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Abstract. You can only control what you can measure. Measuring ontologies is
necessary to evaluate ontologies both during engineering and application. Metrics
allow the fast and simple assessment of an ontology and also to track their sub-
sequent evolution. In the last few years, a growing number of ontology metrics
and measures have been suggested and defined. But many of them suffer from a
recurring set of problems, most importantly they do not take the semantics of the
ontology language properly into account. The work presented here is a principal
approach to facilitate the creation of ontology metrics with the clear goal to go
beyond structural metrics to proper semantic-aware ontology metrics. We have
developed guidelines and a set of methodological tools based on the notions of
“normalization” and “stable metrics” for creating ontology metrics. These guide-
lines allow the metric author to decide which properties metrics need to fulfil and
to appropriately design the desired metric. A discussion of an exemplary metric
(taken from literature) illustrates and motivates the issues and suggested solutions.

1 Introduction

Did you ever dare to raise the issue of ontology quality assurance? How did you control
the process of improvement? As in many other related fields, you can only control what
you can measure [4]. Measuring ontologies is necessary to evaluate ontologies both
during engineering and application and is a necessary precondition to perform quality
assurance and control the process of improvement. Metrics allow the fast and simple
assessment of an ontology and also to track their subsequent evolution. In the last years,
many ontology metrics and measures have been suggested and some principal work has
been done to study the nature of metrics and measures for ontologies in general. We are
extending this work.

There is a recurring set of problems with existing ontology metrics and measures,
whereby we focus on the W3C standardized ontology language OWL [12]. We argue
that most metrics are based on structural notions without taking into account the seman-
tics which leads to incomparable measurement results. First, most ontology metrics are
defined over the RDF graph that represents an OWL DL ontology and thus are basically
graph metrics which take only structural notions into account. Second, only a very small
number of metrics is taking the semantics of OWL DL into account (subsumption etc.).
Third, almost no metric is taking the open world assumption into account. We believe
that foundational work addressing these issues will substantially facilitate the definition
of proper ontology metrics in the future.

In this paper we will study these issues, describe how they can be avoided, and
under what circumstances they have to be avoided, and under which they are acceptable,
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will outline the foundations for a novel set of metrics and measures, and discuss the
advantages and problems of the given solutions. Our approach is based on two notions,
first “normalization” of an ontology, and second “stable metric”.

Normalization consists of the five steps (i) name anonymous classes, (ii) name
anonymous individuals, (iii) materialize the subsumption hierarchy and unify names,
(iv) propagate instances to deepest possible class or property within the hierarchy, and
(v) normalize property instances. We argue that such a normalization is useful as a kind
of pre-processing in order to apply known structural metrics in a semantics-aware way.
For instance, a known structural metric is the depth of of the class-hierarchy. However,
the current measures of ontology depth depend on a number of structural parameters
such as whether subsumption reasoning has been performed and whether the results
have been materialized before measurement. Performing the normalization steps before
measuring ensures that the value for the maximum depth of an ontology is comparable
to the maximum depth of another ontology.

Stable metrics are metrics that take the open world assumption properly into account,
that means that they are stable with regards to possible additions of further axioms to
the ontology. Stable metrics allow us to make statements about the behaviour of an on-
tology in the context of a dynamic and changing world wide web, where ontologies may
frequently be merged together in order to answer questions over integrated knowledge.
We give an exemplary extension of the depth metric towards a stable metric in order to
demonstrate how a classic metric can be turned into a stable one.

In this paper we assume the term to include both axioms and facts (as well as anno-
tations and ontology properties, although those are not taken into regard for normaliza-
tion), i.e. the TBox and the ABox. Here, ontology does not mean only the axioms (as it
is assumed in many other works), but also a knowledge base, and any of them could be
empty. Thus we follow the definition of ontology in the OWL standard [12].

