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Abstract. As it is indicated in the title, this paper is devoted to the
problem of defining mereological (collective) sets. Starting from basic
properties of sets in mathematics and differences between them and so
called conglomerates in Section 1, we go on to explicate informally in
Section 2 what it means to join many objects into a single entity from
point of view of mereology, the theory of part of (parthood) relation.
In Section 3 we present and motivate basic axioms for part of relation
and we point to their most fundamental consequences. Next three sec-
tions are devoted to formal explication of the notion of mereological set

(collective set) in terms of sums, fusions and aggregates.
We do not give proofs of all theorems. Some of them are complicated

and their presentation would divert the reader’s attention from the main
topic of the paper. In such cases we indicate where the proofs can be
found and analyzed by those who are interested.
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1. Two notions of set

1.1. Sets in mathematics

Sets in mathematics are collections of objects. We can have a collection
of points in space, a collection of natural numbers, the collection of all
triangles in R3 and so on. As Hao Wang writes in [8] one can create such
collections in two ways: either extensionally or intensionally.
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According to the extensional conception of set, having some elements
at hand we can collect them to form a set and this process can be con-
tinued ad infinitum. This approach to sets seems to be advocated by
Cantor when he writes:

a set is collection into a whole of definite distinct objects of our
intuition or of our thought.1

In contemporary axiomatic set theory the axioms of pairing and sum
seem to be formal embodiment of this idea.

The intensional conception is Frege’s favourite and according to it
a set is the extension of a concept or a property. As we learn from
the so-called Russell’s paradox this is very prone to inconsistencies and
must be limited in one way or another. The set theoretical axiom of
comprehension allows us to construct sets this way but only within sets
whose existence were already proved from other axioms. In contemporary
mathematics Frege’s idea is most reflected probably in class existence
axiom according to which every condition determines some class which
may happen not to be a set.

Sets constructed in one of these two ways are sometimes called dis-

tributive. Whichever way we choose they satisfy what we can call the

basic principle for distributive sets:

∀x(x is an element of the set of S-es ⇐⇒ x is S) , (†)

where ‘S’ is a schematic letter representing the place where we can put
any linguistic expression such that ‘is S’ forms a predicate2. For example:

∀x(x is an element of the set of real numbers ⇐⇒

x is a real number) .

The elements of the set of human beings are all and only human beings,
similarly the elements of the set of triangles in R3 are all and only tri-
angles in R3. We will not find heads, kidneys and hearts in the set of all
mammals, since every element of this set is a mammal.

1Cited after [1], p. 15.
2To be precise, (†) holds for those sets that are expressible by means of some formula

of a language we employ (or those whose elements are describable in this language). It
is not hard to notice that all sets created in accordance with the intensional conception
satisfy this property as well.
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Distributive sets are abstract entities, that is they do not occupy
space-time. It is not problematic for sets whose elements are abstract
objects, like numbers or geometrical figures. However, distributive sets
are abstract even in case their elements are concrete objects. Let us
repeat Quine’s argument for this (see [5, pp. 114–115]). Suppose that
we encounter a heap of stones. The set X of all stones in this heap is
definitely different from the set Y of all atoms out of which these stones
are built. It is the case since no stone is an atom and vice versa. Suppose
now that X and Y are spatio-temporal objects. The only candidate for
them is the heap itself. Thus we have that:

X = the heap of stones ,

Y = the heap of stones .

So, using elementary properties of identity, we get that X = Y , which
is absurd in light of what was said above. In consequence, we must
admit that sets of spatio-temporal objects are abstract entities and, in
consequence, all distributive sets are such.

1.2. Sets as conglomerates of objects

Suppose that what we take into account are U.S. states. We can consider
the set of all states:

ST := {x : x is a U.S. state} ,

which according to what was said above is an abstract object. We can
say a couple of things about it, as that it has exactly 50 elements, that
California is among them and so on. However, let us stress it one more
time, ST is abstract. On the other hand experience tells us that there is
a huge spatio-temporal object that consists of the elements of ST , that is
the United States of America. And we are inclined to say that elements
of ST are also elements of the U.S.A. But in what sense? It cannot be
the same sense as in case of set theoretical ‘∈’, since in this case what
we speak about is some abstract object. Here we speak about the vast
region of space, that is non-abstract, physical object. Moreover, we are
inclined to agree that it is true that:

x is a U.S. state =⇒ x is an element of the U.S.A.
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but false that:

x is an element of the U.S.A. =⇒ x is a U.S. state .

