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Abstract 
 
Companies more and more rely on predictive 

services which are constantly monitoring and 
analyzing the available data streams for better service 
offerings. However, sudden or incremental changes in 
those streams are a challenge for the validity and 
proper functionality of the predictive service over 
time. We develop a framework which allows to 
characterize and differentiate predictive services with 
regard to their ongoing validity. Furthermore, this 
work proposes a research agenda of worthwhile 
research topics to improve the long-term validity of 
predictive services. In our work, we especially focus 
on different scenarios of true label availability for 
predictive services as well as the integration of expert 
knowledge. With these insights at hand, we lay an 
important foundation for future research in the field of 
valid predictive services. 
 
1. Introduction  
 

Due to the large increase of data in recent years, 
various industries are trying to reap the benefits of this 
new resource for their service offerings. Machine 
learning is playing an important role in nearly all fields 
of business, ranging from marketing over 
governmental tasks to scientific-, health- and security-
related applications [1]. Many companies rely on 
machine learning models deployed in their 
information systems for increasing the efficiency of 
their processes [2] or for offering new services [3]. As 
Davenport [4] describes, companies which are able to 
leverage their data sources through analytical tools 
achieve a substantial competitive advantage.  

However, it is worth regarding how such predictive 
services based on machine learning are built, deployed 
and executed in the long run. Traditionally, supervised 
machine learning models are trained using historical 
data containing input features and a corresponding 
target [5]. Subsequently, the model is used to 
continuously make predictions for a specific service 

(e.g. the failure of a machine) on a stream of unseen 
incoming data. We define such a service as a 
“predictive service”. However, data streams typically 
evolve over time and thus, their data structure or the 
underlying probability distribution changes [6]. This 
depicts a challenge since supervised machine learning 
models are very sensitive to changes in their input 
data, e.g. to the adjustment of production parameters 
[7]. Even small deviations can have significant impact 
on the deployed model—drastically influencing its 
prediction performance and the utility of the predictive 
service [8]. However, it is difficult to detect this 
change in the input data and, furthermore, to adapt the 
model accordingly [7]. In the field of computer 
science, the phenomenon of a changing relation over 
time between the input features and the target labels is 
predominantly called “concept drift” [9].  

An example for an application with evolving data 
over time is a predictive service which monitors the 
output quality in a chemical production process and 
predicts corresponding failures [10]. Such a predictive 
service relies on the input data generated by the 
sensors that the production machine is equipped with. 
Sensors wear out over time [11] and the resulting 
measurements change accordingly, leading to 
different input data. However—without the necessary 
precautions—a machine learning model is not 
prepared for this change since this pattern has not been 
observed before in the training set. Thus, meaningful 
quality predictions are impossible to make in the long 
run, and the service does not keep up to its promised 
validity. Therefore, we define a general research 
question which guides this research paper:   

General RQ. How can we design an effective and 
efficient automated artifact for predictive services, 
which ensures their long-term validity? 

Based on this general research question, we aim to 
describe the current status of predictive services.  

RQ1. How can we distinguish between various 
forms of existing predictive services with regard to 
their lifecycle?  

For answering this question, this work introduces 
a definition of predictive services as well as a 
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framework for characterizing predictive services with 
respect to their validity over time. The framework can 
be used as a support tool for practitioners during the 
introduction of a predictive service so that all relevant 
design options are considered. Furthermore, the 
framework allows a thorough analysis as well as 
comparison of existing approaches. In demarcation to 
existing frameworks such as Gama et al. [9], our 
framework includes the setup as well as operation 
phase of predictive services. Subsequently, we classify 
available research papers into the framework resulting 
in a heatmap which serves as a foundation for deriving 
a research agenda of valuable research topics: The 
different availability of true labels during operation as 
well as methods for domain expert integration. 

The remainder of the paper is structured as follows: 
Section 2 presents related work on which we base our 
research and introduces a definition of predictive 
services. Section 3 presents a framework for 
characterizing aspects of predictive services and 
classifies existing practical research on that basis. 
Section 4 introduces research opportunities that are 
derived from challenges identified in the previous 
section. The fifth and final section discusses our 
results, describes theoretical and managerial 
implications, acknowledges limitations and outlines 
future research. 

