation is independently interesting. Our transformations to follow
require simply two eigenvalue decompositions and the resulting SOCP can be solved
by interior point solvers very efficiently. We note that none of the previous papers,
in particular, [2,13,23,35,36,40,55] have given a transformation of the TRS into an
SOC optimization problem before. We recently became aware that an SOC based
reformulation of TRS was also given in Jeyakumar and Li [30]; our approach parallels
their developments from a different, convexification based, perspective.

We first argue that (17) is equivalent to a trust-region subproblem

min
y∈Rn

{
yT Qy + 2 gT y : yT y ≤ 1

}
(18)

in the n-dimensional variable y := ( ỹ
yn

)
. Indeed, define

Q :=
(

Q̃ 0

0T λmin[Q̃]

)
, g :=

(
g̃

0

)
,

and note that λmin[Q] has multiplicity at least 2. The following proposition shows that
(18) is equivalent to (17).

Proposition 8 There exists an optimal solution of (18) with yn = 0. In particular, the
optimal values of (17) and (18) are equal.

Proof Let ȳ be an optimal solution of (18). Then (ȳn−1; ȳn) is an optimal solution of
the two-dimensional trust-region subproblem

min
yn−1,yn

{
|λmin[Q̃]|

(
−y2n−1 − y2n

)
+ 2g̃n−1yn−1 : y2n−1 + y2n ≤ ε

}
.

where ε := 1− (ȳ21 +· · · ȳ2n−2). Since we are minimizing a concave function over the
ellipsoid, at least one optimal solution will be on the boundary of this set. In particular,
whenever g̃n−1 > 0, the solution

(yn−1
yn

) = (−√
ε

0

)
is optimal, and when g̃n−1 ≤ 0, the
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solution
(yn−1

yn

) = (√
ε
0

)
is optimal. Thus, this problem has at least one optimal solution

with yn = 0. Hence, ȳn can be taken as 0. ��
With the proposition in hand, we now focus on the solution of (18).
A typical approach to solve (18) is to introduce an auxiliary variable xn+2 (where

we reserve the variable xn+1 for later homogenization) and to recast the problem as

min

{
xn+2 : yT y ≤ 1

yT Qy + 2 gT y ≤ xn+2

}
.

If one can compute the closed convex hull of this feasible set, then (18) is solvable
by simplyminimizing xn+2 over the convex hull.We can represent this approach in our
framework by taking x = (y; xn+1; xn+2), homogenizing via xn+1 = 1, and defining

A0 :=
⎛
⎝

I 0 0
0T −1 0
0T 0 0

⎞
⎠ , A1 :=

⎛
⎝

Q g 0
gT 0 − 1

2
0T − 1

2 0

⎞
⎠ , H1 := {

x ∈ R
n+2 : xn+1 = 1

}
.

Clearly, Conditions 1 and 2 are satisfied.However, no part ofCondition 3 is satisfied.
So we require a different approach.

Since x = 0 is feasible for (18), its optimal value is nonpositive. (In fact, it is
negative since Q has a negative eigenvector, so that x = 0 is not a local minimizer).
Hence, (18) is equivalent to

v := min

{
x2n+2 : yT y ≤ 1

yT Qy + 2 gT y ≤ −x2n+2

}
, (19)

which can be solved in stages: first, minimize xn+2 over the feasible set of (19) (let
l be the minimal value); second, separately maximize xn+2 over the same set (let u
be the maximal value); and finally take v = min{−l2,−u2}. If one can compute the
closed convex hull of (19), then l and u can be computed easily.

To represent the feasible set of (19) in our framework, we define x =
(y; xn+1; xn+2) and take

A0 :=
⎛
⎝

I 0 0
0T −1 0
0T 0 0

⎞
⎠ , A1 :=

⎛
⎝

Q g 0
gT 0 0
0T 0 1

⎞
⎠ , H1 :=

{
x ∈ R

n+2 : xn+1 = 1
}
.

Clearly, Conditions 1 and 2 are satisfied, and Condition 3(ii) is now satisfied. For
Conditions 4 and 5, we note that At has a block structure such that s equals the smallest
positive t such that

Bt := (1 − t)

(
I 0
0 −1

)
+ t

(
Q g
gT 0

)

is singular.Using an argument similar to Sect. 6.1.1 and exploiting the fact thatλmin[Q]
has multiplicity at least 2, we can compute s such that there exists 0 �= z ∈ null(Bs) ⊆
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R
n+1 with zT B1z < 0 and zn+1 = 0. By appending an extra 0 entry, this z can be

easily extended to z ∈ R
n+2 with zT A1z < 0 and z ∈ H0. This simultaneously

verifies Conditions 4 and 5.

6.3 Paraboloids

Consider the set

{
y =

(
ỹ

yn

)
∈ R

n : ỹT ỹ ≤ yn

ỹT Q̃ ỹ + 2 gT y + f ≤ 0

}
,

where λ := λmin[Q̃] < 0 and 2gn ≤ −λ. After an affine transformation, this models
the intersection of a paraboloid with any quadratic inequality that is strictly linear in
yn , i.e., no quadratic terms involve yn . Note that if λmin[Q] ≥ 0, then the set is already
convex. The reason for the upper bound on 2gn will become evident shortly.