In consequence (†) is only partially satisfied in this case and we speak
about different notion of being an element. A moment of reflection leads
us to the conclusion that what we encounter here is rather being part of in
spatio-temporal sense than being an element in set theoretical meaning.
So when we speak about the U.S.A. as about the set of U.S. states, we
definitely do not use the notion of distributive set but a different one,
whose extension embraces not only abstract objects but also physical
ones. Let us call such sets mereological (‘meros’ means part in Greek) or
collective ones.

Now, when we say that California is an element of the U.S.A., we
simply say that California is part of the U.S.A. With this interpretation
in mind we can see that it is true that:

x is a U.S. state =⇒ x is part of the U.S.A.

while the converse implication is not true. In general, when we take into
account any mereological set of S-es, then it is true that:

x is S =⇒ x is part of a mereological set of S-es

while in general it is not true that:

x is part of a mereological set of S-es =⇒ x is S.

For example New York City is definitely part of the U.S.A., but it is not
a U.S. state.

2. Joining many objects into one

The act of construction of a mereological set may be compared to that of
assembling an object from a separate ones or joining a group of objects
into a single entity. Having four objects a, b, c and d at our disposal
we can join them to form some «new» object x, as it is presented in
Figure 1. The fact that x is an assembly or a conglomerate of a, b, c and
d may be written down as:

x = Ja, b, c, d K .
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This of course makes sense only in case there exists such thing as an
assembly of a, b, c and d and it is unique. For now we simply assume
that it does and is.

a b

c d

a b

c d

x

joining

Figure 1: Separate objects a, b, c and d are joined to form one single object x.

We may now inquire what is relevant for the depicted act of joining
or what are its essential features. First, we can see that every single one
of objects a, b, c and d is part of x. Second, whatever part of x we take
(any its fragment), it overlaps one of the four objects in question. On
the other hand we can notice as well that any object which is exterior
to every a, b, c and d must be exterior to x as well, and vice versa  if
something is exterior to x, then it is exterior to every a, b, c and d.

It can be seen from both the figure and the above characterization,
that ontological status of x may be «inherited» from that of its substrata.
That is, if a, b, c, d are physical objects, then x seems to be a physical
object as well. If they are abstract entities, x is undoubtedly abstract
too.

All this is different from what is true within the realm of distribu-
tive sets. Having a, b, c and d, whatever their nature may be, we can
(using set theoretical axioms of pairing and sum existence) form the set
{a, b, c, d}. We have that:

y ∈ {a, b, c, d} ⇐⇒ (y = a ∨ y = b ∨ y = c ∨ y = d)

and in case of x we only have that:

(y = a ∨ y = b ∨ y = c ∨ y = d) =⇒ y is part of x ,

while the converse implication:

y is part of x =⇒ (y = a ∨ y = b ∨ y = c ∨ y = d)
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is usually false. For example:

Ja, bK is part of Ja, b, c, dK ,

but is different from all a, b, c and d.

Another important feature distinguishing distributive and mereolog-
ical (collective) sets is transitivity of element relation. In case of dis-
tributive sets an interpretation of ‘∈’ usually is not transitive (although
can be, as in transitive models of axiomatic set theory), while in case
of mereological sets parthood is always transitive relation. If we refer to
Figure 1 we can see that if we carve any piece from a, b, c or d, then this
piece must be part of x. Sometimes it is argued that transitivity should
not be ascribed to parthood but those who maintain it to be the case use
‘part of’ in different meaning from the one being used in mereology.

To conclude, while defining mereological sets we must remember
about the following facts:

(1) only the implication from right to left in (†) is true if we interpret
‘is an element’ as is part of,

(2) parts of parts of mereological sets are their parts as well.

3. Basic properties of part of relation

We will now briefly analyze part of relation in order to do the groundwork
for various definitions of mereological sets. However, we are not going
to give up set theoretical apparatus. Quite the contrary, we will use set
theory in a totaly similar way to its usage for example in group theory.
Thus what we describe is part of relation in set theoretical setting. From
now on, if not stated otherwise, ‘set’ used without any modifier will
always mean distributive set.

Let M be an arbitrary non-empty set and let ⊏ ⊆ M × M . We call
⊏ the relation of being part of and in case x ⊏ y we say that x is part

of y, ‘x a y’ is to mean ¬ x ⊏ y. Part of is the only primitive concept
of the theory we are going to present. The theory of part of relation is
called mereology.

