How to Cut a Cake Fairly
Author(s): Walter Stromquist
Source: The American Mathematical Monthly, Vol. 87, No. 8 (Oct., 1980), pp. 640-644
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2320951
Accessed: 14/08/2013 20:54

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.
lines is not acute; we may take this angle α to be at a vertex (h, k) in the first quadrant. Then $\alpha \geqslant \pi / 2$ implies that $h+k \leqslant 2$, and this in turn implies that the area of C in the first quadrant does not exceed 1 . Hence $A(C) \leqslant 4$.
B-6. (22, 4, 3, 0, 0, 0, 1, 0, 10, 4, 42, 119)
Let $X=\left(x_{1}, \ldots, x_{n}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$. Also let $a+b i$ be either square root of $z_{1}^{2}+\cdots+z_{n}^{2}$. Then $a b=X \cdot Y=x_{1} y_{1}+\cdots+x_{n} y_{n}$ and

$$
a^{2}-b^{2}=\|X\|^{2}-\|Y\|^{2}=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)-\left(y_{1}^{2}+\cdots+y_{n}^{2}\right) .
$$

The Cauchy-Schwarz inequality tells us that $|X \cdot Y| \leqslant\|X\| \cdot\|Y\|$ and hence $|a| \cdot|b| \leqslant$ $\|X\| \cdot\|Y\|$. Therefore, the assumption that $|a|>\|X\|$ would imply that $|b|<\|Y\|$. This and $a^{2}=\|X\|^{2}-\|Y\|^{2}+b^{2}$ would yield $a^{2}<\|X\|$ and thus the contradiction $|a|<\|X\|$. Hence the assumption is false and $r=|a| \leqslant\|X\|$. Since $\|X\|^{2} \leqslant\left(\left|x_{1}\right|+\cdots+\left|x_{n}\right|\right)^{2}$, this implies the desired $r \leqslant\left|x_{1}\right|+\cdots+\left|x_{n}\right|$.

MATHEMATICAL NOTES

Edited by Deborah Tepper Haimo and Franklin Tepper Haimo

Material for this department should be sent to Professor Deborah Tepper Haimo, Department of Mathematical Sciences, University of Missouri, St. Louis, MO 63121.

HOW TO CUT A CAKE FAIRLY

Walter Strompuist

Daniel H. Wagner Associates, Station Square One, Paoli, PA 19301
In this note we prove that a cake can be divided fairly among n people, although each may have a different opinion as to which parts of the cake are most valuable. It can be done even if "fair" means that all people must receive their first choices!

In a simpler version of the problem, a division is regarded as "fair" if all people ("players") are satisfied that each has received at least $1 / n$ of the cake. For this version, there is a simple and practical solution, attributed by Steinhaus [1] to Banach and Knaster. Martin Gardner describes the case $n=3$ in his newest book [2]:
"One person moves a large knife slowly over a cake. The cake may be any shape, but the knife must move so that the amount of cake on one side continuously increases from zero to the maximum amount. As soon as any one of the three believes that the knife is in a position to cut a first slice equal to $1 / 3$ of the cake, he/she shouts 'Cut!' The cut is made at that instant, and the person who shouted gets the piece. Since he/she is satisfied that he/she got $1 / 3$, he/she drops out of the cutting ritual. In case two or all three shout 'Cut!' simultaneously, the piece is given to any one of them.
"The remaining two persons are, of course, satisfied that at least $2 / 3$ of the cake remain. The problem is thus reduced to the previous case...
"This clearly generalizes to n persons."
Gardner then describes the more difficult version of the problem, in which a division is regarded as "fair" only if all players consider their own pieces to be at least as valuable as any of the others-essentially, all players get their first choices. The procedure described above doesn't always meet this test, because the player who claims the first piece may have a change of mind after seeing the remaining pieces. When $n=3$, we propose a new procedure to meet this objection:

A referee moves a sword from left to right over the cake, hypothetically dividing it into a small left piece and a large right piece. Each player holds a knife over what he considers to be the midpoint of the right piece. As the referee moves his sword, the players continually adjust their knives, always keeping them parallel to the sword (see Fig. 1). When any player shouts "cut," the cake is cut by the sword and by whichever of the players' knives happens to be the middle one of the three.

