How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities

By A. HARAUX

(Received Sept. 9, 1975)

Introduction and notations.

We make a local study of the projection onto convex sets in real Hilbert space. Let H be a real Hilbert space, $K \subset H$ a closed convex subset, the projection operator onto K will be denoted by P. For every $u \in K$, we set $S_K(u) = \bigcup_{\lambda \geq 0} \lambda(K-u)$, $\prod_K(u) = \overline{S_K(u)}$. If $f \in H$, [f] = vector space generated by f. If K is a cone with vertex 0, then $K^\perp = \{v \in H, \forall f \in K, \langle f, v \rangle \leq 0\}$. In particular, for $f \in H$, $[f]^\perp = \{v \in H, \langle f, v \rangle = 0\}$. For K a cone with vertex 0, and $u \in K$, we have

$$S_K(u) = K + [u], \Pi_K(u) = \overline{K + [u]}.$$

Finally, for K an arbitrary closed convex set, and $v \in H$, we define

$$\sum_{K}(v) = \prod_{K}(Pv) \cap [v - Pv]^{\perp}$$
.

In § 1, we prove under reasonable hypotheses a theorem which shows the role played by the "curvature of the boundary" of K near Pv, for the conical differentiability of P at v. After giving some zoology from geometry or integration, we restrict our attention to the case where $\forall v \in H$, $S_K(Pv) \cap [v-Pv]^\perp$ is dense in $\Sigma_K(Pv)$. A convex set that satisfies this property will be called polyhedric. We get the following

THEOREM. If K is polyhedric, $\forall v \in H$, $\forall z \in H$, then the curve $t \rightarrow P(v+tz)$ is strongly right-differentiable at 0, with a derivative $\gamma = \text{Proj}_{\Sigma_K(v)}(z)$.

In § 2, we assume that H is a lattice, with respect to a closed positive cone K. Then K is a polyhedric set under the simple hypothesis that $x \rightarrow x^+ = \sup\{x, 0\}$ is a bounded map. If $f: [0, T[\rightarrow H \text{ is right-differentiable, then by setting } u(t) = \Pr_{\mathbf{j}_K}(f(t))$, the preceding theorem gives

$$\forall t \in [0, T[, \frac{d^+u}{dt} = \operatorname{Proj}_{\Sigma} (f(t))(\frac{d^+f}{dt}).$$

Let us now assume the stronger condition:

$$\forall x \in H, \langle x^+, x^- \rangle \leq 0$$
.

Then, under the hypothesis that $\forall t, \frac{d^+f}{dt} \in K^\perp$, we get

$$\frac{d^+u}{dt} = \operatorname{Proj}_{\mathbf{II}_{K}(u(t))} \left(\frac{d^+f}{dt} \right) \in -K$$
.

In § 3, we give some applications to variational inequalities by using the above results in the two cases:

$$\left\{ \begin{array}{ll} H=H_0^1(\Omega), & K=\{x\in H,\,x\geq 0\} \\ H=H^1(\Omega), & K=\{x\in H,\,x_{\mid \partial\Omega}\geq 0\}, \end{array} \right.$$

 Ω being an open subset of R^N , with sufficiently regular boundary. We obtain results that were proved in [2] by completely different methods. For a generalization in another direction, see [3].

I. Some general facts about the projection onto convex sets.

Let K and P be as in the introduction, v and z two elements of H. We set

$$\gamma(t) = \frac{P(v+tz) - Pv}{t}.$$

Since P is a contraction, $|\gamma(t)| \leq |z|$, $\forall t > 0$.

PROPOSITION 1. Let γ be a weak limit-point of $\gamma(t)$ as $t\rightarrow 0$. Then,

$$\left\{ \begin{array}{l} \gamma \in \sum_{K}(v), \ \langle \gamma, z - \gamma \rangle \geq 0 \\ \forall w \in S_{K}(Pv) \cap [v - Pv]^{\perp}, \ \langle z - \gamma, w \rangle \leq 0 \end{array} \right.$$

PROOF. Since $P(v+tz)=t\gamma(t)+Pv$, we have

$$\langle v+tz-(t\gamma(t)+Pv), Pv-(t\gamma(t)+Pv)\rangle \leq 0$$

$$\Rightarrow t^2 \langle \gamma(t), \gamma(t) - z \rangle \leq t \langle v - Pv, \gamma(t) \rangle = \langle v - Pv, P(v + tz) - Pv \rangle \leq 0$$
.