Except for this we use standard logical constants: quantifiers ‘∃’ and
‘∀’, sentential operators ‘¬’, ‘∧’, ‘∨’, ‘⇒’ and ‘⇔’. For any set X, P(X)
is its power set, while P+(X) := P(X) \ {∅}.
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We assume that 〈M,⊏〉 is a strict partial order, that is it satisfies the
following two axioms of asymmetry and transitivity:

∀x,y∈M(x ⊏ y ⇒ y a x) , (as⊏)

∀x,y,z∈M(x ⊏ y ∧ y ⊏ z ⇒ x ⊏ z) . (t⊏)

Irreflexivity of ⊏ is an immediate consequence of (as⊏):

∀x∈M x a x . (irr⊏)

As it is hard to express properties of part of relation just in terms of
⊏ we introduce some standard relations definable by means of the only
primitive relation:

x ⊑ y
df

⇐⇒ x ⊏ y ∨ z = y , (df ⊑)

x © y
df

⇐⇒ ∃z(z ⊑ x ∧ z ⊑ y) , (df ©)

x P y
df

⇐⇒ ¬ ∃z(z ⊑ x ∧ z ⊑ y) . (df P)

In case x ⊑ y (resp. x © y, x P y) we say that x is ingrediens of y (resp.
x overlaps y, x is exterior to y). We will also write ‘x @ y’ instead of
‘¬ x ⊑ y’. Moreover, for every x from M we put:

P(x) := {y ∈ M : y ⊏ x} ,

I(x) := {y ∈ M : y ⊑ x} ,

O(x) := {y ∈ M : y © x} .

Let us point to some simple consequences of (as⊏), (t⊏) and the def-
initions. By (df ⊑), (df ©) and (df P)  without specific axioms (as⊏)
and (t⊏)  we obtain, respectively, that ⊑ and © are reflexive, P is ir-
reflexive, © and P are symmetric, P is the complement of ©, and ⊑ is
included in ©:

∀x∈M x ⊑ x , (r⊑)

∀x∈M x © x , (r©)

∀x,y∈M(x © y ⇐⇒ y © x) , (s©)

∀x ¬ x P x , (irrP)

∀x,y∈M(x P y ⇐⇒ y P x) , (sP)

∀x,y∈M(x P y ⇐⇒ ¬ x © y). (3.1)

∀x,y∈M (x ⊑ y ∨ y ⊑ x =⇒ x © y) . (3.2)
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From (irr⊏) and (df ⊑) we obtain that:

∀x,y∈M(x ⊏ y ⇐⇒ x ⊑ y ∧ x 6= y) . (3.3)

By (as⊏), (irr⊏) and (df ⊑) we obtain that ⊑ is antisymmetric:

∀x,y∈M (x ⊑ y ∧ y ⊑ x =⇒ x = y) . (antis⊑)

Finally, (t⊏) and the definitions entail that ⊑ is transitive and has two
following properties:

∀x,y,z∈M(x ⊑ y ∧ y ⊑ z =⇒ x ⊑ y) , (t⊑)

∀x,y,z∈M(x ⊑ y ∧ z © x =⇒ z © y) , (3.4)

∀x,y,z∈M(x ⊑ y ∧ z P y =⇒ z P x) . (3.5)

The third axiom we put upon ⊏ is the so-called separation condition

known in mereology under the name Strong Supplementation Principle:

∀x,y∈M(x @ y ⇒ ∃z∈M (z ⊑ x ∧ z P y)) . (SSP)

The so-called Weak Supplementation Principle:

∀x,y∈M(x ⊏ y ⇒ ∃z∈M (z ⊏ y ∧ z P x)) , (WSP)

which is one of the fundamental properties of parthood considered in
mereology, follows from the axioms assumed.

Fact 3.1. (WSP) follows from (as⊏), (SSP), (df ⊑) and (df P).3

Proof. Assume that x ⊏ y. Hence, by (as⊏) and (irr⊏) we get y a x
and y 6= x, which means that y @ x. Applying (SSP) we get some z for
which: z ⊑ y and z P x. But z 6= y. Otherwise we obtain contradiction:
y P x and ¬ y P x, by (df P) and (df ⊑), since x ⊏ y. Thus, z ⊏ y. ⊣

Lemma 3.2 ([3, 4]). (irr⊏) is a consequence of (WSP). Thus, (WSP) and

(t⊏) entail (as⊏).

