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Abstract—In this paper we present two novel techniques
with low computational complexity and high robustness for
beamforming using rigid microphone arrays. For the first onewe
show which approximations have to be made in terms of applying
techniques that are equivalent to delay-and-sum beamforming on
rigid microphone arrays. In the second approach we exploit the
technique of focused sinks for creating virtual linear microphone
arrays with flexible dimensions and spacing. As a result, simple
techniques for beamforming using linear arrays can be applied.
We derive our approaches analytically, state their theoretical
limits and provide simulation results and discuss the results.

I. I NTRODUCTION

Using cylindrical or spherical microphone arrays for an-
alyzing soundfields in two or three dimensions respectively
is obviously a good choice due to the rotational symmetry.
Intuitively, with a reasonable arrangement of microphones
on the surface, sound capture from all directions should
work evenly well. Soundfield analysis bases on the so-called
(Kirchhoff-)Helmholtz integral equation and depending onthe
application scenario the mentioned integral equation can be
formulated for an exterior or interior domain [1].

A common model for acoustic scene analysis is to assume
the soundfield to be a superposition of an infinite number of
plane waves, arriving from all directions at the sensor surface.
Hence, acoustic scene analysis can be regarded as equivalent
to a plane wave decomposition: The goal is to determine the
frequency dependent amplitudes of the plane waves from the
captured microphone signals. This can also be understood as
spatial beamforming, by applying steerable directional filters
to the array output with an (ideally infinitely) narrow main
lobe in the desired look direction and maximal suppression
elsewhere.

It is convenient for cylindrical / spherical boundaries to
express the pressure and its gradient in terms of the solutions
of the homogeneous wave equation in cylindrical / spherical
coordinates. This results in an expansion of the angular compo-
nents into exponential functions / spherical harmonics andthe
radial components in terms of (spherical) Hankel functions.
These principles are termed modal beamforming techniques
and have been used for a number of practical realizations using
spatial distributions of microphones on a cylinder / sphere[2],
[3], [4], [5], [6].

For a practical realization of the above discussed principle
it is desirable to measure only the acoustic pressure at a finite

number of positions on the cylindrical / spherical boundaryto
derive the expansion coefficients of the observed sound fieldin
terms of circular / spherical harmonics. However, this typically
results in nonuniqueness of the expansion coefficients. A
number of techniques have been proposed to overcome this
problem, e.g., scattering at a rigid sphere [3], [5] or measuring
at multiple radii [7]. Modal beamforming, assuming maximum
directivity design maintains the good high-frequency directiv-
ity at frequencies up to the aliasing frequency of the array,but
at the expense of poor robustness at low frequencies.

The requirements for high quality audio are on the one
hand a high cutoff frequency which is often related to a
high number of sampling points and hence, high complexity
and on the other hand a high white-noise-gain as a measure
for the attenuation of diffuse white noise from the sensors
to the array output. It is therefore desired to find efficient
approximations for fullband beamforming techniques. Delay-
and-sum beamforming techniques guarantee maximum white-
noise-gain, or robustness, and therefore the directivity is best
at high frequencies and reduces towards the low frequencies
[8].

Since a rigid surface adds a scattered field to the original
soundfield, techniques based on delay-and-sum beamforming
cannot be transferred straightforwardly. In this paper we
propose a microphone selection criterion based on the sound
intensity vector [9] that allows us to perform beamforming
with low computational complexity. We derive analyticallythe
beamforming filters and state the limits of our approach. The
idea is to create a virtual soundfield which is conjugate in the
wave-number space (k-space) to the desired look direction.
Due to the matched filter principle the desired component
will be extracted. In the limiting case of a reference line
being coincident with the array surface we get a delay-and-
sum beamformer. To create this conjugate virtual soundfield
we use elements of the wave field synthesis theory and the
time reversal principle.

II. D ERIVATION OF BEAMFORMING WEIGHTS FOR

DELAY-AND-SUM BEAMFORMER

A. Fundamentals

In the following we briefly review some fundamentals
of wave field synthesis which will form the basis of our
approaches. Wave field synthesis aims at reproducing a sound



field of a particular source, e.g., point or line source, using a
distribution of secondary sources surrounding a listeningarea.
Secondary sources are realized by loudspeakers in practical
implementations. The Kirchhoff-Helmholtz integral occupies
a central position in the theory of the wave field synthesis. It
states that the pressure at any point inside a bounded source
free volume is uniquely determined by the pressure and its
normal gradient at the boundary of this volumeΩS . This reads

P (x, ω) =
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x0∈ΩS

dΩ. (1)

