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Abstract 

In open-set speaker identification systems a known 

phenomenon is that the false alarm (accept) error rate 

increases dramatically when increasing the number of 

registered speakers (models). In this paper, we demonstrate 

this phenomenon and suggest a solution using a new model-

dependent score-normalization technique, called Top-norm. 

The Top-norm method was specifically developed to improve 

results of open-set speaker identification systems. Also, we 

suggest a score-normalization parameter adaptation 

technique. Experiments performed using speaker recognition 

corpora are described and demonstrate that the new method 

outperforms other normalization methods. 

1. Introduction 

Open-set speaker identification or multi-target detection [1] is 

the most challenging type of speaker recognition. It aims to 

determine if an input utterance (test) is from a specified 

speaker (target) which is modeled in a target-set (models, 

stack, or watch-list). The task is open-set since the test can be 

from non-target speakers (unknown speakers). Open-set 

speaker identification has applications to the audio database 

search task for recorded telephone interactions, recorded 

meetings, or other historical audio documents, where a set of 

speakers (targets) are searched. 

Open-set identification systems suffer from the “false 

alarm (FA) error rate problem”. The FA increases 

dramatically with increasing stack size. This problem does 

not exist in verification systems. In order to deal with this FA 

problem, a new speaker-dependent (model-dependent) score-

normalization called Top-norm is presented. In this 

normalization method, only the top-impostor-scores which 

produce the FA errors in a low-FA tuned verification system 

are to be considered in the normalization process.  

In speaker recognition systems based on stochastic 

models (such as GMM) likelihood scores are very sensitive to 

variations in text, speaking behavior, and recording 

conditions [2]. Score normalization has been introduced 

explicitly to cope with score variability and to make speaker-

independent decision threshold tuning easier [3]. It has been 

shown that score normalization is very effective in improving 

open-set speaker identification system performances [4] as 

well as in speaker verification systems [2], [5]. 

In this paper, the open-set speaker identification problem 

is discussed and emphasized using some simulated results. 

We show that significantly better identification results can be 

achieved, theoretically, when decreasing the standard 

deviation of the non-target score distribution in the prototype 

verification system, even when the equal error rate (EER) is 

kept. Open-set speaker identification experiments using 

speaker recognition databases are presented and the proposed 

Top-norm score normalization method is compared with other 

methods such as world model normalization (WMN), Z-norm, 

unconstrained cohort normalization (UCN), and T-norm. 

2. The False Accept Error Problem of 

Identification Systems 

Given a set of known speakers (target-set) and a sample 

utterance of an unknown speaker (test), open-set speaker 

identification (OSI) is defined as a twofold problem [4]: 1) 

Identifying the speaker model in the set, which best matches 

the test utterance. 2) Decision whether the test utterance has 

actually been produced by the speaker associated with the 

best-matched model (target), or by unknown speaker outside 

the target-set (non-target). This decision is made using a 

threshold operated on the maximum score *
s produced by the 

target-set models. This open-set identification can be seen 

also as multi-target detector [1], where each target-model in 

the test phase is operated as a single target detector.  

Suppose that M speakers (targets) are enrolled in the 

system and their statistical models are 1 2, ,..., Mλ λ λ . If O 

denotes the feature vectors sequence extracted from the test 

utterance then the open-set identification can be stated as 

follows: 
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where τ  is a pre-determined threshold and ( )| ms λO  is a 

probabilistic score of O given a target model mλ . 

Three types of errors exist in an open-set identification 

system: 1) FA error - occurs when the maximum score *
s  is 

above threshold given that the test is of a non-target speaker. 

2) False reject error (FR or miss) - occurs for a target test 

when the maximum score *
s  is below threshold. 3) 

Confusion error - occurs for a target test when the maximum 

score *s  is above threshold; however the model that yields 

the maximum score is not belong to the input tested speaker. 

We may consider the case of group detector (or top-S stack 

detector [1]), which is the case where we only want to know 

if the tested input speaker belongs to the target-set or not; the 

exact identity of the speaker is not necessary. Thus, the 

confusion error does not exist. 