Fig. 1.
The player who shouted "cut" receives the left piece. He must be satisfied, because he knew what all three pieces would be when he said the word. Then the player whose knife ended nearest to the sword, if he didn't shout "cut," takes the center piece; and the player whose knife was farthest from the sword, if he didn't shout "cut," takes the right piece. The player whose knife was used to cut the cake, if he hasn't already taken the left piece, will be satisfied with whichever piece is left over. If ties must be broken-either because two or three players shout simultaneously or because two or three knives coincide-they may be broken arbitrarily.

This procedure does not generalize to larger n. John Selfridge, John Conway, and Richard Guy, in their research on the fair division of wine, have discovered a more elegant algorithm for $n=3$, but it, too, fails to generalize. In this note we shall be content with a nonconstructive existence theorem valid for all n.

One existence theorem, operating on quite different principles, has already appeared in this Monthly [3]. Dubins and Spanier (in an article with the same title as this note) assumed that each player's preferences are defined by a nonatomic measure over the cake. They proved that, given any finite number of measures (including those of the players and those of the kibitzers as well), there is a partition of the cake into n parts that are equal according to all of the measures. This was one of several results illustrating the power of Lyapunov's Theorem and other measure-theoretic techniques. Unfortunately, their result depends on a liberal definition of a "piece" of cake, in which the possible pieces form an entire σ-algebra of subsets. A player who hopes only for a modest interval of cake may be presented instead with a countable union of crumbs.

In this note we shall adhere more closely to the original model by imposing a rigid structure on the ways in which the cake may be cut. In particular, we shall insist that it be cut by ($n-1$) planes, each parallel to a given plane. The possible cuts can then be represented by numbers in the interval $[0,1]$; and the possible divisions of the cake, by vectors $x=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ such that $0 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n-1} \leqslant 1$. By convention let $x_{0}=0$ and $x_{n}=1$, so that the i th piece is the interval $\left[x_{i-1}, x_{i}\right]$. The possible divisions form a compact set in \mathbb{R}^{n-1}, which we call the division simplex,

$$
S=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \mid 0 \leqslant x_{1} \leqslant \cdots \leqslant x_{n-1} \leqslant 1\right\} .
$$

See Fig. 2. S has the shape of an $(n-1)$-simplex with vertices at $v_{1}=(1,1, \ldots, 1), v_{2}=$ $(0,1, \ldots, 1), \ldots, v_{n}=(0,0, \ldots, 0)$. The vertex v_{i} represents the division in which the i th piece is the whole cake, and the face opposite v_{i}, which we shall call S_{i}, consists of divisions for which the i th piece is empty.

FIG. 2. When $n=3, S \subseteq R^{2}$.

Fig. 3. Preferences of the j th player.

We allow great generality in the player's preferences. We assume that the choice for the j th player is based on a real-valued evaluation function f_{j}, which gives the value of the i th piece in terms of x_{1}, \ldots, x_{n-1} (and i). Thus the value of the i th piece to the j th player is denoted by $f_{j}(x, i)$. Intuitively, one expects $f_{j}(x, i)$ to depend only on x_{i-1} and x_{i}, but the added generality comes at no extra cost.

For a given x, we say that player j prefers the i th piece if $f_{j}(x, i) \geqslant f_{j}(x, k)$ for all k. For some divisions a player may be indifferent to two or more "preferred" pieces. The division is fair if each player can be given a preferred piece.

We assume that each f_{j} is a continuous function of x. We must also assume that no player ever prefers an empty piece of cake.

Theorem. Under these assumptions, there is a division x and a way to assign the pieces to the players such that all players prefer their assigned pieces.

Proof. For each i, j, let $A_{i j}$ be the set of divisions $x \in S$ for which the j th player prefers the i th piece. From the continuity of the functions f_{j} we know that each $A_{i j}$ is closed. For each j, the sets $A_{i j}$ cover S. The assumption that no player prefers an empty piece implies that $A_{i j}$ has empty intersection with the face S_{i} for each i, j. The sets $A_{i j}$ provide all the information we need about the players' preferences, so we shall not refer again to the functions f_{j}. See Fig. 3.

Define $B_{i j}=\cap_{k \neq i}\left(S-A_{k j}\right)$. Thus $B_{i j}$ is the set of divisions for which the j th player prefers only the i th piece. Typically $B_{i j}$ is the interior of $A_{i j}$, but that is not necessary. Each $B_{i j}$ is open (relative to S). Note that, for a given j, the sets $B_{i j}$ do not cover S; the uncovered part ($S-\cup_{i} B_{i j}$) consists of divisions for which the j th player is indifferent to two or more acceptable pieces.

