J. Math. Soc. Japan
Vol. 29, No. 4, 1977

How to differentiate the projection pn a convex set
in Hilbert space. Some applications
to variational inequalities

By A. HARAUX

(Received Sept. 9, 1975)

Introduction and notations.

We make a local study of the projection onto convex sets in real Hilbert
space, Let H be a real Hilbert space, KCH a closed convex subset, the pro-
jection operator onto K will be denoted by P. For every ucK, we set Sg(u)
:ZK/JOZ(K—u), T (u)=Sx(u). If f=H, [f]=vector space generated by /. If K

is a cone with vertex 0, then K*={ve H,YfcK, {f, vD<0}. In particular, for
feH [f1*={veH {f,v>=0]. For K a cone with vertex 0, and uck, we
have

Sg(u)=K-+{ul, ITg(w)=K+[u]j.
Finally, for K an arbitrary closed convex set, and v<=H, we define

2Zx(=11x(Pr)N[v—Pv]*.

In §1, we prove under reasonable hypotheses a theorem which shows the
role played by the “ curvature of the boundary” of K near Pv, for the conical
differentiability of P at v. After giving some zoology from geometry or inte-
gration, we restrict our attention to the case where YveH, Sx(Pv)n\[v—Pv]*
is dense in 2x(Pv). A convex set that satisfies this property will be called
polyhedric. We get the following

THEOREM. If K is polyhedric, Yve H, Yz H, then the curve t—P{v+itz)is
strongly right-differentiable at 0, with a derivative y=Projs,w(2).

In §2, we assume that H is a lattice, with respect to a closed positive
cone K. Then K is a polyhedric set under the simple hypothesis that x—
xt=sup{x, 0} is a bounded map. If f:[0, T[—H is right-differentiable, then by
setting u(#)=Projx(f(#)), the preceding theorem gives

+ +
w0, TT, 4% =Projz wn(-%7-
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Let us now assume the stronger condition:
VxeH, {x* x >Z0.

+
Then, under the hypothesis that Vi, —d&f— =K+, we get

dtu

p— j d+f
—7 _PrOJanuun(_"Jfﬁ) K.

In §3, we give some applications to variational inequalities by using the
above results in the two cases:

{ H=H\Q), K={reH, x>0}
H:Hi(‘g): K= {XEH, X]agg()} ’

£ being an open subset of R¥, with sufficiently regular boundary. We obtain
results that were proved in [2] by completely different methods. For a gen-
eralization in another direction, see [3]

I. Some general facts about the projection onto convex sets.

Let K and P be as in the introduction, v and z two elements of H. We
set

()= P(v+tzz)—Pv -

Since P is a contraction, |y(#)|=|z|, Vi>0.
PROPOSITION 1. Let y be a weak limit-point of y(t) as i—0. Then,
{ reXxv), <, z—r>=0
YweSg(Pvynlv—Pv]*, {z—r, wy=0.
Proor. Since P(v+tz)=ty({)-+Pv, we have

{vttz—(ty(t)+Pv), Pv—(r()+FPv))>=0
> 1%y (t), y(H—2> = v—Pu, y(H)={v—~Pv, Po+t2)—Pv>=0.

Dividing by f%, then using the weak lower semi-continuity of the norm, we
obtain {7, y—2>=0 for each weak limit-point y. Moreover, 0={v~Pv, y(t)>=
ty(t), y()—2z>. Since y(f) is bounded, we deduce {v—Pv, y>=0. In any case
we have y<IIk(Pv), so we conclude that y<>x(v). Let us now assume y(f,)
—7, with t,—0 as n—-+oo, and set d,=y(t,)—y. If we consider uK such that
{v—Pv, u—Pv>=0, then by {v—Pv, y)=0, the inequality

=Pt (2—y)—tn0s, u— Pv—1t,7—1,0,> <0
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implies
<Z_T9 M*PU>§<U-PU, 5n>+<5m u"'PU>+Cfny

where C is a finite constant. Hence as n—-+oco, we get
{z—7, u—Pv)=0.

Now if weSg(Pyn[v—Frl', we have w=A{u—Pv) for some 2>0 and some
ue K. Since {u—Pv, v—Pv>=0, we can apply the previous result and obtain
{z—7, w)=0,

THEOREM 1. Let KCH be a closed convex set. We fix ve H and weX x(v).
We assume that there exists a bounded linear self-adjoint operator‘L on H such
that

{ Lo ProjEK(v):ProjEKCv) oL,
Pu-+tw)y=Pv+tL:w—+o(b) (t>0).