The paper is structured as follows. In Section 2 we will examine existing metrics and
measures, and thus survey related work. Section 3 contrasts the underlying notions of
semantic metrics with structural metrics, and discusses which scenario will require what
kind of metric. Section 4 introduces the notion of “normalization” of an ontology which
forms the heart of our approach. In Section 5 we illustrate the practical application of
normalization on examples. Section 6 addresses the issue of stable metrics with regards
to the open world assumption. We conclude in Section 7, where we also discuss future
work.

2 Current Metrics and Measures

In this paper we will concentrate on some foundational aspects that form the base for
automatically acquirable measures. Therefore we will not define a number of metrics
and measures, but rather take a step back and discuss conditions that measures have
to adhere to in order to be regarded as semantically aware ontology metrics. This also
helps to understand clearly what it means for a metric to remain on a a structural level.

Thus the scope of this work compares best to other metric frameworks, like the
QOOD (quality oriented ontology description) framework [7] and the O2 and oQual
models [6]. The authors created semiotic models for ontology evaluation and validation,
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and thus describe how measures should be built in order to actually assess quality. They
also describe the relation between the ontology description, the ontology graph, and the
conceptualization that is expressed within the graph, and they define measures for the
structural, functional, and usability dimension. In [5] they introduce further measures
that can be applied within that framework. We will take one of the measures intro-
duced in [5] as an example in Section 5, and show some shortcomings of the actual
descriptions of such a measure (not of the framework as a whole!). We think that the
work described here fits well into the QOOD framework by making the assumptions
underlying such measures explicit.

A framework for metrics in the wider area of ontology engineering is provided by
OntoMetric [11]. The authors name and sort a long list of metrics into several different
areas, like tools, languages, methodologies, costs, and content. They define the relations
between the different metrics, their attributes, and the quality attributes they capture.
Within the OntoMetric framework, the work presented in this paper is based solely in
the area of content metrics. It extends the discussions around content metrics, and elab-
orates properties of such metrics in more detail. Whereas OntoMetric regards all kind of
metrics, we gear the results described here towards automatically measurable metrics.

OntoQA is a tool that implements a number of metrics [14], and thus it allows for the
automatic measurement of ontologies. They define metrics like richness, population,
or cohesion. Whereas all these metrics are interesting, they fail to define if they are
structurally or semantically defined – which is a common lapse. Most of the metrics
in OntoQA actually can be applied both before and after normalization (as described
in the following section). We suppose that comparing these two measures will yield
further interesting results.

Often metrics are defined purely structural. An example is given by [1], where the
authors describe metrics for ranking ontologies, like the class match or the density mea-
sure. Interestingly even the so called semantic similarity measure is not a semantic mea-
sure in the sense described here, since they apply all these measures on the graph that
describes the ontology, not on the ontological model.

OntoClean [9], currently the most well-known ontology evaluation approach, is a
philosophically inspired approach for the evaluation of formal properties of a taxon-
omy. Some tools offer support for the manual tagging with OntoClean properties (On-
toEdit [13] and WebODE [2]), a recent work deals with the automation of OntoClean
[15]. From a practical perspective OntoClean provides means to derive measurable mis-
matches of a taxonomy with respect to an ideal structure which takes into account the
semantics of the “is-a” relationship. Such mismatches have a structural nature, e.g. one
is able to derive that a certain concept should not be the subconcept of another con-
cept. OntoClean provides an explanation of why mismatches occur which subsequently
might help to improve the taxonomical structure. For many people the philosophical
notions of OntoClean are subject of long discussions, however, strictly speaking, this is
not part of the evaluation but of the ontology engineering because deciding the proper
nature of a class forces the ontology to commit itself to a more specified meaning, which
in turn allows for a more object evaluation technique.

Measures applied to ontologies from the Semantic Web are usually still in a very
simple state [17] (unsurprising due to the overall bad quality of ontologies in the wild,
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and the high costs on resources for providing reasoning on a big number of ontologies).
We think that the most prevalent hurdle towards applying more semantic measures on
ontologies on the web is an actual lack of some foundational work towards defining
such measures, and a subsequent lack of implementation. The work presented here is a
step towards such an implementation, that will allow to measure the web in several new
dimensions.

