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640 WALTER STROMQUIST [October 

lines is not acute; we may take this angle a to be at a vertex (h, k) in the first quadrant. Then 
a >, <2 implies that h + k < 2, and this in turn implies that the area of C in the first quadrant 
does not exceed 1. Hence A(C) < 4. 

B-6. (22, 4, 3, 0, 0, 0, 1, 0, 10, 4, 42, 119) 

Let X= (x1, . * . ,xn) and Y= (yi' * ,Yn). Also let a + bi be either square root Of Z2+... + z,2. Then 
ab=X*Y=x1ly1+** +xjyn and 

a2-b2=jjXjj2_jj yjj2=(x2+... +X,2)_(y2+... +Y2 

The Cauchy-Schwarz inequality tells us that IX. YI S jIXII * 11 Yll and hence lal I lbi S 
IIXII II YI. Therefore, the assumption that lal> lXII would imply that IbI < II YII. This and 
a2=H1XHI2-H1YH12+b2 would yield a2<I XII and thus the contradiction IaI<IIX I. Hence the 
assumption is false and r=IaIIX I X1. Since iIX112?<(1X11+*** +IXnl)2, this implies the desired 
rS IxII+. +lXnl 

MATHEMATICAL NOTES 

EDITED BY DEBORAH TEPPER HAIMO AND FRANKLIN TEPPER HAIMo 

Material for this department should be sent to Professor Deborah Tepper Haimo, Department of Mathematical 
Sciences, University of Missouri, St. Louis, MO 63121. 

HOW TO CUT A CAKE FAIRLY 

WALTER STROMQUIST 
Daniel H. Wagner Associates, Station Square One, Paoli, PA 19301 

In this note we prove that a cake can be divided fairly among n people, although each may 
have a different opinion as to which parts of the cake are most valuable. It can be done even if 
"fair" means that all people must receive their first choices! 

In a simpler version of the problem, a division is regarded as "fair" if all people ("players") 
are satisfied that each has received at least l/n of the cake. For this version, there is a simple 
and practical solution, attributed by Steinhaus [1] to Banach and Knaster. Martin Gardner 
describes the case n =3 in his newest book [2]: 

"One person moves a large knife slowly over a cake. The cake may be any shape, but the knife must 
move so that the amount of cake on one side continuously increases from zero to the maximum amount. As 
soon as any one of the three believes that the knife is in a position to cut a first slice equal to 1/3 of the 
cake, he/she shouts 'Cut!' The cut is made at that instant, and the person who shouted gets the piece. Since 
he/she is satisfied that he/she got 1/3, he/she drops out of the cutting ritual. In case two or all three shout 
'Cut!' simultaneously, the piece is given to any one of them. 

"The remaining two persons are, of course, satisfied that at least 2/3 of the cake remain. The problem is 
thus reduced to the previous case ... 

"This clearly generalizes to n persons." 

Gardner then describes the more difficult version of the problem, in which a division is 
regarded as "fair" only if all players consider their own pieces to be at least as valuable as any of 
the others-essentially, all players get their first choices. The procedure described above doesn't 
always meet this test, because the player who claims the first piece may have a change of mind 
after seeing the remaining pieces. When n =3, we propose a new procedure to meet this 
objection: 
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A referee moves a sword from left to right over the cake, hypothetically dividing it into a small left piece 
and a large right piece. Each player holds a knife over what he considers to be the midpoint of the right 
piece. As the referee moves his sword, the players continually adjust their knives, always keeping them 
parallel to the sword (see Fig. 1). When any player shouts "cut," the cake is cut by the sword and by 
whichever of the players' knives happens to be the middle one of the three. 

FIG. 1. 

The player who shouted "cut" receives the left piece. He must be satisfied, because he knew what all 
three pieces would be when he said the word. Then the player whose knife ended nearest to the sword, if he 
didn't shout "cut," takes the center piece; and the player whose knife was farthest from the sword, if he 
didn't shout "cut," takes the right piece. The player whose knife was used to cut the cake, if he hasn't 
already taken the left piece, will be satisfied with whichever piece is left over. If ties must be broken-either 
because two or three players shout simultaneously or because two or three knives coincide-they may be 
broken arbitrarily. 

This procedure does not generalize to larger n. John Selfridge, John Conway, and Richard 
Guy, in their research on the fair division of wine, have discovered a more elegant algorithm for 
n =3, but it, too, fails to generalize. In this note we shall be content with a nonconstructive 
existence theorem valid for all n. 

One existence theorem, operating on quite different principles, has already appeared in this 
MONTHLY [3]. Dubins and Spanier (in an article with the same title as this note) assumed that 
each player's preferences are defined by a nonatomic measure over the cake. They proved that, 
given any finite number of measures (including those of the players and those of the kibitzers as 
well), there is a partition of the cake into n parts that are equal according to all of the m-easures. 
This was one of several results illustrating the power of Lyapunov's Theorem and other 
measure-theoretic techniques. Unfortunately, their result depends on a liberal definition of a 
"piece" of cake, in which the possible pieces form an entire a-algebra of subsets. A player who 
hopes only for a modest interval of cake may be presented instead with a countable union of 
crumbs. 