Then, for any z&€ H such that Projg . (2)=w, we have P(v+t2)=Pv+tL*w+o(t).
PrROOF. Let us first verify the following property:

Vac H, V' =(Sx(v), lim up ( LHEA=LY

; , w’>§0.

We use If < P(ijI;Z‘Z)_PU . w’>§a>0 for t,—0 and large n,
P(v+t,,z)—Pv

Tk

{y, w>za>0, which is contradictory with the two facts: y=>Xx(») and w'e
). Now take z=w+w' with w' () and <w, w>=0. Then we
have

there are a subsequence /,, and y< H such that —75. Then

|P(v+tz)— Plo+tw) | *={dw’, Plv+tz)— Pv+tw))

={tw’, Pv—Plu+tw)>+{tw’, P(v+tz)—Pv).
But
(tw’, Pv—P(u+tw)y=-—tw’, LPwy—<{tw’, o(t)) .

Since L is linear and commutes with Py, (., it also commutes with Pcs =

I=P3 . Thus (Lw, Lw’»=0. Dividing by %, and using the above results,
Plv+tz2)—P(v+tw) |?
t

we get lim sup
t—ot

<0, and the conclusion follows.

Before we describe some consequences of this theorem for the polyhedric
cones of functional analysis, let us illustrate it by some examples.

ExaMmpLE 1. K={ucsH, |u|<1}.

For veK, and we X x(v), let us study P{v+iw)

—1If |v| <1, then Plv+tw)=v-+iw for small values of ¢.

—1If |v|=1, then Dx(w)={weH, (v, w)=<0}. So |v+tw|Z 1+ |w]H) 2=
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1+o(t). And we have P(v-ttw) =0 {ﬁiﬁtw” =vttw-+o(?).

—1If |v|>1, then by Pv:-l—zT we have Zx(v)=[v]*. So if we2x(v),
lv+tw| =(v|*+ 2| w|)V*=|v| +0o(t). And then P(v+tw):Pv+—1tw+0(t).

[
Using with Lz—mld, we get that YveH, YzeH,
P(v+tz) is strongly right-differentiable at {=0, with derivative
1 .
Sl T Projs .o (2) -

ExaMPLE 2. H=RY and K is a compact convex subset with C* boundary.
We may assume that K has interior points. Let v be a point outside K.
ITx(Pv) is a closed half-space in H, the dual cone of the half-line generated
by v—Pv. We may assume for convenience Pv=0 and > (v)=R" .

In a neighbourhood of 0, the boundary of K may be represented by the
equation: xy=—e¢(x,, -+, xy_,) where ¢ is a C* convex function, defined in a
neighbourhood of 0 in R, such that ¢(0)=0, D¢(0)=0. w being an element
of RV"'=3,(v), the projection of v+tw onto K is the element (x(f), —¢(x(1)))
of R¥ for which NIIVinl'(({v——PvlJrgo(x))anlx—twlg) is achieved.

RN -

It is easily seen that this condition implies that
| v—Pv| D*0)(x(D)+x()=tw+o(1),

and we notice that D*p(0): RY'—R¥"! is a positive self-adjoint linear operator.
Setting L=([+4{v—Pv|D?p(0))""*cProjs 4, we deduce from that P
is differentiable at v, with differential :

dP)={+v—Pv|D*(0)) "o Projz v -

This formula has a simple geometric interpretation: v H\K being chosen, we
find ¢ after a suitable change of coordinates. The different eigenvalues
(ay, @y, -+, a,) of D*o(0) are exactly the principal curvature numbers for 6K
at Pv. If we denote by P,x the projection of xH onto the eigen-space cor-
responding to the eigenvalue a,, the differential of P at v is given by the
formula : ’

dP(v)=3 P
(U)_EE 1+jv—Pvla, *

EXAMPLE 3. H=R? K={(x,y)eH, y=<—|x|**}. The boundary of K is
C', but not C*. We consider the point v=(0, 1).

The convex set A being invariant by symmetry with respect to y-axis, it
is enough to consider w=(1,0). Then P, 1)=(x(t), —(x(£))**) with x(t)=0.

From the equation (z‘—x(t))——%—(x(t))”2(1—l—(x(t))3/2):0, we deduce first x(2)=00?),



How to differentiate the projection 619

34

(¢ 1)
/"/ *
R ()

and then x(t)zfgl—tz. So by (with L=0), for any z& H the curve

P(g+tz) starts for t=0 with a speed equal to 0,

Let us say that P is semi-differentiable at v if there exists a map dP(v):
H—H positively homogeneous of degree one such that, for t<0, P(v+iz)—Pv
=tdP(v)(z)+o(t), Yz= H.