3 Ontological Metrics

As shown in the previous section, current metrics often measure structural properties of
the ontology. In the case of OWL DL, this often means that they measure the structure
of the RDF graph that describes the ontology with well-known graph measures. An-
other approach is to measure the explicitly stated facts and axioms. Within these paper,
we regard both approaches as structural. Structural metrics are often useful, and this
paper does not suggest to replace them. It rather offers a way to extend the possibilities
available to the ontology engineer with truly ontological metrics.

We define ontological, or semantic, metrics to be those who do not measure the
structure of the ontology, but rather the models that are described by that structure. In
a naı̈ve way, we could state that we base our metrics not on the explicit statements, but
on every statement that is entailed by the ontology.

But measuring the entailments is much harder than measuring the structure, and we
definitively need a reasoner to do that. We also need to make a difference between a
statement X that is entailed by an ontology O to be true (O |= X), a statement that
is not entailed by an ontology (O �|= X), and a statement that is entailed not to be
true (O |= ¬X). To properly regard this difference leads us to so called stable metrics
that can deal with the open world assumption of OWL DL. We will return to them in
Section 6.

Note that measuring the entailments is more an intuitive description of how to de-
scribe ontological metrics than the actual approach. In many cases – for example for
a measure that simply counts the number of statements in an ontology – measuring all
entailed statements instead of measuring all explicit statements often leads to an infinite
number of statements. Just to give one example, the ontology ∃R.� � C also entails
the statements ∃R.∃R.� � C, ∃R.∃R.∃R.� � C, and so on, an endless chain of
existentials. But only terminating measures are of practical interest, and thus we need
approaches that allow us to capture ontological metrics in a terminating way.

In order to gain the advantage of the simple and cheap measurement of structural
features, we can transform the structure of the ontology. These transformation need to
preserve the semantics of the ontology, that is, they need to describe the same models.
But they also need to make certain semantic features of the ontology explicit in their
structure – thus we can take structural measures of the transformed ontology and inter-
pret them as ontological measures of the original ontology. We call this kind of trans-
formations normalization. The following section describes five steps of normalization.

With these tools we will be enabled to define ontological metrics in a simpler and
less error prone way than in current practice. We will show this on an exemplary metric
in Section 5.



How to Design Better Ontology Metrics 315

4 Normalization of an Ontology

This section describes several steps of normalization. Their goal is to explicate some
features of the semantics of an ontology within its structure, so that the structural met-
rics actually capture the semantics they are supposed to capture.

The following normalization steps are defined here:

1. name all relevant classes, so no anonymous complex class descriptions are left
2. name anonymous individuals
3. materialize the subsumption hierarchy and normalize names
4. instantiate the deepest possible class or property
5. normalize property instances

Notice that if we speak of names, we mean, in the context of OWL DL, the URI of the
class, property, or individual, not the human readable label.

In the first normalization our aim is to get rid of anonymous complex class descrip-
tions. After the first normalization, the TBox will contain two kind of axioms: class
definitions of the form A ≡ C, where A is a class name and C a class description (or
class name), and subsumption axioms of the form A � B, where both A and B are
class names. The ABox will consist of property instantiations of the form R(i, j), and
of facts of the form A(i), with A being a class name.

The first normalization can be done as follows:

1. in all axioms of the form C � D where C (or D) is a complex class description,
add a new axiom A ≡ C (B ≡ D) with A (B) being a new class name. Replace
the axiom C � D with A � D (C � B, or even A � B)

2. in all axioms of the form C ≡ D where both C and D are complex class descrip-
tions, replace that axiom with the two axioms A ≡ C and A ≡ D, with A being a
new class name

3. in all axioms of the form C ≡ A where C is a complex class descriptions and A an
atomic class name, replace that axiom with A ≡ C

4. in all axioms of the form C(i) where C is a complex class description, replace that
axiom with the axioms A(i) and A ≡ C with A being a new class name

None of these structural changes change the possible models, that means, that they are
semantically equivalent. They do introduce new class names to the ontology, which
may not be desirable in all cases (for example for presentation purposes, for counting
the classes, and so on).