G(x|x0, ω) corresponds to the Green’s function which is the
solution of the inhomogeneous wave equation for a spatio-
temporal Dirac pulse. Under a free-field assumption, the
Green’s function describes a monopole source. The direc-
tional gradient of the Green’s function under a free field
assumption can be interpreted as a dipole source. Arbitrary
convex secondary source distributions are usually treatedas
locally planar (linear). This approximation originates from the
scattering theory and is known as Kirchhoff or physical optics
approximation [10] and holds for small wave lengths compared
to the dimensions of the secondary source distribution. A step
towards specializing the Kirchhoff-Helmholtz integral tolinear
secondary source distributions is done using the Rayleigh
integral and assuming the secondary source distributions to
be infinitely long. Employing this approximation requires a
rule for secondary source selection. A secondary source is
selected if the normal vectorn of the secondary source and
the averaged acoustic intensity vector of the virtual source
I(x0, ω) form an acute-angle. In this study we are interested
in rigid arrays (arrays with sound hard surfaces). The gradient
of the pressure on the surface of a rigid array vanishes and
we have to approximate the secondary source distribution
as a dipole distribution. Hence, the synthesis equation using
a continuous distribution of dipoles and using the above
mentioned approximations and assumptions reads [9]

P (x, ω) ≈
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(2)

with

a(x0) =

{

1, if 〈I(x0, ω),n(x0)〉 > 0,

0, otherwise.
(3)

Hence, the driving functionD(x0) for synthesis of a specific
sound field withinΩS is simply the pressure at the boundary
due to the sound field of the desired source multiplied by a
window function:

D(x0) = a(x0) · P (x0). (4)

B. The Time-Reversal Cavity

So far, we have reviewed the fundamentals of the wave field
synthesis technique. The basic task for far-field beamforming

techniques is rather the extraction of plane waves from the
captured sound field using a spatial filter for the sound field.
It can easily be verified that the optimal spatial filter for
extracting a plane wave is a plane sink which is coincident
to the front of the desired plane wave. A sound source can
be converted into a sink using the time-reversal principle.
Since only second order derivatives with respect to space and
time occur in the lossless wave equation, its solutions are
invariant to a time-reversal. The physical background of the
time-reversal cavity and its properties have been discussed in
[11]. It can be shown that converting a source into a sink in
the frequency domain can be done by conjugation. Hence, the
well studied theory of wave field synthesis can be applied for
the synthesis of sinks as we will show later on.

C. Approach I

A direct approach for deriving the coefficients of the desired
beamformer is to use the array to directly synthesize a plane
sink (a virtual plane wave annihilating the plane wave in
look direction using time-reversal). The desired sink can be
obtained using the conjugate of the driving functions for the
synthesis of a plane wave fromθ0 using a linear distribution of
dipoles. Furthermore, we introduce a normalization to ensure
obtaining the unit impulse if the captured sound field is a plane
wave in the look direction with an amplitude equal to 1

Ďθ0(x0) :=
D

H

θ0
(x0)

‖Dθ0(x0)‖2
, (5)

whereDθ0(x0) is the discretized versionDθ0(x0), the driving
function for synthesizing a plane wave with the angle of inci-
denceθ0, andĎθ0(x0) contains the beamformer coefficients.
Note that the obtained spatial filter in Eq. (5) coincides with
the definition of the pseudoinverse ofD

H

θ0
(x0). Hence, we can

write

Ďθ0(x0) = D
†
θ0
(x0). (6)

Extraction of a particular plane wave from the sound fieldP =
[P1, . . . , PN ]T captured by anN -elements array is performed
by the spatial filteringĎθ0(x0) ·P.

D. Approach II: Synthesis of linear arrays of focused sinks

As expected, the simulations given in Sect. III of the
presented approach I show a limited directivity performance
especially at low frequencies using arrays with small dimen-
sions relative to the wavelength. In the following we outline a
second approach to cope with the resulting limited directivity
at low frequencies. For clarity, we illustrate our approachfor
capturing 2-dimensional sound fields. However, the extension
to the 3-dimensional case is straightforward. The synthesis of a
sink for extracting a desired plane wave can be done based on
the synthesis of multiple point sinks on a line.The synthesis of
point sink is equivalent to a near-field beamformer [12]. Here,
we use the outlined wave field synthesis and the time reversal
principle to synthesize a virtual sink atxs on a line which
is perpendicular to the desired look direction, see Fig. 1. The
distance between the virtual array and the physically real array
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Fig. 1. Illustration for the presented approach II.