ExaMPLE 4. It we take the product of a finite number of regular convex
gets such as in Example 2, we get in the general case a manifold with boundary
and corners (the most simple case being a square in R*®). For such a convex
set, one can prove that P is semi-differentiable at every point.

It is also possible to take infinite products. As a particular case, let (&2, g&)
be a positively measured space, 4 a real Hilbert space. We set

H=L*Q, %),
K=@weH, |v(x)|<1, ga.c in 2},
It is obvious that
Prv)={weH, wx)eC(x), p.a.e. in 2}
where C(x) is a convex cone, p.a.e. defined by
Clo={z=4,{zv(xp=0  if Jv(x)]|=1,
Clx)={z=4, {z, v(x)>=0} if [v(x)|>1.
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So Ps ) is commuting with all transformations of the type

(Tz)(x)=A(x)z(x), A=L>(L,R), A(x)=0, p.a.e.

1/2
Applying with (Lw)(x):( sip(d 1|v(x)|} ) w(x), we get the result
that P is semi-differentiable at every point ve H, and YveH, Yz H, (dP(v))(2)(x)

i {1,1|v(x)|} (Ps n(2)(x), pra.e. in 2.

THEOREM 2. We suppose now that YveH, Sg(Pv)n[v—Pv1* is dense in
I x(PYYNLv—Pv1*. Then, for any f:00, T[—H right-differentiable at every
point, u(D)=P{(f(1)) is right-differentiable, and

d*u : @
dt ™ Projn K(ummcﬂt)—u“ﬂl(—dz{i ’

PRrROOF. Since P is a contraction, it is enough to prove the result at (=0
for a curve g(f)=v-+tz. Thus will be a consequence of the Theo-
rem 1 applied with L=Id if we prove

LemMma 1. Let K and v be as in Theorem 1. Then, for any we
Se(PuN[v—Pv]*+ we have Pv+tw)=Pv+tw+o(t).

PrOOF. We have to prove that

iy
First if we Sg(Pv)N\[v—Pv]*, then Pv+twe=K for small &. Moreover, for any
u=K we have

v+itw—(Pv+tw), u—(Pv+tw)y—={v—Pv, u— Pv>—v—Pv, w).
And then, by virtue of welv—Pv]*, this expression is <0, by the definition
of Pv. So Plv+tw)—Pv=tw for t small enough, and the result is true for

weSg(P)NLv—Pvlt. Since the maps: w— P(v+t;u)—Pv —w are uniformly

( P(v+t1£v)~Pv ﬁw):o .

lipschitzian for £>0, the result is true by density for weSg(Pv)N\[v—FPv]*.
REMARK 1. It is also possible to deduce simply the result of [Theorem 2
from and the estimate {y(?), y({)—2z>=0.

II. Study of the projection onto the positive cone of a Hilbert lattice.

Let X, Y be two real Banach spaces, and 7:X—Y a positively homo-
geneous map, of degree 1. The equivalence of the three following assertions
will be used later:

i) T is continuous at 0, from X to Y with the weak topology of Y.

ii) T is continuous at 0, from X to Y.

iii) IM<Foo:VxeX, [Txlly=Mlx|x.
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It is enough to see that i) =>iii). If iii) is not satisfied, there exists a sequence
{x,} of vectors in X, such that

lx.lix =1, [Txalipzn®.

We set v,=—= J;@” . Then v,—0, HTynHYz% | Tx,ly=n, so Ty, has no limit point
for the weak topology of Y.

THEOREM 3. Let X, Y be two Banach spaces. We assume that Y is a refle-
xive Banach lattice, and that K={yeY, y=0} is closed. Let T: X—Y be posi-
tively homogeneous of degree 1, and Vx,, x,, T(x,+x,) <Tx,+Tx,. Then,

a) T is continuous from X to Y with its weak topology if and only if it is
continuous at 0.

b) If we have for any x= X, ||[Tx|y=|xllx, and Y is uniformly convex, then
T is continuous from X to Y with the strong topology.

Proor. T being continuous at 0, there exists M such that

VxeX, [Tx|r=Mlx]x.

So if x,—x, Tx, is bounded in Y. Let v be a weak limit-point for the sequence
Tx,. We have

Tx,—Tx+T{x—x,)=K and Tx—Tx,+T(x,—x)=K.