Note that it is possible to introduce named classes that are unsatisfiable. This does
not mean that the ontology becomes unsatisfiable, but solely these newly introduced
classes. Instead of introducing new names for unsatisfiable classes though, we could
simply use the name ⊥.

The second normalization gets rid of anonymous individuals. This means that every
blank node that is of the (asserted or inferred) type individual needs to be replaced with
an URI reference. Especially in FOAF [3] files this occurs regularly since, for some
time, it was regarded as good practice not to define URIs for persons. Integration of
data was not done via the URI, but with inverse functional properties. This practice is
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problematic, since the semantics of blank nodes in RDF are rather often not fully under-
stood, and should thus be avoided. The second normalization as defined here captures
the semantics most users wanted to express anyway.

It is possible that these newly introduced individual names give a further name to
already existing (or other newly introduced) individuals. But since OWL DL does not
adhere to a unique name assumptions, this is no problem. Furthermore, the next step of
normalization will take care to resolve such synonyms.

The third normalization will materialize the subsumption hierarchy and normalize
the names. The first step requires a reasoner.

1. for all pairs of simple class names (A, B) in the ontology, add the axiom A � B
if the ontology entails that axiom (that is, materialize all subsumptions between
simple named classes).

2. detect all cycles in the subsumption structure. For each set of classes A1. . . An that
participate in a cycle, remove all subsumption axioms from the ontology where
both classes are members of this set. In subsumption axioms where only one class
is a member of this set, replace the class with B in the axioms. Add the axioms
B ≡ A1. . . B ≡ An to the ontology. B is a new class name for each cycle. If B is
unsatisfiable, take ⊥ instead of B. If B is equal to �, take �.

3. regarding solely the subontology H3 that consists of all subsumption axioms of an
ontology O, remove all redundant ones (that is, remove all subsumption axioms
that are redundant due to the transitivity of the subsumption relation alone).

The subsumption structure now forms a directed acyclic graph that represents the com-
plete subsumption hierarchy of the original ontology. We define a set of normal classes
of an ontology as follows: every class that participates in an subsumption axiom after
the third normalization of an ontology is a normal class of that ontology.

Since we got rid of facts with complex class descriptions in the first normalization,
we do not need a reasoner in order to take care of fact normalization. We still have to
replace every class name that is not normal with its normal equivalent within the facts.

Note that instead of creating a new class name for each detected cycle, often it will
make more sense to choose a name from the set of classes involved in that cycle, based
on some criteria (like the class name belonging to a certain namespace, the popularity
of the class name on the web, etc.). For many ontology metrics, this does not make any
difference, so we disregard it for now, but we expect the normalizations to have bene-
ficial effects in other scenarios as well, in which case some steps of the normalization
need to be revisited in more detail. We will further discuss this in Section 7.

Since in OWL DL it is not possible to make complex property descriptions be-
sides inverse properties, property subsumption, and transitivity, (extensions towards
enabling more complex property descriptions are suggested in the OWL 1.1 proposal
[8]) no heavy reasoning is involved for property normalization in most cases. In case
a property has more than one name, we choose one (or introduce a new name and
state the equality). All normal property names have to be stated explicitly to be equiv-
alent to all other property names they are equal to (that is, we materialize the equality
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relations between the normal property names and the non-normal ones). All occurrences
of non-normal property names (besides within the axiom stating equality with the nor-
mal property name, and besides within annotation property instances) are replaced with
the normal property name.

The same holds true for individuals. In case an individual has more than one name,
we decide on or introduce a normal one and state explicitly equality to the normal name,
and then replace all occurrences of the non-normal individual names with the normal
one (besides within the axiom stating equality with the normal individual name, and
besides within annotation property instances).