In this note we shall adhere more closely to the original model by imposing a rigid structure 
on the ways in which the cake may be cut. In particular, we shall insist that it be cut by (n - 1) 
,planes, each parallel to a given plane. The possible cuts can then be represented by numbers in 
the interval [0, 1]; and the possible divisions of the cake, by vectors x=(XI X21, x ... ,Xn- ) such that 
O<xI6x2< . xn-I<1. By convention let x0=0 and xn =l, so that the ith piece is the 
interval [xi -,xi]. The possible divisions form a compact set in Rl1, which we call the division 
simplex, 

Sv=f(XI. XY .1<lnX1 < *' ..<Xn1 < 
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See Fig. 2. S has the shape of an (n-l)-simplex with vertices at v1=(1, 1,..., 1),v2= 
(0, 1,..., 1),.. .,v =(0,0,.. ., 0). The vertex vi represents the division in which the ith piece is the 
whole cake, and the face opposite vi, which we shall call Si, consists of divisions for which the ith 
piece is empty. 

V2=(O, 1) S3 VI =(1, 1) V2 VI 

A 21 A 1i 

SI 

V3 = (O, 0) V3 

FIG. 2. When n = 3, S C R2. FIG. 3. Preferences of thejth player. 

We allow great generality in the player's preferences. We assume that the choice for the jth 
player is based on a real-valued evaluation function f1, which gives the value of the ith piece in 
terms of xI,...-,x,,.-1 (and i). Thus the value of the ith piece to thejth player is denoted by f(x, i). 
Intuitively, one expects f(x, i) to depend only on xi -1 and xi, but the added generality comes at 
no extra cost. 

For a given x, we say that playerj prefers the ith piece if f1(x, i) >f1(x, k) for all k. For some 
divisions a player may be indifferent to two or more "preferred" pieces. The division is fair if 
each player can be given a preferred piece. 

We assume that each f is a continuous function of x. We must also assume that no player 
ever prefers an empty piece of cake. 

THEOREM. Under these assumptions, there is a division x and a way to assign the pieces to the 
players such that all players prefer their assigned pieces. 

Proof. For each i,j, let A. be the set of divisions x E S for which the jth player prefers the ith 
piece. From the continuity of the functions f we know that each A. is closed. For each j, the sets 
A. cover S. The assumption that no player prefers an empty piece implies that A. has empty 
intersection with the face Si for each i,j. The sets A., provide all the information we need about 
the players' preferences, so we shall not refer again to the functions fj. See Fig. 3. 

Define B. = n k,i(S - Akj). Thus B. is the set of divisions for which thejth player prefers only 
the ith piece. Typically B. is the interior of Au,, but that is not necessary. Each B., is open 
(relative to S). Note that, for a given j, the sets B. do not cover S; the uncovered part 
(S - U iBij) consists of divisions for which the jth player is indifferent to two or more acceptable 
pieces. 

Now define Ui = ujBy. Thus Ui is the set of divisions for which some player prefers only the 
ith piece. Note that each Ui is open (as always, relative to S) and that Ui does not intersect S,. 
We now divide the proof into two cases. 

Usual Case: The sets U; cover S. In this case we rely on a topological lemma. 

LEMMA. Suppose an (n - 1)-simplex S is covered by n open sets U1,..., U-,, such that no U 
intersects the corresponding face Si. Then the common intersection of U1,..., U, is nonempty. 

To see how this lemma proves the theorem (in the usual case), choose a division x in the 
common intersection of the Ui's. Since x E Ui for each i, every piece will be the unique 
acceptable piece for some player. Since there are exactly enough pieces to go around, all players 
can take their own first-choice pieces. 
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Proof of Lemma. We continue to regard S as a subset of the vector space RFO"-1, and use vi 
and Si as before. Write aS for the boundary of S. For each i, and for each x E S, let di(x) be the 
distance from x to the closed set (S - U), and define D(x) = 2idi(x). Since x E Ui for some i, 
some d,(x) is positive and so is D(x). We may therefore define f:S->S by 

f(x)= D i(d ) vi( 

The restriction of f to aS is a function fo: as8-)s that takes each face Si to itself. Hence we 
may define maps f,: as->as by f,(x) = tx + (1- t)f(x). These maps define a homotopy between fo 
and the identity on Ms. Therefore fo cannot be extended to a map from S to Ms. In particular, 
since f is an extension of fo, its image must intersect the interior of S. 

Finally, if x is any point in f -1 (int S), then x is in each Ui. 