The overlapping between the distributions of the non-

target scores and of the target scores in open-set identification 

is greater than the overlapping of impostor scores and target 

scores in speaker verification. This is because of the 

maximum score selection (between the models’ scores) in the 



identification process; the bigger the target-set size (M), the 

greater is this overlapping. 

In order to emphasize the problem of open-set 

identification versus verification, a simulated test was 

performed using equations of predicted miss and false alarm 

probabilities (1), (2). These equations were derived for the 

group detector (of size M) probabilities of miss ( )ˆ
missP τ  and 

false alarm (false accept) ( )ˆ
faP τ  using the miss ( )missP τ  and 

false alarm ( )faP τ  probabilities (τ - threshold) of the 

prototype verification system (single detector). For these 

equations, we assume that the (M) detectors operate 

independently of each other, that they all have the same miss 

and false alarm probabilities, and that the prior probabilities 

of the target classes are equal [1]  

 ( ) ( )( )ˆ 1 1
M

fa faP Pτ τ= − −  (1) 

 ( ) ( ) ( )( ) 1ˆ 1
M

miss miss faP P Pτ τ τ
−

= ⋅ −  (2) 

In this test, the target scores and the impostor scores of 

the prototype single target detector (verification system) were 

simulated using Gaussian distributions. Fig. 1 shows the 

simulated score histograms of the first simulated experiment. 

The mean of the target scores ( Tµ ) is 1, the mean of the non-

target (impostors) scores ( nTµ ) is -3.9, and the standard 

deviation of both scores ( ,T nTσ σ ) is 1.5. Fig. 2 shows the 

detection error trade-off (DET) curves of the predicted 

identification system using equations (1) and (2) calculated 

from the scores distribution of Fig. 1 for different stack 

(target-set) sizes ( 1,2,...,10,20,...,100,200,...,1000M = ). 

From Fig. 2 one can see that the stack size has a major 

influence on the group detector performances. For an equal 

error rate (EER) of 5% we get EER of 12.8% for stack size of 

10 and EER of 23.9% for a stack size of 100. In many 

applications, these error rates are too large to work with; 

especially if we have very large stack sizes (over 100).  

Fig. 3 shows the group detector miss and false alarm 

probabilities for stack sizes 1,2,...,1000M =  for a multi-

target detector composed of prototypes (single-detectors) 

operating at ( ) ( )0.2, 0.0075miss faP Pτ τ= = . From this 

figure one can see that the false alarm rate increases 

dramatically with increasing stack size. These 

( ) ( )( ),miss faP Pτ τ  points can be seen also by the circles in 

Fig. 2. As has been observed also by others [1] [6], we need 

single detectors (verification systems) that produce very low 

FA rates in order to have a reasonable FA rate when 

combining these single-detectors into multi-target 

(identification) systems. 

Fig. 4 shows another example of simulated score 

histograms. This time, the standard deviation of the non-target 

score distribution ( 0.8nTσ = ) is less than the standard 

deviation of the target score distribution ( 1.5Tσ = ).  The 

mean of the non-target score distribution was chosen to be 

2.76nTµ = −  in order to have the same EER for the 

verification results as in the previous simulated example 

(EER = 5%). Fig. 5 shows the DET curves of the predicted 

identification system using equations (1) and (2) calculated 

from the scores distribution of Fig. 4 for different stack 

(target-set) sizes ( 1,2,...,10,20,...,100,200,...,1000M = ).  

From this figure one can see that significantly better 

identification results are achieved as compared to the 

previous example (Fig. 2), especially in the low FA areas. For 

example, for M = 100, the EER of this system is 14.8% as 

compared to 23.9% in the previous one, although both 

prototype verification systems have the same EER value 

(5%). This phenomenon is caused by the fact that when 

decreasing the standard deviation of the non-target score 

distribution, the DET curve is tilted counterclockwise. The 

“width” of the non-target score distribution right “tail” is 

narrower, which causes lower FA rates for a given FR rate (in 

the FR > EER area). Hence identification systems, whose 

DET curve points can be seen as transformed from the lower 

FA area points of the prototype verification system (see the 

circles in Fig. 5), perform better.  