h has to be chosen in a way such thatω
c
‖xs − x0‖2 ≫ 1. To

obtain the weights for synthesizing a point sink we again use
the pseudoinverse of the driving function for the synthesisof a
point source by a dipole distribution. Note that the number of
the independent virtual sinks that can be synthesized depends
on the array dimensions and order.
For an improved sidelobe cancellation, window functions
w(xs) can be applied on the virtual array, such as Chebychev
or Hann window functions. Finally, the coefficients of the
desired beamformer are given as

Ďθ0(x0) =

{

s=S
∑

s=1

w(xs)Ds(x0)

}†

. (7)

In general, flexible placement of the virtual sinks, e.g., loga-
rithmic arrays can be simply emulated, although this is not in
the scope of this paper.

III. S IMULATION RESULTS

To prove our concept we show the performance of the
presented approaches based on simulating a compact rigid
cylindrical microphone array with 25 omnidirectional pressure
microphones mounted on the surface of the cylinder atz = 0.
The array has a diameter of 15 cm. In order to simulate
approach II we created a virtual line array of 10 m total length
and a spacing of 0.5 m, the distance between the line array
and the real arrayh was set to 1.5 m. The two most important
measures to evaluate the performance of a beamformer are the
directivity and the white noise gain.

A. Directivity Gain

The directivity gain is defined as

DIR(θ0, ω) = 10 log10

(

|Ďθ0P|2

Ďθ0Ď
H

θ0

)

, (8)

whereP is a diffuse sound field simulated as an ensemble
of dense sampled and equally weighted plane waves. The
scattering of the plane waves on the surface of the sound
hard array surface was implemented according the results in
[5]. As the simulation shows, see Fig. 2, an overall satisfying
directivity gain can be achieved using the direct approach I.
Unfortunately, at low frequencies only limited directivity can
be achieved as shown in Fig.3. Figure 5 depicts the achieved

directivity gain by the approaches I and II using the same
simulation scenario as in Fig. 2 but at the single temporal
frequencyf = 300Hz. The blue curve shows the delay-
and-sum directivity gain, the red and green curves show the
directivity gain achieved by applying the approach II. The

−180 −90 0 90 180
0

5000

10000

15000  

angle of incidence [°]

directivity gain [dB]

 

fr
eq

ue
nc

y 
[H

z]

−60

−50

−40

−30

−20

−10

0

Fig. 2. Directivity of 25 elements rigid cylindrical microphone array using
the delay-and-sum approach and the proposed selection criterion.
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Fig. 3. Achieved directivity gain over the frequency band [20-600] Hz with
a 25 elements array of a radius of .075 m using the proposed approach I.

directivity in the frequency range [20-600] Hz using approach
II and a Hann windowing function is given in Fig. 4.

B. White Noise Gain

A common performance measure for the robustness of a
beamformer is the white noise gain. It quantifies the attenua-
tion of diffuse white noise from the sensors to the array output.
It is defined as

WNG(θ0, ω) = 10 log10

(

|Ďθ0P|2

Ďθ0Ď
H

θ0

)

, (9)
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Fig. 4. Achieved directivity gain over the frequency band [20-600] Hz with
a 25 elements array of a radius of .075 m using the proposed approach of
focused sinks.
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Fig. 5. Achieved directivity gain at 300 Hz with a 25 elementsarray of a
radius of .075 m using the proposed approach of focused sinks.

where Ďθ0 is the row vector of complex weights for each
microphone, andP is the column vector of the complex
pressure caused by a plane wave from the incidence direction
θ0. Note that a positive WNG value indicates an improvement
of the signal-to-noise ratio, while a negative one means
degradation. Figure 6 depicts the achievable WNG using the
presented approaches and a phase-mode beamformer of order
4 as presented in [5].

IV. CONCLUSION

In this paper we presented two approaches for deriving a
delay-and-sum beamformer. Both approaches offer high flex-
ibility and low computational complexity. As we innervated
with simulations, both presented approaches achieve a high
white-noise-gain especially at low frequencies compared to
traditional phase-mode beamformers. The first approach which
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Fig. 6. Comparision of the achieved whithe-nose-gain over the frequency
using the presented approach of virtual sinks with Hann windowing function,
the presented Delay-and-Sum approach, and the traditionalmodal beamformer
of order 4 and a 25-elements rigid cylidrical array with a radius of 7.5 cm.

can be seen as a direct delay-and sum beamformer suffers
from limited achievable directivity at low frequencies using
arrays with small dimensions. To cope with this limitation we
presented an alternative approach which stands to benefit from
creating large virtual linear arrays such that high directivity
can be obtained.
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