 
2. Foundations 
 
To allow for a common understanding, we first 
introduce the theoretical foundations for the 
examination of the validity of predictive services. We 
give a brief overview on machine learning for services, 
followed by an overview of research in computer 
science that deals with concept drift. Subsequently, we 
introduce predictive services. 
 
2.1. Machine learning for services 
 

Machine learning in general has recently received 
a lot of attention due to the massive flow of available 
data and increasing computation power. Traditionally, 
approaches are divided into supervised and 
unsupervised machine learning [12]. Supervised 
machine learning depends on labeled examples in the 
training data, whereas unsupervised machine learning 
aims at detecting unknown patterns in the data. Most 
real-word applications of machine learning are of 
supervised nature ([13], [14]). Therefore, we focus on 
supervised approaches in the following. Well-known 
application examples are the prediction of a credit 
rating or the fingerprint matching on current 
smartphones.  

The importance of analytical and machine learning 
solutions for service science has been highlighted by 
the introduction of service analytics [15]. Service 
analytics describes the dedicated application of 
analytical tools such as machine learning on data 
created in service systems to improve or extend 
existing service offerings. In this context, continuous 
data streams over time play an important role. 
Machine learning is, for instance, applied to monitor 
click streams on web pages or to monitor events and 
notifications [16]. All those examples are confronted 
with changing data streams over time. Therefore, the 
next section introduces definitions as well as solutions 
developed for this challenge from a computer science 
perspective. 
 
2.2. Concept drift 
 

The computer science community has examined  
the challenge of changing data streams in machine 
learning over time under the term “concept drift” [17]. 
A concept 𝑝(𝑋, 𝑦) is described as the joint probability 
distribution over a set of input variables 𝑋 and the label 
or target variable 𝑦. However, “in the real world 
concepts are often not stable but change with time”  [7, 
p. 1]. This leads to the problem that machine learning 
models built on previous data are not valid anymore 
for new incoming data which requires regular model 
updates or retraining. There exists a variety of 
descriptive definitions of concept drift ([6], [13], [14]). 
A mathematical definition is given by Gama et al. [9]:  

𝑝'((𝑋, 𝑦) ≠ 𝑝'*(𝑋, 𝑦) 
The definition states that we are facing a concept 

drift if there is a difference in the concept at t0 
compared to the concept at t1. This change of the joint 
distribution is challenging for supervised machine 
learning models since they are typically trained on a 
fixed initial training set [7]. However, if the features 
and the label of the training set just belong to the 
concept at t0, the model is only trained to recognize 
objects of the first concept whereas it does not know 
how to handle instances belonging to the second 
concept at t1. Changes in the incoming data stream can 
depend on many internal or external factors. 
Therefore, it is intuitive that different types of changes 
in data streams can be identified. One popular 
classification of concept drift depicts four different 
types [19]: Sudden concept drift, incremental concept 
drift, gradual concept drift and reoccurring concept 
drift such as seasonal patterns. Webb et al. [20] also 
provide a more detailed taxonomy with categories 
such as drift and concept duration as well as drift 
magnitude. 

Gama et al. [9] introduce a framework which 
focuses on algorithmic methods for changing data 
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streams. The framework consists of four categories: 
Memory, change detection, learning and loss 
estimation. A description on application-related use 
cases is given by Žliobaite et al. [10]. They provide a 
list of 54 research papers that implement solutions and 
methods for changing data streams with real data. 
Concrete use cases which consider the challenges of 
concept drift occurrence can be clustered into 
monitoring and control tasks ([17], [18]), information 
management ([19], [20]) and analytics and diagnostics 
tasks ([21], [22]).  

Based on the foundations in the previous two 
subsections, we introduce predictive services in the 
following.  

 
2.3. Predictive services 

 
We define predictive services as services based on 

predictions that are acquired through the application of 
supervised machine learning models on data available 
in its service system environment. Predictive services 
are fully deployed on a productive IT infrastructure 
and thereby are constantly issuing new predictions. 
The final objective can either be the delivery of the 
prediction itself (e.g. forecast for the market demand 
for a product) or an action based on the prediction (e.g. 
the automated adjustment of the production schedule 
for a product). 