Proof. Suppose towards contradiction that x ⊏ x. Then, by (WSP), for
some x we have that z ⊏ x and z P x. From the first fact, by (df ⊑) and
(df P), we obtain that ¬ z P x. ⊣

3In [3] (p. 220) it is proved that in any structure 〈M,⊑〉 condition (WSP) follows
from (r⊑), (antis⊑), (3.3), (SSP) and (df P). In consequence we obtain the above fact.
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Fact 3.3. It follows from (WSP) that unless M is not a singleton, there is

no element in it which is part of all other elements, i.e. in M there is no

object which is ingrediens of all members of M . To put it another way,

if the set M has at least two elements, then it does not have the smallest

element. Therefore:

Card(M) > 1 ⇐⇒ ¬ ∃x∈M ∀y∈M x ⊑ y .

Definition 3.1. By a mereological atom we will mean an object that
has no parts. Let At be the set of all mereological atoms, i.e.:

At := {a ∈ M : P(a) = ∅}. (df At)

Definition 3.2. By an isolated element with respect to ⊏ we will mean
a mereological atom which is not part of any object. Let Is be the set of
all isolated elements, i.e.:

Is := {a ∈ At : ¬ ∃x∈M a ⊏ x}. (df Is)

4. Mereological (collective) sets as mereological sums

Let us start with a short analysis of the situation depicted in Figure 1.
The objects we have at hand are a, b, c and d, while x is composed of
them. What does it mean? As it was pointed on page 313 two intuitions
are important.

• First, every one of objects a, b, c and d is part of x (the more so it is
its ingrediens).

• Second, whatever ingrediens of x we take, we can see that it must
overlap one of the objects a, b, c and d.

Actually, these two points together are nothing less than one of the ways
in which mereological sets are defined. We will call mereological sets as
characterized above mereological sums. Thus:

x is a mereological sum of S-es if and only if every S is in-
grediens of x and every ingrediens of x has some common
ingrediens with at least one S.

If we engage mathematical apparatus, then we can define mereological
sum as a binary relation between elements of M and its subsets: Sum ⊆
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M × P(M). And this is done in the following way:

z Sum X
df

⇐⇒ ∀x∈X x ⊑ z ∧ ∀y∈M (y ⊑ z ⇒ ∃x∈X y © x) . (df Sum)

By means of I and O we may write down (df Sum) as:

z Sum X
df

⇐⇒ X ⊆ I(z) ⊆
⋃

{O(x) : x ∈ X} .4

Returning to our example from Figure 1 and taking X = {a, b, c, d}
we of course have that x Sum {a, b, c, d}.

Philosophically (or ontologically) important fact about Sum is that
there is no sum of the empty set. Indeed, we obtain contradiction by
(r⊑) and the assumption that there is x such that x Sum ∅:

¬ ∃x∈M x Sum ∅ . (4.1)

We can interpret (4.1) as asserting non-existence of the empty mereolog-
ical (collective) set.

Let us notice, in connection with (4.1), that Sum satisfies the follow-
ing condition that could be accepted as its definition:

z Sum X ⇐⇒ X 6= ∅ ∧

∀x∈X x ⊑ z ∧ ∀y∈M (y ⊏ z ⇒ ∃x∈X y © x) .
(4.2)

Indeed, by (4.1) we obtain “⇒”. For “⇐”, notice that if X 6= ∅ and
∀x∈X x ⊑ z, then for some x0 ∈ X we have that x0 © z, by (df ⊑) and
(df ©). Thus z Sum X.

With the use of P, I, and O (4.2) may be written down as:

z Sum X
df

⇐⇒ ∅ 6= X ⊆ I(z) ∧ P(z) ⊆
⋃

{O(x) : x ∈ X} .

Some fundamental facts about Sum which follow from (df ⊑), (df ©)
and (df Sum) are:

∀x∈M x Sum {x} , (4.3)

∀x∈M x Sum I(x) , (4.4)

∀x∈M (P(x) 6= ∅ ⇐⇒ x Sum P(x)). (4.5)

We say that z is the greatest element of X (with respect to ⊑) iff
z ∈ X and for any x ∈ X we have that x ⊑ z. From (df ⊑), (df ©) and
(df Sum) follows the following lemma.

4Of course,
⋃

{O(x) : x ∈ X} = {y ∈ M : ∃x∈X x © y}.
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Lemma 4.1 ([3, p. 68]). For any X ∈ P(M) and z ∈ M : z Sum X and

z ∈ X iff z is the greatest element of X.

Proof. “⇒” Immediate, by the definitions.
“⇐” Let z be the greatest element of X. Then z ∈ X and ∀x∈X x ⊑ z.