Since T is continuous at 0, as n—-+oo, T(x—x,)—0 and T(x,—x)—0. Since K
is weakly closed, passing to the limit we have y—Tx=K and Tx—y<K and
hence y=Tx.

COROLLARY 1. Let H be a Hilbert lattice, with K={x= H, x=0} closed.
a) The map x—xt=sup{x, 0} is continuous from H to H with the weak

topology, tf and only if it is bounded. As a particular case, this is the case if
we have

VYxeH, <{x%, x>=0,

b) If we have for any xeH, {x*, x">=0, then the previous mapping is
continuous from H to H.

ProorF. We consider Tx=x*+x". Since we have VxeH, |Tx|*—|x|*=
4{x*, x>, we observe that |Tx|<|x|<{x", x7><0, and |Tx|=|x|= {x*, x>=0.
Using x‘*:%—(x—]—Tx), appears as an immediate consequence of

COROLLARY 2. H and K being as in the beginning of Corollary 1, we assume
that for any x<H, |x"|<Mlx|. Also let usK and heJIxn)*. Then
SR =TTx(W)N[A]*.

ProoOF. First, —¢=<u, if g=K-—u. Since u=0, u=sup{—¢, B} =¢", so ¢~
e—(K—u). Since the positive part is positively homogeneous of degree 1, and
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continuous from H to the weak topology of H, the condition ¢<=TIx(u)N\[AJ*
implies ¢-=KN\—TIx(w)C[A]*. Then ¢*=¢+¢p-eKN[A]* CTSc(w)N[R]*. Let
now ¢,—¢" with ¢,e—S;(u). Then we have ¢ —¢~, and (—¢,) =¢fe
—Sx(WNKCT—Sg(u)N[AT, so that p,=¢"— ¢ =S(u)NTAT, and p,—¢.

CarOLLARY 3. Let H be a Hilbert lattice as in We suppose
now that for any x€H, (x*, x”»=0. Then, for any ucK we have Projy zau)(K*)
c—K.

We shall use

LEMMA 2. Let C,, C, be two closed convex subsets of H. If Je>0 such
that VxeC,, Yyel,, {x, v>=(e—1)|x||v|, then the sum C,-+C, is closed.

PrROOF. We may suppose ¢<1. Then,

VxeC, Vyely, [x+y1°2 | x?+2(e— D x| [y + [y |Pze(] x| *+13]%).

Let z= lim (x,+v,), x,.€Cy, v,=C,. Then |x,| and |y,| are bounded in H. If

Rt oo

Xnpy—X, Yny—V, 2=x+y=C+C.
ProOF OF COROLLARY 3. It is equivalent to prove
K CIIe)* +Tx(w)n—K.

By with =1, the sum IIz(u)*+IIx(u)~—K is closed. So, by
duality we have to check IIz(u)N{ITz)N—K)CK. If wellxlw), w e
KN—T11x(). If moreover w=(Ilx(u)—K)*, we get <w™, wy»=0. Then,

lw™ P =w* —w, wH=<w", wH—{(w, w =0
>w =0, or wek.

Let H be a Hilbert lattice, such that K={xe H, x=0} is closed, and let M
be a constant such that for any x=H, [x*| SM]|x|.
For g: [0, TL—H, we consider the solution u(¢) of the variational inequality :

{ uthekK

Vve K, {(gt)—ult), v—u(t)>=<0.
Then we have
THEOREM 4. If g is right-differentiable, then u is also right-differentiable.

.
Its derivative % is given by the variational system

d*u

g SHxu@®)nLe®)—ult)l,

(S) For all weKALgf)—u(®]" <~%‘—, w—«u(r)>;<—dd+—tgi, w»—u(t)>,
du |*_/ d*g d'u
dt }_<T{f’ dt >

PROOF. Let P be the projection operator onto K. First we notice that
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if ve H, then
Mx(P)N[v—Pv]*=(K+[Pvn[v—Pv]* (Corollary 2)
=KN[v—Pvit+[Pv] (since {v, v—Puv>=0)

= xntp-porr(Pr).
g(t) being right-differentiable, we know from [Corollary 2 and [Theorem 2 that

.
u(t) is also right-differentiable, and —%!tl is characterized by the relations:

%%eHK(u(t))ﬂ[g(t)*u(i)]* :

Vo, I O— (0, (2 0= G 2 (4w -G,

+ +
Setting w,=0, and then wliz%%, we get _dd&

dt ——d}— > In the

z <d“g d'u

. . . d*u dtg - .
residual inequality T = 7 W) it is necessary and sufficient to

substitute w,=w—u(f), we Kn[gt)—ult)]*.
COROLLARY 4. We add the hypothesis

VxeH, {xF, x> <0.