Writing g := ( g̃
gn

)
, we can model this situation with x = ( y

xn+1

)
and

A0 :=
⎛
⎝

I 0 0
0T 0 − 1

2
0T − 1

2 0

⎞
⎠ , A1 :=

⎛
⎝

Q̃ 0 g̃
0T 0 gn

g̃T gn f

⎞
⎠ , H1 := {x : xn+1 = 1} ,

and we would like to compute cl. conv. hull(F+
0 ∩F1∩ H1). Conditions 1 and 3(i) are

clear, and Condition 2 describes the full-dimensional case of interest. So it remains to
verify Conditions 4 and 5.

Define

Bt :=
(

(1 − t)I + t Q̃ 0

0 0

)

to be the top-left n ×n corner of At , and define r := 1/(1−λ). Due to its structure, Bt

is positive semidefinite for all t ≤ r . Moreover, Bt has exactly one zero eigenvalue for
t < r , and Br has at least two zero eigenvalues. Those two zero eigenvalues ensure that
Ar is singular by the interlacing of eigenvalues of At and Bt (similar to Sect. 6.1.1).
So s ≤ r .

We claim that in fact s = r . Let t < r ; and consider the following system for
null(At ):

⎛
⎝

(1 − t)I + t Q̃ 0 t g̃
0T 0 (1 − t)(− 1

2 ) + t gn

t g̃T (1 − t)(− 1
2 ) + t gn t f

⎞
⎠

⎛
⎝

z̃
zn

zn+1

⎞
⎠ =

⎛
⎝
0
0
0

⎞
⎠ .

Note that 2gn ≤ −λ and 0 ≤ t < r imply

2
[
(1 − t)

(− 1
2

) + t gn
] = t (1+2 gn)−1 ≤ t (1−λ)−1 < r(1−λ)−1 = 0, (20)
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which implies zn+1 = 0. This in turn implies z̃ = 0 because (1 − t)I + t Q̃ � 0
when t < r . Finally, zn = 0 again due to (20). So we conclude that t < r implies
null(At ) = {0}. Hence, s = r . We next write

As =
(

Bs gs

gs s f

)
.

Since dim(null(Bs)) ≥ 2 and dim(span{gs}⊥) = n − 1, there exists 0 �= z ∈
null(Bs) such that gT

s z = 0. From the structure of Bs , we have z = ( z̃
zn

)
, where z̃ is a

negative eigenvector of Q̃. We claim that
(z
0

) ∈ null(As). Indeed:

As

(
z

0

)
=

(
Bs gs

gT
s s f

)(
z

0

)
=

(
Bs z

gT
s z

)
=

(
0

0

)
.

Moreover,
(z
0

)T
A1

(z
0

) = zT B1z = z̃T Q̃z̃ < 0. This verifies Conditions 4 and 5.
We remark that Corollary 8 in [40] studies the closed convex hull of the set

{
y =

(
ỹ

yn

)
∈ R

n : ‖ Ã(ỹ − c̃)‖2 ≤ yn, ‖D̃(ỹ − d̃)‖2 ≥ −γ yn + q

}
,

where Ã ∈ R
(n−1)×(n−1) is an invertiblematrix, c̃, d̃ ∈ R

n−1 and γ ≥ 0. This situation
is covered by our theory here. The paper [14] also applies to this case, but none of the
other papers [2,13,23,35,36,55] are relevant here.

7 Conclusion

This paper provides basic convexity results regarding the intersection of a second-
order-cone representable set and a nonconvex quadratic. Although several results have
appeared in the prior literature, we unify and extend these by introducing a simple,
computable technique for aggregating (with nonnegative weights) the inequalities
defining the two intersected sets. The underlying conditions of our theory can be
checked easily in many cases of interest.

Beyond the examples detailed in this paper, our technique can be used in otherways.
Consider for example, a general quadratically constrained quadratic program, whose
objective has been linearized without loss of generality. If the constraints include an
ellipsoid constraint, then our techniques can be used to generate valid SOC inequalities
for the convex hull of the feasible region by pairing each nonconvex quadratic con-
straint with the ellipsoid constraint one by one. The theoretical and practical strength
of this technique is of interest for future research, and the techniques in [3,37] could
provide a good point of comparison.

In addition, it would be interesting to investigate whether our techniques could be
extended to produce valid inequalities or explicit convex hull descriptions for intersec-
tions involving multiple SOCr sets or multiple nonconvex quadratics. After our initial
June 2014 submission of this paper, a similar aggregation idea has been recently
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explored in [41] in November 2014 by using the results from [54]. We note that as
opposed to our emphasis on the computability of SOCr relaxations, these recent results
rely on numerical algorithms to compute such relaxations and further topological con-
ditions for verifying their sufficiency.
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