Moreover, if we take any y ∈ M such that y ⊑ z, then y © z by (3.2). ⊣

Remark 4.1. Some weaknesses of (df Sum) are hidden in the facts that
it allows x either to be composed «out of itself» (4.3) or to be among
elements out of which it is composed ((4.4) and Lemma (4.1)). These
properties seem to be counterintuitive from point of view of joining ob-
jects (see Figure 2). We will examine these issues in Section 6.

x x

joining?

Figure 2: Object x is a mereological sum of itself.

What about existence of sums of any other subsets of the domain?
Well, the axioms we assumed does not decide this problem. It may
happen that there will be non-empty subsets of M with no mereological
sum. The following model will illustrate such situations.

Model 1. Let M := {1, 2, 3, 4} and ⊏ := {〈1, 4〉, 〈2, 4〉, 〈3, 4〉}. Directly
from (4.3), (4.4) and (4.5) we have that: 4 Sum {4}, 4 Sum {1, 2, 3, 4}
and 4 Sum {1, 2, 3}. However neither of the sets {1, 2}, {1, 3} nor {2, 3}
has its mereological sum in this model. For example the only sensible
candidate for a sum of {1, 2} is 4. However it is «too large», since 3 ⊏ 4
but 3 P 1 and 3 P 2.

However, what we can demonstrate is that if there exists a sum of
some given set, then it must be unique (see [3, p. 76], [4, p. 221]).

Fact 4.2. The following property of Sum is a consequence of (as⊏), (t⊏),
(SSP) and accepted definitions:

∀y,z∈M∀X∈P(M)(y Sum X ∧ z Sum X ⇒ y = z) . (fun Sum)
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1 2 3

4

Figure 3: None of sets {1, 2}, {1, 3}, {2, 3} has its mereological sum.

5. Mereological (collective) sets as mereological fusions

Mereological fusion is an alternative approach to mereological sets. As
we already mentioned it on page 313 we can say that x is «built» out
of some objects just in case everything that is exterior to every single
one of them is exterior to x and vice versa. Equivalently we may say:
everything that overlaps x also overlaps one of these objects, and vice
versa  if something overlaps one the objects in question, it must overlaps
x as well. This two characterizations are usually taken as explication of
the notion of mereological fusion. We may formalize this notion in the
following way:

z Fus X
df

⇐⇒ ∀y∈M (y © z ⇐⇒ ∃x∈X y © x) . (df Fus)

By means of O we may write (df Fus) as:

z Fus X
df

⇐⇒ O(z) =
⋃

{O(x) : x ∈ X} .

Moreover, directly from (3.1) we have that:

z Fus X ⇐⇒ ∀y∈M(y P z ⇐⇒ ∀x∈X y P x) .

By (df Fus), we can say about fusion the same what was said about the
sum:

¬ ∃x∈M x Fus ∅ , (5.1)

∀x∈M x Fus {x} , (5.2)

∀x∈M x Fus I(x) , (5.3)

∀x∈M(P(x) 6= ∅ ⇐⇒ x Fus P(x)). (5.4)
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What is the mutual dependency between Fus and Sum? The following
known theorems and Model 2 answer this question. In [3, p. 69], [4,
Fact 2], [3, p. 114] and [4, Lemma 2] the following facts are proved.

Theorem 5.1 ([3, 4]). Suppose that 〈M,⊏〉 satisfies (t⊏). Then:

(i) if 〈M,⊏〉 satisfies (t⊏), then Sum ⊆ Fus.

(ii) Fus ⊆ Sum iff 〈M,⊏〉 satisfies (t⊏) and (SSP).5

Model 2. This model shows that (SSP) is indispensable to prove both
the uniqueness of Sum and the inclusion Fus ⊆ Sum. It is easily checked

1 2

12 21

Figure 4: Both 12 and 21 are sums of {1, 2}.

that in the model from Figure 4 where M = {1, 2, 12, 21} and

⊏ := {〈1, 12〉, 〈1, 21〉, 〈2, 12〉, 〈2, 21〉}

it is the case that 12 Sum {1, 2} and 21 Sum {1, 2}. Thus there exist
two different sums of the same set of objects. Whether this is fault or
advantage depends on the level of abstraction. If we want objects to
be identified by their parts only, then this obviously is a fault. If we
want them to be identified by something else as well (structure, order
etc.) this may be desirable to keep things like that. Moreover, the model
proves that in structures satisfying (as⊏) and (t⊏) it does not have to be
the case that Fus ⊆ Sum: 12 Fus {1, 2, 21} but ¬ 12 Sum {1, 2, 21}.