If we have d;f eK* for any t&[0, T[, the system (S) can be replaced by the

simpler one:

{ %LL ellx(u)N—K

(S vwek, (L w—u®)=(-4E, u—u)
l dru 2_<£gf E_u_>
dit | 7\ dt * dt /-

+
Proor. By Corollary 3, if %f— eK, we get

Proi y d*g 1
rojn o ~gp- ) € Me(u(tNN—KCLg(B—u®)] N—K.
So
. d* . d* d*
PI'OJIIK(ucm(—d'f‘)ZPIOJZ:KCgu»(‘“df‘):7%“ e—K.

II1. Applications to variational inequalities.

First we recall the essential results about capacity theory in Dirichlet
spaces. For more details, c.f. A, Ancona [1].
Let (X, A, & be a positively measured topological space with its borelian
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o-algebra. We assume that X is locally compact, admitting a countable com-
pact covering, and, for any X compact C X, &(X)<+oo. We consider a vector
subspace H of L*X), with a hilbertian scalar product denoted by (( ))y with
the following properties i)~vi).

i) The inclusion of H into L*X) is continuous,

ii) H is a sublattice of L% X) for the order defined by K={ucH, u=0,
£.a.e. in X},
iii) VxeH, ((x*, x")x=<0. .
iv) Let C(X) be the space of continuous functions with compact support
in X,
Z=C(X)"H is dense in H and in C(X).

v) Y.X compact CX,VYV a neighbourhood of X in X, 3f=Z such that
f=1lin X, supp(f)CV, f=1in X. Using the Hahn-Banach theorem, one can
deduce from v) the following.

vi) If p=H* such that {g, />=0, V/€KNZ, then there exists a nonnega-
tive measure # such that f|z=p|,. By iv) this measure is unique.

For xeH, we set Tx=x*+x", The norm in H* is denoted by | |z~
Denoting by H#(X) the space of Radon measures in X, we can draw the fol-
lowing inclusion diagram

H H(X)
- ~
Z L¥X) Zr*=(HNC(X))*.
I — ~ —
ax) H*

DEFINITION 1. Let A=, f a measurable function such that its &.a.e.
equivalence class is in H, we set

f=2in A  in the sense of H (f=z2 in A)
e3f,eH, f,—f asn—+too, and f,=4, & a.e. ina neighbourhood of A.
H

Our aim is to define pointwise the elements of H, 'in a manner which is
both more precise than £. a.e. equivalence, and compatible with the inequality
of Definition 1. For that we define an adequate notion of magnitude for
measurable sets.

DEFINITION 2. For Ae i, we introduce the closed convex set

FA:{uEH,u§1 in A},
and then

Inf ul*s if I #0
cap (A)———{ uSrq
+co if FA:Q-
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PROPOSITION 2. Let K be a compact set CX. Then fzzd in Xe3if,€2,
fazZd in X, fo2f-
PROOF. a) Let us first suppose that /,—f, fr€Z, f,=2 in X. We choose

heZ such that =1 in K. Then gn::fn-{—-%;h converges to f as n—-+oo, and
Z,=1 in a neighbourhood of X.

b) As a particular case, let us first suppose /=40 in K. We introduce
Ci={feH, 2,0 in X} and C,={f=Z, /=0 in X}.

To prove C,0C,, we have just to check that if g=H* is nonnegative on
C,, it is also nonnegative on C,. But if ¢ is nonnegative on C,, it is trivially
nonnegative on KN\Z. So by vi), we can identify (in Z*) ¢ with a nonnega-
tive measure # in X. By iv), ¢ is nonnegative on C, if and only if supp (#)
CX. Since g is nondecreasing in H ordered by K, to prove that g is non-
negative on C,, it is sufficient to check that p(u)=0, YueK such that u=0,
£.a.e in a neighbourhood of K. (Because u=lim (¢} ~—u;), with u,€H, u,=0,
§.a.e in a neighbourhood of X). Let ¢,=Z such that ¢, converges to u.
Then ¢i—u*=u. So we get a subsequence n, and numbers a,,,=0 for 1=p

Tk
=n, such that 3 a,,,¢0;=¢:—>u. And ¢,€KNZ. By hypothesis, u=0,
p=1 fi——+co

&.a.e in an open VOX. We consider he KN\Z such that supp (R)CV, h=1 in
K. And for any [N, inf {¢;, [-h}—0 as kE— o0, hence also