We disregard annotation property instances since they may be used to state annota-
tions about the URI, and not about the actual concept, property, or individual. There
could be annotations that describe when a certain URI was introduced, who created
it, its deprecation state, or that point to a discussion related to the introduction of the
URI. Some annotations on the other hand may be useful for the normal name as well
– especially labels, or sometimes comments. Since annotations do not have impact on
the DL semantics of the ontology anyway, they may be dropped for the purpose of
measuring semantic metrics. Nevertheless, if the normalization is done for some other
purpose, and it is planned to further use the normalized version of the ontology in some
scenario, than the possible replacement of names within annotation property instances
depends both on the scenario and the instantiated annotation property (for example, it
may be useful to normalize the label when the ontology will be displayed on the user
interface, but it may be bad to normalize versioning information that is captured within
annotations).

The fourth normalization aims towards moving the instantiations to the deepest
possible level, as this conveys the most information explicitly (and deriving instantia-
tions of higher levels is very cheap because of the asserted explicitness of the hierarchy
due to third normalization). This does not mean that every instance will belong to only
one class, multiple instantiations will still be necessary in general.

Here is a possible (though not efficient) algorithm to perform the fourth normaliza-
tion of an ontology O.

1. for each normal class C and each normal individual i in O, add C(i) to O if it is
entailed by the ontology.

2. for each normal object property instance R(i, j) and each object property S so that
S � R is an explicit axiom in O, add S(i, j) if it is entailed by the ontology. Check
this also for the property instances added this way (this step will terminate since
the subsumption hierarchy is finite).

3. for each normal data property instance T (i, d) and each data property U , proceed
as in the previous step.

4. create a subontology H4 out of O including only the facts (that is, the ABox), and
the explicitly stated subsumption hierarchy of the classes and properties (after third
normalization)

5. remove all facts from O that are redundant in H4.
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We do not want to remove all redundant facts from the ontology at this step, since there
may be some facts that are redundant due to an interplay of different other axioms in
the TBox. For example, in the following ontology:

Person(Adam).
likes(Adam ,Eve).
Person � ∃likes .�

the first statement is actually redundant, but would not be removed by the above
algorithm (the third statement states that the domain of likes is Person). This is because
we only remove axioms that are redundant within the subontology H4, and the axiom
stating the domain of Person would not be part of it. This is due to the fact that after
first normalization, the ontology would look like this:

Person(Adam).
likes(Adam ,Eve).
Person � A
A ≡ ∃likes .�

So H4 would not include the last axiom, and thus the first axiom would not be re-
dundant within H4.

The fifth normalization finally normalizes the properties: we materialize property
instances of symmetric and inverse properties, and we clean the transitivity relation-
ship. This can be done similar to the creation of the subsumption hierarchy in the third
normalization: after materializing all property instances, we remove all that are redun-
dant in the subontology H5, which contains only the property instances of all transitive
properties, and the axioms stating the transitivity of these properties.

It is important to mention that normalization does not lead to a canonic normalized
version. This means that there may be many different ontologies that result from the
normalization of an ontology. Often normalizations do not result in canonical, unique
results (think about conjunctive normal forms). The normalization as described here
can be extended in order to result in canonic normalized forms, but the benefit of such
an extension is not clear. Considering that common serializations, like the RDF/XML
serialization of OWL ontologies [12], lack a canonic translation anyway, and thus on-
tologies cannot be compared on a character by character base, for example as some
version control systems like CVS or SVN would require.

Also, normalization is not an applicable solution for every metric. For example, if we
want to know the number of atomic classes in an ontology, first normalizing it and then
calculating the number actually will return the wrong result in the general case. The
goal of normalization is to actually provide the metric designer some tools in order to
simplify the description of his metric. In the following section we describe an example
of how to apply the normalization for the description of a metric.