5In [4, Fact 2] and [4, Lemma 2] we obtain analogous facts for structures 〈M,⊑〉
with (t⊑) instead of (t⊏). Hence we obtain the above facts.
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6. Mereological (collective) sets as aggregates

So far we have explained mereological (collective) sets in two ways: by
means of sum and by means of fusion. However, as we already pointed
to it in Remark 4.1 concerning properties of Sum, both approaches have
some faults from point of view of intuitions connected with collecting
objects into something «new» (see [3, Ch. 4, §4]). First, the object
which is a sum (fusion) can be among the very objects that are summed
(fused). Second, the object can be a sum (fusion) of itself. Thus what we
lose is a plural character of the process of fusing or summing things. This
may be especially strange in case of mereological atoms, that is objects
that have no parts. They are also sums or fusions of something, that is
of themselves.

Because of the imperfections6 mentioned above, we introduce one
more notion, of aggregate of objects. What we want to achieve is the
following property of aggregates: if z is an aggregate of the group of
S-es, then no S is identical with z and every S is part of z.

In the light of the words above, we say that z is an aggregate of S-es
iff

(1) the group of S-es has at least two members and

(2) every S is part of z (so z has at least two parts) and

(3) every part of z satisfies at least one of the following conditions:

(a) it is an S,

(b) it is part of some S,

(c) some S is its part,

(d) it has common part with some S.

Taking X ∈ P(M) the above intuitions can be expressed as follows:

z Agr X ⇐⇒ ∃x,y∈X x 6= y ∧ ∀x∈X x ⊏ z ∧

∀y∈M

(

y ⊏ z =⇒ (y ∈ X ∨ ∃x∈X y ⊏ x ∨

∃x∈X x ⊏ y ∨ ∃x∈X∃u∈M (u ⊏ y ∧ u ⊏ x))
)

.

The complexity of the above formula may be substantially reduced by
noting that the consequent of the implication is equivalent to the state-

6We speak about imperfections from philosophical or ontological point of view, not
from mathematical one. Mathematically both definitions (of sum and fusion) are, so
to say, flawless.
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ment ∃x∈X x © y. Moreover, existence of two elements in X may be
replaced by the weaker condition that X is not empty (this is due to the
definition below, (t⊏), (WSP) and Fact 6.7). Non-emptiness of X is quite
important and it cannot be dropped without changing some essential
properties of aggregates (see Section 7). So we may take the following
formula as the definition of a mereological aggregate:

z Agr X ⇐⇒ X 6= ∅ ∧ ∀x∈X x ⊏ z ∧

∀y∈M (y ⊏ z ⇒ ∃x∈X y © x) .
(df Agr)

By means of P and O it may be written down as:

z Agr X
df

⇐⇒ ∅ 6= X ⊆ P(z) ⊆
⋃

{O(x) : x ∈ X} .

The very basic properties distinguishing Agr from Sum and Fus are
expressed in the following fact, which we obtain from irreflexivity of ⊏
and (df Agr).

Fact 6.1. Suppose 〈M,⊏〉 satisfies (irr⊏). Then:

∀z∈M ∀X∈P(M)(z Agr X ⇒ z /∈ X).

Consequently, we have that: ¬ ∃x∈M x Agr {x} and ¬ ∃x∈M x Agr I(x).

As an immediate corollary from (df Agr), (df ⊑) and (df ©) we
obtain the following equivalence:

∀x∈M(P(x) 6= ∅ ⇐⇒ x Agr P(x)). (6.1)

By (df Agr), (df ⊑) and (df Sum) we have:

Fact 6.2 ([3, p. 122]). Agr ⊆ Sum.

Proof. Suppose that z Agr X. By (df Agr) and (df ⊑), ∀x∈X x ⊑ z.
Further, suppose that y ⊑ z. If y = z, then any element x of X is such
that x © y. If y ⊏ z, then by (df Agr) we obtain that ∃x∈X x © y. ⊣

Facts 4.2 and 6.2 immediately entail the following:

Corollary 6.3. Let 〈M,⊏〉 satisfy (as⊏), (t⊏) and (SSP). Then every

subset of M can have at most one aggregate:

∀y,z∈M∀X∈P(M)(y Agr X ∧ z Agr X ⇒ y = z). (fun Agr)
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Fact 6.4 ([3, p. 122]). Suppose 〈M,⊏〉 satisfies (irr⊏). Then for every

z ∈ M and X ∈ P(M): if z Sum X and z /∈ X, then z Agr X.