We assume that the validity of predictive services 
can be affected in two ways: First, the environment of 
the service changes, which influences the resulting 
data, and thus, the quality of the prediction. This is the 
case when a sensor on a production machine wears out 
over time and delivers less reliable results. Second, the 
application of the service itself affects its predictive 
power over time. The second case can be illustrated by 
a predictive policing service indicating the 
neighborhoods in a city with the most criminal 
activities. The local police will accordingly reinforce 
their presence in this area which results in a decreasing 
criminal statistic over time. This development, 
however, will invalidate the recommendations of the 
predictive service which continues to classify this 
neighborhood as a high-risk area [26]. After all, any 
kind of predictive service is facing the challenge of a 
changing environment over time; it is just a matter of 
the time span that is considered.  

The example above illustrates the complexity of 
ensuring the long-term validity of predictive services. 
Therefore, the problem requires a comprehensive and 
interdisciplinary analysis. On the one hand, it is 
necessary to thoroughly examine the technological 
side of the problem. On the other hand, the economic 
side must be also considered, and benefits or 
downsides of possible solutions must be assessed. 

The next section introduces a framework which 
can be used to set up a predictive service and to 
prepare it for changes in the data stream in order to 
guarantee the validity over time. 
 
3. Conceptual framework 
 
The framework can be understood as a tool to support 
the initiation and implementation of a predictive 
service. It gives guidance for decisions during the 
setup phase of a predictive service but also provides 
solutions for challenges during the operation and use 
of the predictive service. Furthermore, it allows to 
differentiate between characteristics of predictive 
services. At first, we explain the methodology that we 
applied for the development of the framework. 
Subsequently, we introduce the framework itself 
which is split into three parts. The first part relates to 
necessary design decisions during the setup of a 
predictive service. The second part displays the 
algorithmic options for keeping the validity over time. 
The third part presents characteristics that need to be 
considered during operation, especially the 
availability of true labels and the constant evaluation 
of the service.  
 
3.1. Methodology 
 
Gama et al. [9] provide a taxonomy which explains the 
different algorithmic options for handling changing 
data streams. This taxonomy is the basis for our 
framework and is mainly reflected in the second part 
(c.f. section 3.3). However, their taxonomy is missing 
design decisions during setup as well as operation of 
predictive services. The consideration of both phases 
is (besides the algorithmic methods) crucial for the 
development of a successful predictive service. Our 
framework is therefore built as an extension to the 
prevailing taxonomy.  

We developed our framework by a rigorous 
analysis of existing use cases in research that examine 
concept drift. We base this analysis on the 54 research 
papers which are presented in Žliobaite et al. [10],  as 
those include papers from a wide range of application 
tasks. We remove all research papers with 
unsupervised approaches and those that do not provide 
sufficient information for in-depth comparisons 
resulting in 23 remaining research papers. Based on a 
forward and backward search on this list, we identified 
11 additional research papers. In total, we included 34 
research papers ([11], [21], [23], [25], [27-56]) into 
our detailed analysis. During the analysis, we 
iteratively added or removed categories as we 
progressed with the number of research papers. The 
items are based on existing literature. If we could not 
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identify suitable literature, we added the items based 
on our analysis of the research papers. The resulting 
framework needs to be understood as an exploratory 
tool which still develops over time as new research 
papers are included. 
 
3.2. Setup decisions for predictive service 
 
Before a predictive service can be offered, 
fundamental decisions about the setup of the service 
must be made. Table 1 depicts the different categories 
for the setup phase. 

Business focus: When designing a predictive 
service, one of the first steps is to clearly define the 
business focus. What is the benefit that the service is 
delivering and who is the final user/customer of it? 
The customer can either be external (e.g. a service 
provider offers constant social media analytics to a 
customer with a tool) or internal (e.g. predictive 
service is used for the improvement of internal 
processes) [2].  

 
Table 1. Predictive service setup decisions 
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Data input: A differentiation with regard to the 

data input which is used for the predictive service is 
necessary. Structured data in form of tables (e.g. [38]) 
can easily be utilized by most machine learning 
algorithms and change detection approaches. 
However, unstructured data (e.g. text data [51]) is 
more complex to process and requires more advanced 
handling techniques, especially for the change 
detection. 