Dividing by t^2 , then using the weak lower semi-continuity of the norm, we obtain $\langle \gamma, \gamma - z \rangle \leq 0$ for each weak limit-point γ . Moreover, $0 \geq \langle v - Pv, \gamma(t) \rangle \geq t \langle \gamma(t), \gamma(t) - z \rangle$. Since $\gamma(t)$ is bounded, we deduce $\langle v - Pv, \gamma \rangle = 0$. In any case we have $\gamma \in \Pi_K(Pv)$, so we conclude that $\gamma \in \Sigma_K(v)$. Let us now assume $\gamma(t_n) \to \gamma$, with $t_n \to 0$ as $n \to +\infty$, and set $\delta_n = \gamma(t_n) - \gamma$. If we consider $u \in K$ such that $\langle v - Pv, u - Pv \rangle = 0$, then by $\langle v - Pv, \gamma \rangle = 0$, the inequality

$$\langle v - Pv + t_n(z - \gamma) - t_n \delta_n, u - Pv - t_n \gamma - t_n \delta_n \rangle \leq 0$$

implies

$$\langle z-\gamma, u-Pv\rangle \leq \langle v-Pv, \delta_n\rangle + \langle \delta_n, u-Pv\rangle + Ct_n$$

where C is a finite constant. Hence as $n \rightarrow +\infty$, we get

$$\langle z-\gamma, u-Pv\rangle \leq 0$$
.

Now if $w \in S_K(Pv) \cap [v-Pv]^{\perp}$, we have $w = \lambda(u-Pv)$ for some $\lambda > 0$ and some $u \in K$. Since $\langle u-Pv, v-Pv \rangle = 0$, we can apply the previous result and obtain $\langle z-\gamma, w \rangle \leq 0$.

THEOREM 1. Let $K \subset H$ be a closed convex set. We fix $v \in H$ and $w \in \sum_{K}(v)$. We assume that there exists a bounded linear self-adjoint operator L on H such that

$$\left\{ \begin{array}{l} L \circ \operatorname{Proj}_{\Sigma_K(v)} = \operatorname{Proj}_{\Sigma_K(v)} \circ L \,, \\[1ex] P(v + tw) = Pv + tL^2w + o(t) & (t > 0) \,. \end{array} \right.$$

Then, for any $z \in H$ such that $\operatorname{Proj}_{\Sigma_K(v)}(z) = w$, we have $P(v+tz) = Pv + tL^2w + o(t)$. PROOF. Let us first verify the following property:

$$\forall z \in H, \forall w' \in (\sum_{K}(v))^{\perp}, \lim \sup_{t \to 0^{+}} \left\langle \frac{P(v+tz) - Pv}{t}, w' \right\rangle \leq 0.$$

We use Proposition 1. If $\left\langle \frac{P(v+t_nz)-Pv}{t_n},w'\right\rangle \geq \alpha>0$ for $t_n\to 0$ and large n, there are a subsequence t_{n_k} and $\gamma\in H$ such that $\frac{P(v+t_{n_k}z)-Pv}{t_{n_k}}-\gamma$. Then $\langle \gamma,w'\rangle \geq \alpha>0$, which is contradictory with the two facts: $\gamma\in \Sigma_K(v)$ and $w'\in (\Sigma_K(v))^\perp$. Now take z=w+w' with $w'\in (\Sigma_K(v))$ and $\langle w,w'\rangle =0$. Then we have

$$|P(v+tz)-P(v+tw)|^2 \le \langle tw', P(v+tz)-P(v+tw) \rangle$$

= $\langle tw', Pv-P(v+tw) \rangle + \langle tw', P(v+tz)-Pv \rangle$.