Proof. Suppose z Sum X and z /∈ X. First, X 6= ∅, by (4.1). Second,
∀x∈X x ⊑ z, so ∀x∈X x ⊏ z by (irr⊏). Third, take arbitrary y ⊏ x. Thus
y ⊑ x by (df ⊑) and ∃x∈X y © y by the assumption and (df Sum). ⊣

From Facts 6.1, 6.2 and 6.4 we obtain:

Corollary 6.5. If 〈M,⊏〉 satisfies (irr⊏), then for every z ∈ M and

X ∈ P(M): z Agr X iff z Sum X and z /∈ X.

Moreover, by Lemma 4.1 and Fact 6.4 we have:

Corollary 6.6. Suppose 〈M,⊏〉 satisfies (irr⊏). Then for every z ∈ M
and X ∈ P(M): if z Sum X and X does not contain greatest element,

then z Agr X.

Fact 6.7 ([3, p. 123]). Suppose that 〈M,⊏〉 satisfies (t⊏) and (WSP).
Then if a subset of M has an aggregate, then it does not have the greatest

element. Consequently, it has at least two members.

Proof. Suppose towards contradiction that z Agr X and x∗ is the great-
est element of X, i.e. (a) x∗ ∈ X and (b) ∀x∈X x ⊑ x∗. Then, by (a) and
(df Agr⋆), x∗

⊏ z. Hence, by (WSP), there is y such that (c) y ⊏ z and
(d) y P x∗. By (c) and (df Agr) we have that there is x0 ∈ X such that
y © x0. But, by (b), x0 ⊑ x∗. Therefore from (3.4), which we obtain by
(t⊏), we get y © x∗, which contradicts (d). ⊣

Model 3. It is worth noticing that existence of the greatest element in X
and axioms (as⊏) and (t⊏) (without (WSP)) does not entail non-existence
of an aggregate of X. The simple model M := {1, 2} with ⊏ := {〈1, 2〉}
proves this is the case. X = {1} has the greatest element and 2 Agr {1}.

From Lemma 4.1 and Corollary 6.6 we obtain:

Theorem 6.8 ([3, p. 124]). Let 〈M,⊏〉 satisfies (irr⊏). Then the following

statement:

∀X∈P+(M)(X does not have the greatest element =⇒

∃x∈M z Agr X)
(∃Agr)

is equivalent to:
∀X∈P+(M)∃z∈M z Sum X . (∃Sum)
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1

2

Figure 5: {1} has the greatest element and 2 Agr {1}. Notice that (WSP) is not
satisfied.

Model 4. There exist structures 〈M,⊏〉 which satisfy (as⊏), (t⊏) and
(SSP) but no subset of the universe has its aggregate. An arbitrary
structure consisted of isolated elements only will serve as a model. The
only sums (fusions) that exist in such structures are sums (fusions) of
the form x Sum {x} and x Fus {x}. The simplest structure of this kind
consist of exactly one object.

1 2

Figure 6: The simplest non-trivial structure which satisfies (as⊏), (t⊏) and (SSP), but
such that Agr = ∅.

Remark 6.1. As it is demonstrated in [3, p. 109] and [4, p. 228] the
following collections of sentences are equivalent:

(a) (as⊏), (t⊏), (fun Sum) and (∃Sum);

(b) (as⊏), (t⊏), (SSP) and (∃Sum);

(c) (as⊏), (t⊏), (WSP) and (∃Sum).

(a) is an axiomatization of the classical mereology, which is a counter-
part of the very first collection of axioms of Leśniewski’s from [2]. By
Theorem 6.8 the above axiomatizations are equivalent to the following
ones:

(a′) (as⊏), (t⊏), (fun Sum) and (∃Agr);

(b′) (as⊏), (t⊏), (SSP) and (∃Agr),

(c′) (as⊏), (t⊏), (WSP) and (∃Agr).
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7. Sums and aggregates of the empty set

The requirement in (df Agr) that only non-empty sets can have its ag-
gregates is very important for the theory of mereological sets. Let us
remind that in case of sums and fusions we do not have to exclude the
empty set explicite, since the very definitions together with reflexivity of
⊑ guarantee that there is neither sum nor fusion of the empty set. For the
aggregate relation the situation is different. However, as it was pointed
in Section 4, (4.2) is equivalent to (df Sum) in which non-emptiness is
involved explicite.