5 Examples of Normalization

The metric we will regard in this example is the depth of the ontology. What we want
to measure is intuitively described as the length of the subsumption hierarchy, or else
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the number of levels the class hierarchy has. In [5], this is the measure (M3), called
Maximal depth, and the definition is given as follows:

m = Nj∈P

∀i∃j(Nj∈P ≥ Ni∈P )

where Nj∈P is the set of all nodes in the path j from the set of all paths through the
digraph g that represents the ontology, that is, the definition is the length of the longest
succession of explicitly stated subsumption relations.

Let us regard the following ontology:

C ≡≥ 1R.�
D ≡≥ 2R.�
E ≡≥ 3R.�

By the definition of (M3), the depth of the ontology is 1 (since there are no explic-
itly stated subsumption axioms, every path has one node). But after normalization the
ontology gets transformed to this:

C ≡≥ 1R.�
D ≡≥ 2R.�
E ≡≥ 3R.�
D � C
E � D

Now the very same metric, applied to the normalized ontology, actually captures the
intuition of the depth of the ontology and returns 3.

As discussed earlier, this example also shows us that some metrics will not work
with normalization. In [5], metric (M30) is the axiom/class ratio. On the original ontol-
ogy it is 1, but raises to 5/3 in the normalized version. In case the original ontology is
being distributed and shared, (M30) – if stated as metadata of the ontology, for exam-
ple in some kind of ontology repository [10] – should be 1, and not calculated on the
normalized version.

Let us regard another example. In the following ontology

D � C
E � D
D � E
F � E

(M3) will be ∞ due to the subsumption cycle between D and E. The cycle can be
resolved by rewriting the axioms in the following way:

D � C
D ≡ E
F � E

But due to the definition, (M3) would yield 2 here – there are two explicit sub-
sumption paths, C, D and E, F , both having two nodes, and thus the longest path is 2.
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The structural measure again does not bring the expected result. After normalization,
though, the ontology will look like this:

A � C
A ≡ D
A ≡ E
F � A

We have introduced a new class name A that replaces the members of the cycle, D, E.
Now the depth of the ontology is 3, as we would have expected from the start, since the
cycle is treated appropriately.

Existing structural metrics, as discussed in Section 2, often fail to capture what they
are meant for. Normalization is a tool that is easy to apply and that can easily repair a
number of such metrics. Even seemingly simple metrics, as demonstrated here with the
ontology depth, are defined in a way that makes too many assumption with regards to
the structure of the measured ontologies.

As we can see in this section, simple structural measures on the ontology do yield
values, and often these values may be highly interesting. If we know that (M3) resolves
to ∞, then this tells us that we have a cycle in the subsumption hierarchy. Also a high
number of classes and complex axioms, but a low (M3) may indicate an expensive to
reason about ontology, since the major part of the taxonomy seems to be implicitly
stated (but such claims need to be evaluated appropriately). But both results do not
capture what the measure was meant to express, that is, the depth of the class hierarchy.

But this leads us to the possibility of creating measures by combining structural met-
rics on the original ontology and on its normalized version, for example to calculate ratios
like M3(O)/M3(N(O)) (with M3(O) returning measure (M3) as described above, and
N(O) being a function that returns the normalized version of the ontology O). This could
describe the explicitness of the subsumption hierarchy. Further work needs to investigate
and evaluate such measures, and to assess their usefulness for evaluating ontologies.

6 Stability of Metrics

Often metrics intend to capture features of the ontology that are independent of the ac-
tual representation of the ontology. But as we have seen, structural transformations of
the ontology description often lead to differences in the metrics even though the se-
mantics remained untouched. Normalization offers a way to overcome these problems
in many cases.

One aspect of metrics, that are not touched upon by normalization, is the issue of
how stable the metrics are with regards to the open world assumption of OWL DL
ontologies. In order to illustrate this issue let’s take a look at a simple example. Imagine
an ontology with the following three facts:

author (paper ,York).
author (paper ,Denny).
author (paper ,Zdenko).