{p,inf {@p, A} Dy, g« —> 0 as k—+co,

On the other hand, A(T{pi—@re))={t, T(O2—0rs ) u, i SN2l | T(@r—0rer)
Slel el er—@re-l g by iii). So ¢, being a Cauchy sequence in L'(#), converges
to £ in LY#). By Fatou lemma: [z(C):/I(lganinf (inf {@s, [-h}))<0. And so
£(0r)—0 as k—+co. Since Pu U and psH* we get ¢(u)=0. In the general
case, we consider he KNZ, h<1, h=1in K. Then f—2hzZ40 in X>Jp,eZ,

22000, |pu—(f~ A S Then ¢p=2h+a=2 in K, and Igu—fl= 1.

CorOLLARY 5. VAed, cap(A)=0>Vue H*nH*(X), p(A)=0.

First if & is a compact subset of X, such that cap (X)=0, then Ye>0,
JpeZ:p=1in X and |@|z<e. Hence F(K)=i(p)=<g, ©u,m=|plme, Ye>0.
Now if A is only measurable, we consider a sequence of compact sets &, such
that U A,=X. Setting A,=H,NA, we have cap(4,)=0, and wu(4,)=

nz0
sup {pu(X): KT A,, KX compact}=0.
PROPOSITION 3. Let (A, )wexy be measurable sets CX. Then cap{\U A,)
< X cap(4,).

nz9

LemMMA 3. VACX, BCX measurable sets, cap (A\UB)<cap A+capB.
It is enough to prove that if (u, v)e Hx H, then
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lsup {u, v} 1P ul®+{v]®.

First, if weH, then we have
lu-tw "= ] *42(Cu, w)+ fw*
=lul*+2((u+w*, w)—lw P <|ul*+2(utw, w*))—lw*|?
=lul*+llwtul*~futw—w " <ul*+llw+ul®.

Setting w=v—u, we have sup {u, v} =u-tw*, and v=w+u.
LEMMA 4. Let (I'))nex be a sequence of closed convex sets in H, Then if
I, is decreasing,

dist (x, N I',)=supdist(x,1I",).
nzo nzZ0

The proof of is trivial.
Now to deduce Proposition 3, we set anogﬁ A;, and I',=1"5, (c.f. Def.
2). Then Fgo‘“: OOF” {c.f. [1], Prop. 6). And ]

cap (\J Ap)=[dist (0, ©\ I",)]*=sup cap (B,)
nz0 nz0 nzi

= sup (Zg cap (A))= T cap (4.).
As a particular case, cap{(A)=0 and cap (B)=0 imply cap (AUB)=0. We shall
say that a property is true quasi-everywhere in X (q.e.) if it is true in X\ 4,
with cap (A)=0. So if P and @ are true q.e. in X, the property “F and Q7
is also qg.e. in X. )

DEFINITION 4. Let f be a measurable function: X—FR. We shall say that
J is quasi-continuous if there exists a nonincreasing sequence {w,} of open
sets in X such that lim cap (w,)=0, and f| X\w, continuous, V=,

N—++oa

PROPOSITION 4. If [ is quasi-continuous and f=0, & a.e, then cap ({f<0})
=(.

PrROOF. We set A={r=X, f(x)>0}. Since A\w, is an open subset of
X\w,, AVw, is open in X. Since £(A)=0, if p.=H, ¢,=1, £ a.e in w,, we
have ¢,=1, £.a.e in AUw,, a neighbourhood of A. So cap(AVw,)=cap (w,).

COROLLARY 6. If f, and f, are two quasi-continuous functions having the
same £.a.e equivalence class, cap ({f,#/f,})=0.

We give now the fundamental results of this theory.

THEOREM 5. If x&H, it has a q.e defined quasi-continuous representative.
Moreover, for any X quasi-continuous representative for x, I{f,} such that
YneN, f,eZ, f, converging to % pointwise q.e in X, and in the norm of the
space H. '
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By two quasi-continuous representatives are equal q.e. So it
suffices to see that there exists a quasi-continuous representative for x, which

is a limit, pointwise q.e and in H of a sequence f,=Z. We consider a sequ-
ence f,= 7 such that

o> 1, D44 frur— fall < oo
H k=1
It o= {{EX, [(fo—FQ1>27, cap @) 4 fun—ful% Setting o= U oy,

we have cap (W) 4% foi—f:ll%. f. converges simply outside of N @), uni-
1

formly on each X\w,. The limit function X (we set ¥=0 in (31»1,) has the
desired properties.