But

$$\langle tw', Pv-P(v+tw)\rangle = -t^2\langle w', L^2w\rangle - \langle tw', o(t)\rangle$$
.

Since L is linear and commutes with $P_{\Sigma_K(v)}$, it also commutes with $P_{(\Sigma_K(v))^\perp} = I - \dot{P_{\Sigma_K(v)}}$. Thus $\langle Lw, Lw' \rangle = 0$. Dividing by t^2 , and using the above results, we get $\limsup_{t \to 0^+} \left| \frac{P(v + tz) - P(v + tw)}{t} \right|^2 \leq 0$, and the conclusion follows.

Before we describe some consequences of this theorem for the polyhedric cones of functional analysis, let us illustrate it by some examples.

EXAMPLE 1. $K = \{u \in H, |u| \le 1\}$.

For $v \in K$, and $w \in \sum_{K}(v)$, let us study P(v+tw)

—If |v| < 1, then P(v+tw) = v+tw for small values of t.

—If
$$|v|=1$$
, then $\sum_{K}(v)=\{w\in H, \langle v,w\rangle \leq 0\}$. So $|v+tw|\leq (1+t^2|w|^2)^{1/2}=$

618

1+o(t). And we have $P(v+tw) = \frac{v+tw}{\sup\{1, |v+tw|\}} = v+tw+o(t)$.

—If |v| > 1, then by $Pv = \frac{v}{|v|}$ we have $\sum_{K} (v) = [v]^{\perp}$. So if $w \in \sum_{K} (v)$,

 $|v+tw| = (|v|^2 + t^2 |w|^2)^{1/2} = |v| + o(t). \quad \text{And then } P(v+tw) = Pv + \frac{1}{|v|} tw + o(t).$ Using Theorem 1 with $L = \frac{1}{\sup\{1, |v|\}} Id$, we get that $\forall v \in H$, $\forall z \in H$, P(v+tz) is strongly right-differentiable at t=0, with derivative

$$\frac{1}{\sup\{1, |v|\}} \operatorname{Proj}_{\Sigma_K(v)}(z).$$

EXAMPLE 2. $H=R^N$ and K is a compact convex subset with C^2 boundary. We may assume that K has interior points. Let v be a point outside K. $\prod_{K}(Pv)$ is a closed half-space in H, the dual cone of the half-line generated by v-Pv. We may assume for convenience Pv=0 and $\sum_{K}(v)=R^{N-1}$.

In a neighbourhood of 0, the boundary of K may be represented by the equation: $x_N = -\varphi(x_1, \dots, x_{N-1})$ where φ is a C^2 convex function, defined in a neighbourhood of 0 in \mathbb{R}^{N-1} , such that $\varphi(0)=0$, $D\varphi(0)=0$. w being an element of $R^{N-1} = \sum_{K} (v)$, the projection of v+tw onto K is the element $(x(t), -\varphi(x(t)))$ of R^N for which $Min((|v-Pv|+\varphi(x))^2+|x-tw|^2)$ is achieved.

It is easily seen that this condition implies that

$$|v-Pv|D^2\varphi(0)(x(t))+x(t)=tw+o(t)$$
,

and we notice that $D^2\varphi(0): R^{N-1} \to R^{N-1}$ is a positive self-adjoint linear operator. Setting $L=(I+|v-Pv|D^2\varphi(0))^{-1/2}\circ \operatorname{Proj}_{\Sigma_{\mathbf{r}}(v)}$, we deduce from Theorem 1 that P is differentiable at v, with differential

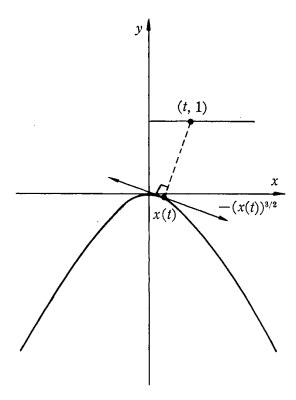
$$dP(v) = (I + |v - Pv|D^2\varphi(0))^{-1} \circ \text{Proj}_{\Sigma_K(v)}$$