Machine Learning Task: A clear definition of the 
relevant machine learning task behind the predictive 
service is indispensable. If the aim is to predict the 
continuous value of a target, regression techniques 
have to be applied (e.g. [21]). If the aim is to predict 
the class membership of an object, classification will 
be used (e.g. [28]).  

Inclusion of domain expert knowledge: The  
knowledge of domain experts is a valuable resource 
for the validity of predictive services [10]. Several 
ways in which domain experts can support the 
development of valid predictive services have been 
identified. The simplest way to include domain experts 
into the process is the provision of true labels for the 
service. For instance, a predictive service is 
monitoring the quality in a chemical production 
facility. True labels for the chemical product can be 
acquired from experts who examine selected samples 
in a laboratory. Domain experts can also be included 
into the feature generation process for the machine 
learning model [57]. Especially experienced machine 
operators often know which hints and signals are 
relevant for the prediction of a machine failure and 
jointly it can be thought how to transform this 
information into a feature for the learning algorithm. It 
is also possible to explicitly apply knowledge of 
domain experts during the model building process, e.g. 
through the inclusion of fixed decision rules. Domain 
experts can also be relevant for the explicit detection 
of changes in the data. Human experts supported and 
empowered by advanced visual analytics tools can 
provide more insights than an algorithm alone [58].  

Type of change: During the setup phase of a 
predictive service, expected changes of the data stream 
which affect the validity can already be identified. If 
this information is known a priori, suitable algorithms 
can be chosen beforehand. The different types of 
changes are based on the definition by Žliobaite [19]. 
Sudden concept drift refers to situation where the data 
changes abruptly from one time point to another. 
Incremental and gradual concept drift both refer to 
situations where the change in the data stream happens 
slower over time. The two types are merged here since 
in real use cases the two are mainly not differentiable. 
Reoccurring concept drift refers to situations where 
data changes regularly to already known patterns such 
as seasonal contexts. 
 
3.3. Algorithmic decisions 
 
The second part of the framework relates to the 
algorithmic and technical characteristics of the 
predictive service. This subsection is built on the 
research paper by Gama et al. [9] which identifies four 
categories for dealing with changing data over time: 
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Memory, Detection model, Learning, Loss estimation. 
The items for each category are also based on the work 
by Gama et al. [9], however their item specification is 
very detailed. During our analysis, we realized that 
items can be merged without information loss. Table 2 
contains the corresponding categories as well as the 
items that we specified during our analysis. 

Memory: Due to the massive amount of data 
produced in data streams, it is often infeasible to 
consider all data instances of a data stream. This 
category deals with the memory management of the 
predictive service. How many instances are stored for 
training or retraining of the algorithm? The quantity 
can range from a single instance to multiple or all 
instances. Often, algorithms only consider a window 
of the last n instances which are deemed to be still 
relevant to the algorithm. In cases with massive 
computing power or limited size of data in the stream, 
the algorithm might also consider all instances. It is 
also possible that only a sample of past data is used. 
 
Table 2. Algorithmic decisions for predictive 

services 
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Change detection: Change detection refers to the 

mechanism that is applied to detect a change in the 
data stream. Various approaches have been proposed 
in research. In sequential analysis, the values of new 
data instances are compared to older values on the 
basis of statistical tests. Other approaches rely on 
statistical process control which is widely applied in 
chemical production processes. The algorithm tracks 
the number of correct predictions over time and if the 
amount of false predictions exceeds a predefined 
threshold, an alarm is triggered. However, this 
approach requires the instant provisioning of the true 
labels after the prediction. Another way is the 
application of two time-windows with different size. 

The statistical data distributions of the two windows 
are compared with statistical tests. In case of a 
difference, a change or concept drift has happened. 
Contextual approaches use time-related measures for 
change detection. 

Learning: As soon as new true labels for previous 
predictions are available to the predictive service, the 
machine learning algorithm behind it might be 
adapted. Usually, two different options are available: 
Retraining, where the old model is discarded and a 
new one is trained from the scratch or incremental 
updates, where the current model is slightly modified. 
Incremental learning is closely connected to the idea 
of continuous learning where the model never stops to 
learn according to the circumstances. Concerning the 
type of model, it can be differentiated between a single 
model or ensemble models where several models are 
combined for a prediction.  