THEOREM 6. We consider x& H, with quasi-conlinuous representative ¥. If
ve H*N\ M (X),% is measurable for v, v. a. e defined, ¥= L'(v), and j;?dv:z(x, YO u, m

By and Corollary 5, ¥ is v.a.e. defined. Moreover, let f,eZ
be such that f,—% in H, and g.e in X. Then f, is a Cauchy sequence in
L'(v) and H: its limit in the two spaces is equal to ¥. Since the equality to
check is true by the definition of the f,=Z, the proof is done. Now if we
consider x< H, it will be understood that we consider a quasi-continuous repre-
sentative. The Important properties contained in the following remark will
be used later, but not proved, c.f. [1] (the proof relies on potential-theoretic
tools). :

REMARK 2. a) If A= 4 and f=H, then we have f= 44 on Aecap({f<iA}NA)
=0,

b) If foeH and f,—f in H, then there exists a subsequence f,, such that
Fs®)—F(x) q.e. inX.

We now apply [Theorem 4 to differentiation in variational inequalities. Let
Q2cR” an open bounded set, with smooth boundary I.

EXAMPLE 5. H=H}({2), with the scalar product:

(u, v)Hazsggrad u-gradvdx,

Let /: [0, TL—H () be a right-differentiable curve. We may consider the
one-parameter depending variational problem
{ w)=0,  du®)=—f(1)
(du()+f()u®)=0
in the following sense: u(t) is chosen quasi-continuous for the Hj-capacity
(defined Ilater), Vi>0, —(du(t)+f()=v(t) is a nonnegative distribution in £,

hence an element of M (QN\H (L) and Vis[0, T, u(t):Q, v(t). a.e. in 2.
This problem can be represented by the variational inequality:
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u(t)yeK={veH,v=0 a.e. in £}
(L ‘

Yvek, _fﬂ grad u(t)-grad (v—u(t))dnggf(t')(v——u(t))dx

and introducing g(t)=(—4)"Y/(?), it becomes
{ u(ye K
Vvek, ), v—u(®)m=(g@®), v—u()m .

First we observe that H is a lattice for the order given by K. If uc H{(&),
grad u*-grad u==0, a.e = (u*, u")y=0. The properties i), iv) and v) are trivi-
ally checked, so setting X=02, H=H ), we can apply the capacity theory.

LEMMA 5. uvcK > TIx{u)={weH, w=0 q.e in {u=0}}.

The inclusion Ilx(w)C{weH,w=0 g.e in {u=0}} is a consequence of
Remark 2, b). On the other hand, [TIx(w)1*=K*N\[ul*={ze H, —dz=ye H* (),
v({u>0})=0} so that (TIx(w))'C{weH,w=0 q.e in {u=0}}* by [Theorem @
And {weH, w=0 q.e in {#=0}}=TIx(x) since TTx(un) is closed.

COROLLARY 7. The solution u(t) of problem (1) is right-differentiable, the

+
derivative % is given by

d'u =0 g.e in {u(t)=0}, ”(t)< ngu>0}>:0

di
+ d+
(L1) Ywek, —g!dTu,w—u(t)))yszg—d{—(w—u(t))dx
duNE ¢ du dF
jglgrad( at ) =) Tar ar

where v(1)=A(g()—u(l)), and
K,={we Hi(), w=0 and v(t) (w>0)=0}.

PrOOF. We show that if {=0 q.e in {u(t)=0}, ({, g(t)—u(D)ny=0=v(1}({>0)
=0. By LeLi(x(1), and

fngv(f)=<C, Alg(O—u®) > a,p=—(, g(O)—ul))x .

Since (u(t), g()—u())=0, we have »(HW(H>0)=0. Thus (& g(t)—ult))=
"_L ey, 5 4¥en and we are done.

REMARK 3. We could deduce from [Corollary 7] the study of i{-differentia-
tion for the variational problem

{ u()=¢(t)
Au(ty=—f(1),

(Aut)+ D)) —-H(1)=0.
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COROLLARY 8. Under the additional hypothesis: f =0,Vie=[0, T, the

+
derivative % satisfies the system

+ +
ddtu <0, _ddTu =0  qein {w(®)=0},

(1.2) YweK, j grad( e *)-grad (w—u(t)dx= j (w u(®)dx,

foleraa ()| ar=[ Gl ax,

which is equivalent fo

d*u dtu . -
[ T =0, T'—O q.e in {u(t)=0},

1 LU LT =y, pnea@),
t) @(>0)=0.

EXAMPLE 6. #=H$) with the scalar product (u, v)zjggrad u-grad v-dx
—}—J‘guvdx

K={ued,u|r=0, a.e on [I'}.