Now let us ask the simple question: how many authors does the paper have? It seems
that the answer should be 3. But now, if you knew that Zdenko is just another name for
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Denny , and thus state Zdenko ≈ Denny , then you suddenly would change your answer
to 2, or even, becoming more careful, giving an answer like “I am not sure, it is either
1 or 2”. So finally we can state that York �≈ Denny and thus arrive at the answer that
the paper indeed has 2 authors (and even that is possibly wrong if we consider that we
could add statements any time in an open world that add further authors to the paper –
all we know as of now is that the paper has at least two authors).

When creating a metric, we have to ask ourselves the following, similar question:
how does the metric behave when additions to the ontology happen? Since ontologies
are meant to be smushed and integrated constantly and dynamically, can we predict how
certain properties of the ontology will behave, that is, if M(O1) and M(O2) for a metric
M and two ontologies O1 and O2 are known, what can we state about M(O1 ∪O2)? Or
even, can we give a function fM so that fM (M(O1), M(O2)) = M(O1 ∪ O2) without
having to calculate M(O1 ∪ O2) (which may be much more expensive)?

In the previous section we have discussed the simple example of ontology depth. Let
us return to this example again. We define the function M3(O) that returns the measure
(M3) as described in [5], and already described above. If we have an ontology O1:

D � C
E � D

And a second ontology O2:

C � D
E � D

In this case, M3(O1) = 3, M3(O2) = 2. We would expect M3(O1 ∪ O2) to be 3,
since M(3) is defined as the maximal depth, but since the union of both ontologies actu-
ally creates a cycle in the subsumption hierarchy, (M3) is ∞ – or, after normalization,
just 2, and thus even smaller than the maximal depth before the union.

We can avoid such behaviour of the metrics by carefully taking the open world as-
sumption into account when defining the metric. But this leads us to three possibilities
for defining metrics,

1. to base the value on the ontology as it is,
2. to measure an upper bound, or
3. to measure a lower bound.

We need a more complicated example to fully demonstrate these metrics:

C ≡ D 
 E
D � E � ⊥
F � E
G ≡ ¬C
H � C
F (i).
D(j).
G(k).

This ontology says that D and E form a complete partition of C (the first two ax-
ioms), that E has the subclass F , that there are elements that are not in C, and it states
the existence of three individuals, i, j and k, and the classes they belong to.
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The normalized version of this ontology looks like this (shortened slightly for
readability):

C ≡ D 
 E
⊥ ≡ D � E
D � C
E � C
F � E
G ≡ ¬C
H � C
F (i).
D(j).
G(k).

(M3) of this ontology is 3 (C, E, F ). But besides the actual depth, we can also cal-
culate the minimal depth of this ontology, that is, no matter what axioms are added,
what is the smallest number of levels the ontology will have (under the condition that
the ontology remains satisfiable)?

In the given example, if we add the axiom F ≡ E, (M3) will decrease to 2. But on the
other hand, no matter what axiom we further add, there is no way to let C collapse with
D and E, therefore C is a proper superset of both (that is, it contains more individuals
than D or E alone). And because C cannot become � (due to k being outside of C),
the minimum depth of the ontology is 2.

The maximum depth of an ontology is usually ∞ (since we can always add axioms
about an arbitrarily long class hierarchy). Only in the case of an ontology with a closed
domain, that is, if we have an axiom like � ≡ {a, b, c}, then the maximum depth is set
(to |�|−1, since there may be a class C with one element, a class D with two elements
that subsumes C, and then � with three elements, but since � is not counted, the longest
path would be (C, D), and every further class in this path would become equivalent to
an already existing class or be empty). But we expect such axioms to usually appear
only in theoretical musings and hardly be of any practical relevance.

Therefore we need to define a maximum depth in a slightly different way in order to
be of practical value. In the following, we will discuss two possible definitions.

Instead of allowing for arbitrary axioms that may be added, we only allow to add
axioms of the form A � B with A and B being normal class names of the normalized
ontology. In the above example, we may add the axiom H � F to the ontology in
order to increase (M3) from 3 to 4. No longer subsumption path is possible, since all
the other named classes would become unsatisfiable when added to an existing path. So
this metric will provide with a maximum depth of the ontology, assuming no new class
names are added.