Loss estimation: Supervised machine learning 
models rely on feedback/true labels to optimize their 
performance. One can differentiate between model-
dependent and model-independent loss estimation 
methods. Model-independent loss estimation 
approaches are more popular where a metric such as 
accuracy is computed and evaluated over time. 
However, some machine learning techniques such as 
Support Vector Machines allow the detection of 
changes in the data based on internal algorithmic 
characteristics. 

While we now discussed the necessary 
characteristics of the setup of valid predictive services, 
the next section describes challenges during the 
operation of predictive services. 
 
3.4. Operation of predictive service 
 
During the operation of a predictive service, constant 
updates and improvements are necessary. Therefore, 
relevant topics are the acquisition of true labels as well 
as the evaluation criteria as depicted in table 3.  

Label: The availability of true labels during 
operation is the most relevant feedback for the 
optimization of a machine learning algorithm 
deployed on a data stream. Therefore, this category is 
highly important to guarantee the validity and proper 
functionality of predictive services. Label availability 
is differentiated into three items: Full label, limited 
label and no label availability. 

Full label availability refers to the case where the 
predictive service can receive access to all true labels 
after the prediction. Thus, the service receives 
feedback to every single prediction that it issued 
before, and the algorithm constantly receives new 
training data for improvement. Weather predictions 
are an example for this item. If the service issues a 
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weather prediction for the next day, we can always 
receive the true label for the weather on the following 
day—and continue to learn on these insights.  
 

Table 3. Operation of predictive service 
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Full label availability refers to the case where the 

predictive service can receive access to all true labels 
after the prediction. Thus, the service receives 
feedback to every single prediction that it issued 
before, and the algorithm constantly receives new 
training data for improvement. Weather predictions 
are an example for this item. If the service issues a 
weather prediction for the next day, we can always 
receive the true label for the weather on the following 
day—and continue to learn on these insights.  

Limited label availability means that only a 
fraction of all true labels can be accessed after the 
prediction. In this case, the algorithm only receives 
feedback on its performance for a few instances. A 
further differentiation can be made by determining 
whether it is possible to select the instances for which 
labels are acquired (e.g. true quality of a specific 
chemical product can be determined by a laboratory 
analysis) or whether it is a random sample. An 
example for this is a predictive service determining 
customer satisfaction and true labels are received by 
sending a survey to all customers. However, we do not 
know who is going to respond to the inquiry. 
Therefore, the instances in the sample cannot be 
influenced and are random.  

No label availability describes a situation when it 
is impossible to acquire labels. During training of the 
prediction model, a full data set with labels is 
available. However, during operation, when the 
predictive service is deployed, no true labels for 
previous predictions can be received. Therefore, the 
machine learning model cannot adapt its predictions to 
changes in the data. This demands methods that are 
specifically robust to outliers and unexpected 
deviations in the data [8]. Reasons for no label 
availability can be that it is too costly to acquire the 
true labels. In other situations, it might just be 
impossible to receive the true labels, e.g. a machine 
part for whose functionality we can receive true labels 
with sensors in a specialized test bench; however, in 

the field of application these sensors are not available 
and therefore labels are impossible to derive. 

Evaluation criteria: The traditional evaluation of 
the performance of machine learning models is based 
on statistical evaluation metrics such as accuracy, 
recall or F1-score [12]. These metrics are suitable for 
expressing the mere algorithmic performance on the 
use case that is reflected. However, since this work 
considers the explicit service based on the algorithm, 
it is also necessary to study the business impact of the 
predictive service, especially the influence of validity 
over time [9]. One way is to examine the influence on 
profits. Many use cases where predictive services are 
applied also lead to imbalanced cost of prediction 
mistakes. In case of predictive maintenance, it is 
costlier to not predict and therefore miss the failure of 
a machine resulting in a very expensive stop of the 
whole production instead of triggering a false alarm. It 
is also necessary to consider the environment where 
the predictive service is deployed. This refers to 
computational but also memory constraints in the IT 
infrastructure. Investment and setup costs also need to 
be considered. This category is closely linked to the 
business focus category in section 3.2. 
 