Now define $U_{i}=\cup_{j} B_{i j}$. Thus U_{i} is the set of divisions for which some player prefers only the i th piece. Note that each U_{i} is open (as always, relative to S) and that U_{i} does not intersect S_{i}. We now divide the proof into two cases.

Usual Case: The sets U_{i} cover S. In this case we rely on a topological lemma.
Lemma. Suppose an $(n-1)$-simplex S is covered by n open sets U_{1}, \ldots, U_{n}, such that no U_{i} intersects the corresponding face S_{i}. Then the common intersection of U_{1}, \ldots, U_{n} is nonempty.

To see how this lemma proves the theorem (in the usual case), choose a division x in the common intersection of the U_{i} 's. Since $x \in U_{i}$ for each i, every piece will be the unique acceptable piece for some player. Since there are exactly enough pieces to go around, all players can take their own first-choice pieces.

Proof of Lemma. We continue to regard S as a subset of the vector space \mathbb{R}^{n-1}, and use v_{i} and S_{i} as before. Write ∂S for the boundary of S. For each i, and for each $x \in S$, let $d_{i}(x)$ be the distance from x to the closed set $\left(S-U_{i}\right)$, and define $D(x)=\Sigma_{i} d_{i}(x)$. Since $x \in U_{i}$ for some i, some $d_{i}(x)$ is positive and so is $D(x)$. We may therefore define $f: S \rightarrow S$ by

$$
f(x)=\sum_{i} \frac{d_{i}(x)}{D(x)} v_{i} .
$$

The restriction of f to ∂S is a function $f_{0}: \partial S \rightarrow \partial S$ that takes each face S_{i} to itself. Hence we may define maps $f_{t}: \partial S \rightarrow \partial S$ by $f_{t}(x)=t x+(1-t) f(x)$. These maps define a homotopy between f_{0} and the identity on ∂S. Therefore f_{0} cannot be extended to a map from S to ∂S. In particular, since f is an extension of f_{0}, its image must intersect the interior of S.

Finally, if x is any point in f^{-1} (int S), then x is in each U_{i}.
Unusual Case: The sets U_{i} do not cover S. This case is unusual because it depends on a coincidence: if x is not in any U_{i}, then it is not in any $B_{i j}$ for any j, so it must leave every player indifferent to two or more acceptable pieces. But this is not impossible. For example, if all players have identical preferences, the "coincidence" is certain to occur.

Our strategy in this case is to modify the players' preferences. We will approximate the sets $A_{i j}$ by sets $A_{i j}^{\prime}$, which are more orderly and for which the "coincidence" does not occur. By applying the lemma we shall find a division that would be fair, if the players' preferences were described by the sets $A_{i j}^{\prime}$. As the approximations improve, these approximate solutions will converge to a division that is fair according to the actual preferences.

We start by choosing irrational numbers $\alpha_{1}, \ldots, \alpha_{n}$, one for each player, that are linearly independent over the rationals. We say that a number is related to α_{j} if its difference from α_{j} is rational. Numbers related to α_{j} are dense in \mathbb{R}, but no number can be related to both α_{j} and α_{k} if $j \neq k$.

Let M be a (large) integer.
For each j, construct $A_{i j}^{\prime}$ as follows. Divide S into cells by all planes of the form $\left\{x \mid x_{k}=\right.$ $\left.(L / M)+\alpha_{j}\right\}$ for $k=1, \ldots, n$ and for all integers L. A cell, together with its boundary, is part of $A_{i j}^{\prime}$ if i is the smallest subscript for which $A_{i j}$ intersects the cell. See Fig. 4.

Fig. 4. Approximating the preferences.
The important properties of $A_{i j}^{\prime}$ are (1) every point on the boundary of $A_{i j}^{\prime}$ has some coordinate related to α_{j}, and (2) $A_{i j}^{\prime}$ approximates $A_{i j}$ in the sense that every point $A_{i j}^{\prime}$ is within \sqrt{n} / M of some point of $A_{i j}$.