Score normalization techniques may cause this kind of 

“tilt” in the prototype verification DET curve [7]. In order to 

achieve this effect, we choose to use a score normalization 

method which is presented next.  
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Figure 1: Histograms of the first simulated test scores. 
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Figure 2: DET curves of the first simulated test.  
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Figure 3: The group detector miss and false alarm 

probabilities vs. stack size for a group detector composed of 

prototypes operating at ( ) ( )0.2, 0.0075miss faP Pτ τ= = . 
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Figure 4: Histograms of the second simulated test scores. 
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Figure 5: DET curves of the second simulated test. 

3. The Top-Norm Method 

Even after world model normalization (WMN) the score 

distribution is different for each speaker model (target). This 

causes relatively high FA errors for some targets and 

relatively high FR (miss) errors for other targets. Fig. 7 (left 

column) demonstrates this phenomenon; it shows an example 

of impostor score distributions of 20 different speakers 

(models), where the scores have WMN only. To compensate 

for this phenomenon, Z-norm score normalization method [8] 

has been proposed and used. In this method speaker-

dependent mean and variance (normalization parameters) are 

estimated from the speaker- (model-) dependent impostor 

(non-target)-score distribution (see impostor Z-norm score 

distribution on Fig. 7 – middle column). However, this 

method assumes that this distribution for each model is 

Gaussian. Practically, it is not accurate. Most often the right 

tail may be considered Gaussian, but not the overall 

distribution. This is mainly (but not only) because of the 

existence of different channels and/or handset devices and, in 

some cases, both male and female trials. To deal with this 

phenomenon and still to perform speaker-dependent score-

normalization, a new score-normalization technique called 

Top-norm is presented. 

In the Top-norm method, only the top-impostor-scores 

which produce the FA errors in a low-FA tuned verification 

system are to be considered. Top-norm is similar to Z-norm, 

in means of calculating two parameters for each target-

speaker: mean and standard-deviation, however, these 

parameters are not to be calculated from all the impostor 

scores, only from the top-scores (see Fig. 6). Hence, the 

normalized score is 

 

%

%n

s
s

µ
σ
−

=  (3) 

where %µ  and %σ  are the top-scores mean and standard-

deviation respectively, calculated from a pre-defined percent 

value (p, topPercent) of the top-scores. 

Fig. 7 (right column) shows impostor score distributions 

of the different speakers as in the left columns, however the 

scores are normalized using the top-norm method (topPercent 

= 10%). From this figure one can see that all distributions are 

“right-aligned”, causing equally dispersed top-scores for all 

the target-speakers (models). Fig. 8 shows DET curves of 

these three normalization methods (WMN, Z-norm, and Top-

norm) combined in a verification system (database 

description in the next chapter). From this figure one can see 

that although all these three methods have almost the same 

EER, Top-norm is superior to the others in the low FA area 

( ( ) 0.5%faP τ < ). As investigated in chapter 2, this implies 

better identification results using large stack sizes. 
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Figure 6: Illustration of the parameters of the Top-norm. 

Figure 7: Speaker-dependent non-target score distributions for 

three normalization methods: 1) no speaker-dependent 

normalization (WMN only), 2) Z-norm, and 3) Top-norm. 
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Figure 8: The DET curves of the verification system using: 1) 

WMN, 2) Z-norm, and 3) top-norm. 



4. Adaptation of Normalization Parameters 

In some speaker identification applications, such as fraudster-

detection, most of the tested speakers are non-targets (non-

fraudsters; not belong to the model-list), and hence produce 

non-target scores. We can exploit these (collected during test) 

non-target scores in order to better estimate the normalization 

parameters that are initially estimated in the training stage. 

This can be done using some adaptation techniques.  

The idea behind the normalization-parameters adaptation 

is that we can estimate mean and variance ( Nµ , and 
2

Nσ ) of 

any score PDF using the previous values of the mean and 

variance ( 1Nµ −  and 
2

1Nσ − ) and the current Nth score value, 

Ns , using the equations: 

 ( ) 1

1
1N N NN s

N
µ µ −= − +⎡ ⎤⎣ ⎦  (4) 

 ( )22 2

1 1

1 1
N N N N

N
s

N N
σ σ µ− −

− ⎡ ⎤= + −⎢ ⎥⎣ ⎦
 (5) 

Next we propose normalization-parameters adaptation 

technique for Z-norm and for Top-norm methods. 