3.5. Heatmap of research papers 
 

In the following paragraph, we classify the 34 
research papers which we used for the development of 
the framework. The result of this approach is a 
heatmap which is depicted in table 4.  

Many application cases utilize several of the 
design options in parallel or test different variations in 
their approaches. Therefore, the sum of papers per row 
often exceeds 34. The heatmap indicates the different 
design options which were chosen by the different 
researchers. This allows to understand which of the 
available solutions and methods are really 
implemented for use cases and how often they are 
used. As stated above (section 3.1), the heatmap has to 
be understood as an exploratory tool since we do not 
map all existing research papers.  

The heatmap indicates that current use cases 
dealing with changing data over time mainly use 
structured data for a classification problem with 
sudden or incremental changes in the data (e.g. [23], 
[28], [31]). There seems to be a lack in the 
consideration of economic challenges. Many projects 
do not name a specific business focus behind the 
implemented prediction model (e.g. [20]). The reason 
for this may lie in the academic nature of the projects. 
Furthermore, most use cases rely on statistical 
evaluation only (e.g. [11], [48]). However, this 
consideration lacks evidence whether its economically 
viable and useful to implement such a service. 
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Table 4. Heatmap of existing research 
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Additionally, so far, the knowledge of domain 
experts is mainly used for label provision and feature 
generation (e.g. [21], [29]). Efficient methods for 
expert integration into model building and change 
detection are missing. Most research projects also 
assume a full availability of true labels for the 
predictive service (e.g. [25], [32], [47]). Only few 
approaches have been developed for a limited label 
availability (e.g. [39]) and there is no approach in our 
paper selection which deals with no label availability. 
However, those two are the categories that prevail in 
real-world applications. 

 
4. A research agenda for preserving 
validity of predictive services over time 
 
The heatmap in the previous section indicates that 
there is still a lack of dedicated solutions for 
challenges during the design and operation of 
predictive services which remain valid over time. 
Based on our analysis, we identify two areas where 
current research approaches lack solutions so far. 

RQ 2. Which are suitable methods for ensuring the 
validity of predictive services with limited availability 
of true labels in operation? 

True labels for a prediction are a very relevant 
feedback mechanism for any kind of machine learning 
algorithm. However, for a predictive service in 
operation, this information is only partly available —
if at all [59]. The proposed framework already depicts 
the different possibilities for the available number of 
labels. Additionally, Žliobaite et al. [10] define 
temporal dimensions when the true label is available 
to the predictive service. They differentiate this 
temporal dimension into real-time, time-lag and on 
demand. Real-time availability means that the labels 
are available in the next time period after the 
prediction. In other situations, true labels might arrive 
after a fixed or variable time lag. Asking a user for 
feedback is an example for a use case where the true 
labels can be acquired on demand. If we combine the 
temporal dimensions with the volume dimensions, 
several different scenarios emerge which are depicted 
in table 5.  

 
Table 5. Different scenarios for label 

availability 
      Time 
 
Volume 

Next time period Time-lag On demand 

Full e.g. Klinkenberg 
et al. [29] 

e.g. Black  
et al. [33] 

e.g. Fdez-
Riverola et al. 

[22] 

Limited ? ? ? 

None ? (no time differentiation) 

 
There exist various algorithms for predictive 

services with full label availability during operation. 
However, solutions for the other scenarios when only 
limited or no true labels are available to the predictive 
service are sparse so far. This is depicted by the 
question marks in table 5. RQ 2 aims at developing and 
establishing methods for each of the scenarios with a 
question mark. In case only a limited number of labels 
is available, it might be possible to derive the missing 
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labels with the help of the existing ones (e.g. in form 
of a semi-supervised approach [60]). Another 
approach might be an efficient method for the 
integration of expert knowledge which leads to the 
next research question.  

RQ 3. How can expert knowledge be leveraged to 
increase the long-term validity of predictive services? 