Now for each i, j, define $B_{i j}^{\prime}=\cap_{k \neq i}\left(S-A_{k j}^{\prime}\right)$-this is equal to the interior of $A_{i j}^{\prime}$-and define $U_{i}^{\prime}=\cup_{j} B_{i j}^{\prime}$. As before, the sets U_{i}^{\prime} are open and (if M has been chosen large enough) U_{i}^{\prime} does not intersect S_{i}. To prove that the sets U_{i}^{\prime} cover S, note that if x is not in any U_{i}^{\prime}, it must not be in any $B_{i j}^{\prime}$, so it must be on the boundary of some $A_{i j}^{\prime}$ for every j. That means that x must have a coordinate related to each of the α_{j} 's. But this is impossible, because x has only ($n-1$) coordinates, and each may be related to only one α_{j}.

Therefore, we may apply the lemma to find a point in the common intersection of the sets U_{i}^{\prime}. We call it x_{M}. If the cake is divided according to x_{M}, the pieces can be assigned to the players in such a way that if the j th player receives the i th piece, then x_{M} is contained in $A_{i j}^{\prime}$ and is within \sqrt{n} / M of $A_{i j}$.

As M increases, we can generate a sequence of divisions $\left\{x_{M}\right\}$. Since S is compact, we can find a subsequence that converges to some division $x \in S$; and by reducing to another subsequence if necessary, we can guarantee that the assignment of pieces to players is the same for each division x_{M} in the subsequence. Cut the cake according to x and assign the pieces to the players as for these x_{M}. Then if the j th player receives the i th piece, x must be arbitrarily close to $A_{i j}$. Since $A_{i j}$ is closed, this implies that $x \in A_{i j}$, and the j th player prefers the assigned piece.

References

1. H. Steinhaus, Sur la division pragmatique, Econometrica (supplement), 17 (1949) 315-319.
2. Martin Gardner, aha! Insight, Scientific American/W. H. Freeman, San Francisco, 1978, p. 124.
3. L. E. Dubins and E. H. Spanier, How to cut a cake fairly, this Monthly, 68 (1961) 1-17.

NAPOLEON'S THEOREM AND THE PARALLELOGRAM INEQUALITY FOR AFFINE-REGULAR POLYGONS

Leon Gerber
Department of Mathematics and Computer Science, St. John's University, Jamaica, NY 11439

A well-known theorem, first proved in [2] but credited to Napoleon, reads as follows:
Construct equilateral triangles outwardly on the sides of any triangle. Their centers form the vertices of an equilateral triangle.

A lesser-known theorem of Thébault [11] (which is easily obtained as a corollary of Van Aubel's theorem [6],[1]) states:

Construct squares outwardly on the sides of any parallelogram. Their centers form the vertices of a square.

Clearly these theorems are related, and we may conjecture that they are part of a sequence of theorems leading from some m-gons to regular m-gons. In what sense, however, is a parallelogram, rather than the general quadrilateral, the successor of an arbitrary triangle? An answer to this question is provided by the following observations:
(a) Any triangle is the image of an equilateral triangle under an affine transformation.
(b) A quadrilateral is a parallelogram if and only if it is the affine image of a square.

These suggest the following result, which, in spite of its simplicity, appears to be new for $m \geqslant 5$, since even Thébault's result is not mentioned in survey articles [1], [7], [8], and [9]. Throughout the paper all subscripts will be taken modulo m.

Theorem 1. Let $\mathscr{P}=P_{0} P_{1} \cdots P_{m-1}$ be a simple plane m-gon and construct regular m-gons on the sides of \mathscr{P}, one set outwardly and one set inwardly. Their centers form the vertices of m-gons $\mathcal{2}$ and $\mathfrak{2}^{\prime}$, and the centroids of $\mathscr{P}, \mathcal{2}$ and $\mathfrak{2}^{\prime}$ coincide. If \mathscr{P} is the affine image of a regular m-gon, then:

1. The m-gons 2 and 2^{\prime} are regular.
2. The difference of the areas of 2 and \mathfrak{Q}^{\prime} is $4 \cos ^{2}(\pi / m)$ times the area of \mathscr{P}.
3. The sum of the squares of the edges of 2 and $\mathfrak{2}^{\prime}$ is $4 \cos ^{2}(\pi / m)$ times the sum of the squares of the edges of \mathscr{P}.

Conversely, if $\mathcal{2}$ (or $\mathfrak{2}^{\prime}$) is regular, then \mathscr{P} is affine-regular.