Another possibility to constrain the axioms to be added, is to allow only for axioms
that do not relate to the existing ontology, that is, the intersection of the signatures of
the two ontologies is empty. The signature of an ontology is the set of all names used in
the ontology (besides the names from the OWL, RDF, RDFS, and XSD namespaces).
In this case, (M3) of the merged ontology is the maximal (M3) of the single ontologies,
since no interaction between the axioms happen that may increase or reduce (M3). We
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can thus define fM3(M3(O1), M3(O2)) = max(M3(O1), M3(O2)), which is much
cheaper to calculate than M3(O1 ∪ O2).

Stable metrics are metrics that take the open world assumption into account. Sta-
ble metrics will help us to evaluate ontologies for the wide wild web. Since we expect
ontologies to be merged on the web dynamically, stable metrics allow us to state con-
ditions that the ontology will fulfil in any situation. The depth of an ontology may be a
too simple example to demonstrate the advantages of stable metrics, but imagine a dy-
namic, ontology-based graphical user interface. Having certain guarantees with regards
to the future development of the properties of the ontology may help the designer of
the user interface tremendously, even if it is such a seemingly trivial statement like “the
depth of the ontology is never less than 3”.

There is no simple recipe to follow in order to turn a metric into a stable metric, but
the question outlined at the beginning of this section, and then discussed throughout
the rest – how does the ontology behave when axioms are added? – can be used as a
guideline in achieving a stable metric.

We expect that the ready availability of metrics that take the open world assumption
into account will lead to more robust ontologies. Since ontology engineers will have
these numbers available at engineering and maintenance time, they will learn easier how
to achieve their actual goals. For example, ontology engineers that want to create a class
hierarchy that will not collapse to less levels can always check if the minimum depth
as described above corresponds to the asserted depth. Tools could guide the ontology
engineer towards achieving such goals. Ontology engineers get more aware of such
problems, and at the same time get tools to measure, and thus potentially control them.

7 Conclusion and Future Work

We have discussed the properties of ontology metrics. Sometimes simple structural met-
rics are sufficient for the task at hand, and many structural metrics exist today. Our goal
in this paper was to raise the awareness for the difference between structural and onto-
logical metrics, and to provide principle means for the simple definition of metrics that
take the semantics of the ontology appropriately into account.

Ontology normalization was introduced as a preprocessing step in order to align
structural measures with intended semantic measures. Further properties, like the stabil-
ity of a metric towards ontology extension and merges, and the non-dichotomous nature
of ontologies were discussed, and an approach towards encapsulating these problems
was suggested by introducing stable metrics.

In addition to offering the theoretical tool of normalization, we are planning to im-
plement it as an extension to the OWL tools1. This will allow to access these metrics
both from the command line as well as from a Java API. Besides making normalization
available to tools and metric suites, this will also allows us to evaluate if there are fur-
ther benefits to normalized ontologies. We assume such benefits with regards to query
answering performance, usability, and ontology maintenance. Some properties of nor-
malization suggest advantages in these and other areas, but we expect some parts of

1 http://owltools.ontoware.org/

http://owltools.ontoware.org/
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the normalization process to be adapted based on differing requirements by these other
use cases.

Based on the foundational work provided in this paper, we plan to adapt, extend,
and implement several metrics already known in literature. We hope that a thorough
evaluation of these metrics will allow to correlate quality attributes to these metrics,
and thus to finally lead to viable sets of metrics and measures for the whole ontology
life cycle. We don’t think that there is one single such set, but the ideas presented here
make several design decision when creating metrics more explicit and point to common
problems and pitfalls when creating metrics and measures in this field. This will help in
deciding which metrics to choose for a given scenario.

We expect that future work will continue on this basis in order to create a bigger
tool set for everybody dealing with ontologies to allow them to evaluate ontologies
during every step of the ontology life cycle. This will lead to an overall higher quality
of ontologies, and thus to a stronger foundation on which the Semantic Web is being
built.
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