The knowledge of domain experts is a very 
valuable resource in any form of analytical solution. 
This research question deals with the challenge on 
how this expertise can be leveraged to increase the 
validity of predictive services. Therefore, this question 
aims at examining and evaluating methods for expert 
knowledge integration. Several areas for expert 
integration are already presented in the framework in 
section 3. With regard to label provision, it is 
interesting to examine which labelled instances are 
most useful for the predictive service in order to 
improve its importance. One possible solution could 
be the application of active learning [19], a machine 
learning technique. In case of changing data, the 
machine learning model asks for expert support in 
labeling the most important instances for ensuring its 
ongoing validity. This also relates to the limited label 
availability in RQ2. 

Furthermore, a structured method to integrate 
experts into the model building process is necessary. 
Possible methods can be derived from approaches in 
other machine learning areas but also from research 
streams that already enabled the successful integration 
of expert knowledge, e.g. in decision support systems 
[18]. 

Basing a change detection algorithm on expert 
input requires a constant monitoring of the predictive 
service. However, for instance in most production 
plants, this is the case anyway. This setup allows to use 
the strengths of each player involved in this scenario. 
The algorithm can provide a constant monitoring and 
is not distracted by other activities. The human expert 
meanwhile can work on other tasks and is only alerted 
when unusual patterns are detected in the data. 
Supported by advanced visual analytics, the expert can 
then for instance identify the type of change that 
occurred in the data and act accordingly. Another 
approach is the inclusion of experts directly in the 
training phase of the prediction model. Domain 
experts can anticipate possible data drifts and a model 
can be tuned in order to detect these corresponding 
drifts. 

Independently of the actual method that is applied, 
the development of an efficient integration method 
could also increase the acceptance and understanding 
of domain experts for automated decisions made by 
predictive services which is a common challenge in 
practice [9]. During the answering of the RQs, a strong 

focus should lie on the economic evaluation of the 
proposed solution. Resulting costs (e.g. setup costs, 
computational costs during operation) need to be 
rigorously compared to the economic consequences of 
fewer false predictions for the predictive service. 

 
5. Conclusion 
 
Companies are increasingly dependent on data for the 
offering of their services. Predictive services, which 
are services based on predictions by supervised 
machine learning, are playing an important role in this 
context. These services constantly issue predictions 
over time which are an important decision support or 
might even act autonomously. Therefore, it is of high 
importance that predictive services work reliably. 
However, data streams constantly evolve and change 
over time and thereby challenge the proper 
functionality of the predictive service. This work 
proposes research areas to ensure the validity of 
predictive services over time. The contribution of this 
paper is threefold.  

First, we provide a definition of predictive services 
and explain how their validity over time can be 
influenced by changing data. Second, based on 
previous research projects that are handling changing 
data streams, we develop a framework which gives 
guidance to practitioners but also to researchers for 
setting up a new predictive service. Furthermore, it 
allows to differentiate between existing predictive 
services. Third, after classifying the existing research 
approaches into the framework, we identified two 
areas for improvement: The label availability in 
operation as well as the integration of domain experts. 
Correspondingly, we developed a research agenda 
which aims at developing solutions for those 
challenges. The derived research agenda is of high 
importance to any endeavor dealing with predictive 
services. It is important that such services are resilient 
against changes in the incoming data streams.  

Besides these contributions, this work has 
limitations. Validity is only one aspect of predictive 
services which needs to be examined. However, a 
holistic view on predictive services requires that also 
other aspects such as organizational challenges are 
considered. Companies need to ensure that they have 
the required resources such as a skilled workforce and 
IT infrastructure available. Furthermore, legal 
requirements are gaining more and more importance. 
The introduction of GDPR in Europe poses many 
challenges for most companies [61]. Predictive 
services often rely on personal data (e.g. the operators 
of a machine) or are based on IP-relevant data sources.  

With regard to the developed framework, we are 
aware that the number of papers that we analyzed is 
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limited, and we do not claim to have included all 
relevant research papers. As new papers are added to 
the framework, it still might change and adopt. Since 
this is work is a research agenda, its content is rather 
conceptual and further quantitative evaluation of the 
problems stated is needed. By conducting expert 
interviews with practitioners, we plan to further refine 
the research demand and the possible solution space. 

The use of predictive services in productive 
environments is only at the beginning of its 
development. In the future, more and more services 
will rely on automated decisions based on machine 
learning algorithms. Therefore, it is very worthwhile 
to investigate methods to guarantee the long-term 
validity of those services. 
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