4.1. Z-norm Parameter Adaptation Algorithm 

For this method, for each model, we should store the 

parameters: N, Nµ , and 
2

Nσ . 

The basic algorithm for adapting Z-norm parameters: 

1. Initialization Step (using initial iN  scores) 

 
iN N=  

 
1

1 N

N n

n

s
N

µ
=

= ∑  

 

( )2 22 2 2 2

1

1 N

N N N n N

n

E s E s s
N

σ µ µ µ
=

⎡ ⎤ ⎡ ⎤= − = − = −⎣ ⎦⎣ ⎦ ∑
 

2. Adaptation iteration using new score ( Ns ) 

 1N N= +  

 ( )22 2

1 1

1 1
N N N N

N
s

N N
σ σ µ− −
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 ( ) 1

1
1N N NN s

N
µ µ −= − +⎡ ⎤⎣ ⎦  

4.2. Top-norm Parameter Adaptation Algorithm 

Adapting Top-norm parameters is more difficult task than 

adapting Z-norm parameters. In the suggested Top-norm 

adaptation algorithm, we need to store, for each model, two 

sets of distribution parameters (N, Nµ , and Nσ ): 1) the 

general score distribution parameters (similar to Z-norm), 2) 

the top p% (topPercent) score distribution parameters (
%

N , 
%

Nµ , and 
%

Nσ ). 

The basic algorithm for adapting Top-norm parameters: 

1. Initialization Step (using initial iN  scores) 

 
iN N=  

 
1
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n

s
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2. Adaptation iteration using new score ( Ns ) 
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 Calculate Top-norm score threshold Nτ  
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Where the Top-norm threshold, Nτ , indicates the (p) top-

percentage score-threshold (see figure 6). Since we do not 

store each one of the (test) scores, we can not accurately 

calculate this threshold, we can only estimate it. We used the 

threshold estimation equation: 

 

% %

1 1

%

1

N N N N

N

N N

µ σ µ σ
τ

σ σ
− −

−

+
=

+
  (7) 

And in each iteration step, a threshold correction procedure 

was made in order to adjust this threshold to the required 
%

N
N

 ratio (6). The parameter α  is an adaptation 

coefficient used for this threshold correction (e.g. 0.0001α = ).  

Threshold 

correction 



5. Experiments and Results 

Experiments for open-set speaker identification were 

performed using GMM-based system. 24-features were 

extracted from each 20msec frame (50% overlapping). The 

features were 12 Mel-frequency-cepstral-coefficients (MFCC) 

and 12 ∆MFCC. Cepstral mean subtraction (CMS) was 

added. The speech data used was part of NIST99 speaker 

evaluation (1SPK) and SwitchBoard (SB; release 2, phase 1) 

databases, which consist of one-sided telephone 

conversations. In order to make a speaker identification test, 

183 speakers from NIST99 were chosen to be the target-set, 

these speakers (males and females) have more than six files. 

183 (50-mixture) GMMs were trained; two minutes from two 

files. The identification test included a total of 5233 files 

(trials) from over 700 speakers (females and males) which 

included 984 target files and 4249 non-target files. For 

estimating Z-norm and Top-norm parameters, 1000 additional 

1SPK files from SB database were used. The baseline system 

was normalized using gender-dependent WMN; these models 

(Two 256-mixture GMMs) were trained using the NIST98 

database.  

In many speaker identification applications, such as fraud 

detection, very low FA error rate is required and the EER 

point is less important; therefore, in the next reported 

performance results we will relate also to the FA error value, 
50
faP , in which the false reject error in this working point is 

equal to 50%. Fig. 9 shows curves of the EER and the false 

accept ( 50
faP ) versus topPercent parameter (p) of the Top-

norm method, combined in OSI system (M = 183). From this 

figure one can see that a good compromise between optimal 

EER and optimal 50
faP  is the choice of 10% for the value of p. 