Let us now consider the situation in which we define alternative re-
lations by means of the following definitions:

z Sum⋆ X
df

⇐⇒ ∀x∈X x ⊑ z ∧ ∀y∈M (y ⊏ z ⇒ ∃x∈X y © x) , (df Sum⋆)

z Agr⋆ X
df

⇐⇒ ∀x∈X x ⊏ z ∧ ∀y∈M (y ⊏ z ⇒ ∃x∈X y © x) . (df Agr⋆)

By means of P, I and O we may write down (df Sum⋆) and (df Agr⋆) as:

z Sum⋆ X
df

⇐⇒ X ⊆ I(z) ∧ P(z) ⊆
⋃

{O(x) : x ∈ X} ,

z Agr⋆ X
df

⇐⇒ X ⊆ P(z) ⊆
⋃

{O(x) : x ∈ X} .

Now we will show their consequences. The following fact is obvious.

Fact 7.1. For any z ∈ M and X ∈ P(M):

(i) Sum ⊆ Sum⋆ and Agr ⊆ Agr⋆.

(ii) z Sum⋆ X ∧ X 6= ∅ =⇒ z Sum X.

(iii) z Agr⋆ X ∧ X 6= ∅ =⇒ z Agr X.

The definitions (df Agr⋆), (df Sum⋆) and (df At) entail the following
equivalences:

z ∈ At ⇐⇒ z Sum⋆ ∅ ⇐⇒ z Agr⋆ ∅ . (7.1)

In consequence we obtain the following fact.

Fact 7.2. In any structure 〈M,⊏〉, solely by definitions (df ⊑), (df ©),
(df Sum), (df Sum⋆), (df Agr), (df Agr⋆) and (df At), we obtain that

the following three statements are equivalent:

(a) Sum⋆ ⊆ Sum,

(b) Agr⋆ ⊆ Agr,

(c) there is no atom in M .
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Model 5. From (7.1) it follows that Agr⋆ does not satisfy the counter-
part of (fun Agr) in Corollary 6.3. Consider the structure from Figure 6,
that is M := {1, 2} and both 1 and 2 are isolated. In such case we have
that 1 Agr⋆ ∅ and 2 Agr⋆ ∅ but 1 6= 2. The same can be said of course
about Sum⋆ and (4.2). Obviously 〈M,⊏〉 satisfies (as⊏), (t⊏) and (SSP).

From (7.1), i.e. solely by definitions (df Sum⋆), (df Agr⋆) and (df At),
we obtain that the following statements are equivalent:

(a) ∀x,y∈M(x Sum⋆ ∅ ∧ y Sum⋆ ∅ =⇒ x = y)

(b) ∀x,y∈M(x Agr⋆ ∅ ∧ y Agr⋆ ∅ =⇒ x = y),

(c) there is at most one atom in M .

In consequence we obtain the following fact.

Fact 7.3. In any structure 〈M,⊏〉 satisfying (as⊏), (t⊏) and (SSP) the

following two statements are equivalent:

(a) ∀x,y∈M∀X∈P(M)(x Sum⋆ X ∧ y Sum⋆ X ⇒ x = y),

(b) ∀x,y∈M∀X∈P(M)(x Agr⋆ X ∧ y Agr⋆ X ⇒ x = y),

(c) there is at most one atom in M .

Proof. “(a) ⇒ (b)” By Fact 6.2.
“(b) ⇒ (c)” (7.1) (we use (b) for X = ∅).
“(c) ⇒ (a)” If X 6= ∅ then we use Facts 4.2 and 7.1. If X = ∅ then

we refer to (7.1). ⊣

8. Conclusion

In the course of the paper we defined mereological sets in five different
ways. Two of the defintions  (df Sum) and (df Fus)  are equivalent
on the basis of axioms (as⊏), (t⊏) and (SSP). Assuming the same axioms,
(df Agr) is equivalent to (df Sum) and (df Fus) in those cases in which
a non-empty subset of the domain does not have the greatest element
with respect to ⊑. (df Agr) seems to be that definition which is the
closest to modeling the process of joining many objects into a single one.
(df Agr⋆) has the same properties as (df Agr) but it allows for entities
«built out of nothing», which may be problematic from philosophical
point of view. The last property is shared by (df Sum⋆), which is a
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modification of (df Sum). Apart from this, (df Sum) and (df Sum⋆)
have the same attributes.
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