Unusual Case: The sets Ui do not cover S. This case is unusual because it depends on a 
coincidence: if x is not in any U,, then it is not in any B. for anyj, so it must leave every player 
indifferent to two or more acceptable pieces. But this is not impossible. For example, if all 
players have identical preferences, the "coincidence" is certain to occur. 

Our strategy in this case is to modify the players' preferences. We will approximate the sets 
Ai by sets A',f which are more orderly and for which the "coincidence" does not occur. By 
applying the lemma we shall find a division that would be fair, if the players' preferences were 
described by the sets A,.. As the approximations improve, these approximate solutions will 
converge to a division that is fair according to the actual preferences. 

We start by choosing irrational numbers aj,... ,a, one for each player, that are linearly 
independent over the rationals. We say that a number is related to aj if its difference from aj is 
rational. Numbers related to aj are dense in Rlt, but no number can be related to both aj and ak if 
j#4k. 

Let M be a (large) integer. 
For each j, construct AX, as follows. Divide S into cells by all planes of the form {xlXk= 

(L/M)+ aj) for k = 1,...,n and for all integers L. A cell, together with its boundary, is part of 
A!, if i is the smallest subscript for which Ai intersects the cell. See Fig. 4. 

V2 VI 

A2'j Al~ 

V3 

FIG. 4. Approximating the preferences. 

The important properties of A,j are (1) every point on the boundary of A' has some 
coordinate related to aj, and (2) A,J approximates Au in the sense that every point A' is within 
\bi /M of some point of Ai. 

Now for each i,j, define B,j= nk7#i(S-A A)-this is equal to the interior of As.-and define 
Ui'= ujB,j. As before, the sets Ui' are open and (if M has been chosen large enough) Ui' does not 
intersect S,. To prove that the sets Ui' cover S, note that if x is not in any Ui', it must not be in 
any B,J, so it must be on the boundary of some A,j for every j. That means that x must have a 
coordinate related to each of the aj's. But this is impossible, because x has only (n-1) 
coordinates, and each may be related to only one aj. 
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Therefore, we may apply the lemma to find a point in the common intersection of the sets Ui'. 
We call it XM. If the cake is divided according to XM, the pieces can be assigned to the players in 
such a way that if the jth player receives the ith piece, then XM is contained in A,, and is within 
Nfi /M of A . 

As M increases, we can generate a sequence of divisions {XM}. Since S is compact, we can 
find a subsequence that converges to some division x E S; and by reducing to another 
subsequence if necessary, we can guarantee that the assignment of pieces to players is the same 
for each division XM in the subsequence. Cut the cake according to x and assign the pieces to the 
players as for these XM. Then if thejth player receives the ith piece, x must be arbitrarily close to 
A . Since Ai, is closed, this implies that x E A., and the jth player prefers the assigned piece. 
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NAPOLEON'S THEOREM AND THE PARALLELOGRAM INEQUALITY FOR 
AFFINE-REGULAR POLYGONS 

LEON GERBER 
Department of Mathematics and Computer Science, St. John's University, Jamaica, NY 11439 

A well-known theorem, first proved in [2] but credited to Napoleon, reads as follows: 

Construct equilateral triangles outwardly on the sides of any triangle. Their centers form the 
vertices of an equilateral triangle. 

A lesser-known theorem of Thebault [11] (which is easily obtained as a corollary of Van 
Aubel's theorem [6], [1]) states: 

Construct squares outwardly on the sides of any parallelogram. Their centers form the vertices of 
a square. 

Clearly these theorems are related, and we may conjecture that they are part of a sequence of 
theorems leading from some m-gons to regular m-gons. In what sense, however, is a parallelo- 
gram, rather than the general quadrilateral, the successor of an arbitrary triangle? An answer to 
this question is provided by the following observations: 

(a) Any triangle is the image of an equilateral triangle under an affine transformation. 
(b) A quadrilateral is a parallelogram if and only if it is the affine image of a square. 
These suggest the following result, which, in spite of its simplicity, appears to be new for 

m> 5, since even Thebault's result is not mentioned in survey articles [1], [7], [8], and [9]. 
Throughout the paper all subscripts will be taken modulo m. 

THEOREM 1. Let '2P = PoP, ... Pm 1 be a simple plane m-gon and construct regular m-gons on 
the sides of ', one set outwardly and one set inwardly. Their centers form the vertices of m-gons 2 
and D', and the centroids of ', 2 and D' coincide. If Y is the affine image of a regular m-gon, 
then: 

1. The m-gons g and D' are regular. 
2. The difference of the areas of 2 and D' is 4cos2(<g/m) times the area of ''. 
3. The sum of the squares of the edges of 2 and ?' is 4cos2(T/m) times the sum of the squares 

of the edges of VP. 
Conversely, if 2 (or 2') is regular, then VP is affine-regular. 
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