Figure 10 shows the Detection Error Trade-off (DET) 

curve of this open-set speaker identification system, using the 

mentioned databases and different target-set sizes: 1, 10, 20, 

50, 100, and 183. 

Other normalization methods were implemented and 

tested for comparison with the Top-norm method; among 

them: baseline (WMN only), Z-norm, T-norm [5], and 

unconstraint cohort normalization (UCN) [3]. Fig. 11 shows 

DET curves of the open-set speaker identification system 

(group detector; M = 183) using different normalization 

methods: 1) baseline (WMN), 2) Z-norm, 3) UCN (C = 2), 

and 4) Top-norm (p = 10%). Cohort size (C) of 2 was chosen 

for the UCN because it was the optimal value. From this 

figure one can see that Top-norm is superior to other methods 

at all working points. We may see also the counterclockwise 

“tilt” of the UCN DET curve relatively to the other DET 

curves. This may suggest a useful combination of the Top-

norm and UCN methods. Note that Z-norm performs worse 

than the baseline (WMN) system. This is because the Z-norm 

parameters were estimated using gender-independent 

utterances; however, when we used gender-dependent 

utterances, Z-norm performances were better than the 

baseline system, but not better than the Top-norm system. T-

norm (not shown here) was tested as well and yielded poorer 

results than UCN, probably because its sensitivity to mixed-

gender model population. 
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Figure 9: 50
faP  and EER versus topPercent parameter of the 

Top-norm method. 
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Figure 10: The DET curve of the open-set speaker 

identification system using top-norm method, and 

1/10/20/50/100/183 models (target-set size). 
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Figure 11: The DET curve of the OSI system (M = 183) using 

different normalization methods: 1) WMN, 2) Z-norm, 3) 

UCN, and 4) Top-norm. 



Table 1 shows the EER and 50
faP  for the different 

normalization methods and for different target-set sizes. The 

identification test for M=183 included 984 target trials and 

4249 non-target trials. For smaller M, cross-validation tests 

were performed; hence, target trials and non-target trials were 

increased. From this table we can see that UCN is useful only 

above 20 models (stack size) and only in the low FA working 

points (FR = 50%). Moreover, we can see from this table that 

Top-norm method is superior to the other methods in each of 

the tested target-set sizes.  

Table 1: 
50
faP  and EER of different normalization methods. 

 

Fig. 12 shows DET curves of the open-set speaker 

identification system (M = 183) using Top-norm method (p = 

10%): 1) without parameter adaptation (dashed line), 2) with 

parameter adaptation (solid line). The parameter adaptation 

was performed as in section 4.2 using 400iN =  and 

0.0001α = . From this figure one can see that Top-norm 

parameter adaptation causes better performances in the 

desired working points (low FA rates). 
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Figure 12: The DET curve of the OSI system (M = 183) using 

Top-norm method: 1) without parameter adaptation, 2) with 

parameter adaptation. 

6. Conclusions 

In this paper we presented and demonstrated the “false accept 

error problem” of identification systems, which is the 

phenomenon in which the false alarm rate increases 

dramatically when increasing the number of registered 

speakers (target-set size). We showed that significantly better 

identification results can be achieved, when decreasing the 

standard deviation of the non-target score distribution in the 

prototype verification system, even when the equal error rate 

(EER) is kept. We suggested a new model-dependent score-

normalization method, called Top-norm. The Top-norm was 

developed especially for open-set speaker identification 

systems. It was shown that Top-norm is superior to other 

normalization methods. It is also faster than test-dependent 

normalization methods (such as UCN and T-norm) and it is 

not sensitive to mixed-gender population (such as Z-norm and 

T-norm). One drawback is the need for relatively many non-

target files to estimate the Top-norm parameters, since we 

deal with the “right-tail” of the non-target score-distribution 

(the top-scores). However, this is not really a problem, since 

we can adapt the Top-norm parameters during the test phase. 

We also suggested an algorithm for Z-norm and Top-norm 

parameter adaptation. Although Top-norm method was 

developed especially for speaker identification, it can be used 

also in speaker verification systems. Combination of Top-

norm with test-dependent score normalization method (such 

as T-norm or UCN) can yield better performances. 
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