Let /: [0, T[—L*($) and ¢: [0, T]—L* %) be two right-differentiable functions.
We consider the /-depending variational inequality

u(tye K, Vte[0,T[,

(@)
ek, @), v—u®)z] fO@—uB)dxt] eO@—un)dl .

We notice that by the “trace theorem ”, the mapping:
eH— Dw dx ¢ dI’
w J fowdxt| otowly

is continuous for every f, and so represented by an element of (H(2))*.

We introduce H=H"*I"), K={weH,w=0}, and for uc H we consider the
solution # of the equation #=4, —Au-+u=0, #|,=u. We define the scalar
product on H by the ((,v))y=(#, ?)y. H is a Hilbert sublattice of L*(I") for
the ordering given by K since we have sup {u,v}=H, Y(u,v)e HXH, On the
other hand, it can be regarded as a subspace of %4, by means of the map:

u——>m>1u.
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We now follow an idea of Sylverstein to show that
YucsH, ((u*, u))z=<0.

If u=H, we set Tu=u*+u~, And for x4 Cx=x*+x7,x* being the positive
part for the natural ordering on H'(£).
First we remark that for any v=.% such that v| =0, and for any weH,

we have (1, v)=0. Then for u=H, we have 'I:u1p:CiL|I«:Tu, taking w=Tu,
v=Tu—Ci, we also have | Tu|*—|Ci|*=2Tu, Tu—Cil)— | Tu~Cit|?=— | Tu—Cit|?
<0. Hence, I]TujiH:]Tu|§I6ﬁ|:]z}|:||uilg, Vu=H. The properties i), iv) and
v) are easy to check, setting X=17, H as above, we may apply the capacity
theory. The inequality (2) admits the pointwise formulation:

u()=0, a.e on I’
[ —Au(t)+u(t)=7(t) in 2
OUD = o1y on I and (24D —g(0))u(ty=0 on I,
where u|, is chosen quasi-continuous for the H'?(/')-capacity, in the sense
au(t) ou(t)
B P 2P

v(t)(u(t)>0)—0. For usX, we set u,=u|p, u2:Pr0jHé(m(u). Introducing the
solution ¢(f) of the problem

that ——=>~—¢(f) is a positive medsure on I, and setting v(f)=

—AGD) P =0
[ O oty on T

and setting g(f)=¢(?)|r, the system (2) is equivalent to
—Au,(H+u(H=/(1),
u ek,
Yoe K, (), v—u D)) ={(gQ@), v—u(1)) .
du(t)
on

Setting v(t)= —¢(f) (a nonnegative measure on /') and

K(D:{UEH,U‘F;O, g. ¢, ”(t)(ylr>0):o} ]

we get immediately from the following

+
COROLLARY 9. u(f) is right-differentiable, and -4 1% is the solution of the
variational problem
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f .
S 1r20, q.e in TATud=0}, v(0(-% 2 17>0)=0,
@1) | YweKe, (LG v-utma 2 [ S -w—u@)iz+[ L€ w-uwyir
AL d+f : d* 4y du
fﬂ l dx-!—j lgrad( dx f T d dar’.

COROLLARY 10. Under the additional hypotheses that Vi, d f =M (8,

.
ddlfp eM (), the derivative ddtu satisfies the system

I+ dr
J# <0, d;‘-_o q.e in I'm{u(t)=0},
d*u

@) {vwek, (G, w—u®)moz| 4 w—u@)dx+ | GE o—uiyr,

+ + + + + +
J G| axef |eraa(4)| dx=f G A v | L Liar,

dt T dt r dr T di
o ¢ d* d+ .
So dt“ — L= (), with pHeHNIY, #(t)(u(t)>o>—o
+ +
SKETCH OF PROOF. In X, d eK* because (d g) d "D <0. So
+
d d‘;l ! «—K, and the inequality for o, gets simpler. Moreover, we have
R + +
u | r=0, and (—A+1)(id§‘—)§0 in 2. So idtl <0 by the max. principle.

The rest of deduction is a purely algebraic matter.
Corollaries 8 and 10 are results of H. Brézis, who got them from direct
functional arguments. The idea of is due to F. Mignot ([3].
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