This formula has a simple geometric interpretation: $v \in H \setminus K$ being chosen, we find φ after a suitable change of coordinates. The different eigenvalues $(\alpha_1, \alpha_2, \cdots, \alpha_k)$ of $D^2\varphi(0)$ are exactly the principal curvature numbers for δK at Pv. If we denote by P_rx the projection of $x \in H$ onto the eigen-space corresponding to the eigenvalue α_r , the differential of P at v is given by the formula:

$$dP(v) = \sum_{r=1}^{k} \frac{P_r}{1 + |v - Pv| \alpha_r}.$$

EXAMPLE 3. $H=R^2$, $K=\{(x,y)\in H, y\leq -|x|^{3/2}\}$. The boundary of K is C^1 , but not C^2 . We consider the point v=(0,1).

The convex set K being invariant by symmetry with respect to y-axis, it is enough to consider w=(1,0). Then $P(t,1)=(x(t),-(x(t))^{3/2})$ with $x(t) \ge 0$. From the equation $(t-x(t))-\frac{3}{2}(x(t))^{1/2}(1+(x(t))^{3/2})=0$, we deduce first $x(t)=0(t^2)$,



and then $x(t) \cong \frac{4}{9}t^2$. So by Theorem 1 (with L=0), for any $z \in H$ the curve P(q+tz) starts for t=0 with a speed equal to 0.

Let us say that P is semi-differentiable at v if there exists a map dP(v): $H{\to}H$ positively homogeneous of degree one such that, for $t{<}0$, $P(v{+}tz){-}Pv$ $=tdP(v)(z){+}o(t)$, $\forall z{\in}H$.

EXAMPLE 4. It we take the product of a finite number of regular convex sets such as in Example 2, we get in the general case a manifold with boundary and corners (the most simple case being a square in R^2). For such a convex set, one can prove that P is semi-differentiable at every point.

It is also possible to take infinite products. As a particular case, let (Ω, μ) be a positively measured space, $\mathcal H$ a real Hilbert space. We set

$$H=L^2(\Omega,\mathcal{H})$$
,

$$K = \{v \in H, |v(x)| \leq 1, \mu. \text{ a. e. in } \Omega\}$$
.

It is obvious that

$$\sum_{K}(v) = \{ w \in H, w(x) \in C(x), \mu. \text{ a. e. in } \Omega \}$$

where C(x) is a convex cone, μ . a. e. defined by

$$C(x) = \{z \in \mathcal{A}, \langle z, v(x) \rangle \leq 0\}$$
 if $|v(x)| = 1$.

$$C(x) = \{z \in \mathcal{A}, \langle z, v(x) \rangle = 0\}$$
 if $|v(x)| > 1$.

So $P_{\Sigma_K(v)}$ is commuting with all transformations of the type

$$(Tz)(x) = \lambda(x)z(x), \quad \lambda \in L^{\infty}(\Omega, R), \quad \lambda(x) \ge 0, \quad \mu. \text{ a. e.}$$

Applying Theorem 1 with $(Lw)(x) = \left(\frac{1}{\sup\{1, |v(x)|\}}\right)^{1/2} w(x)$, we get the result that P is semi-differentiable at every point $v \in H$, and $\forall v \in H$, $\forall z \in H$, $(dP(v))(z)(x) = \frac{1}{\sup\{1, |v(x)|\}} (P_{\Sigma_K(v)}(z))(x)$, μ . a. e. in Ω .

THEOREM 2. We suppose now that $\forall v \in H$, $S_K(Pv) \cap [v-Pv]^{\perp}$ is dense in $\prod_K(Pv) \cap [v-Pv]^{\perp}$. Then, for any $f:[0,T[\rightarrow H \text{ right-differentiable at every point, } u(t)=P(f(t)) \text{ is right-differentiable, and}$

$$\frac{d^{+}u}{dt} = \operatorname{Proj}_{\prod_{K}(u(t))\cap[f(t)-u(t)]} \left(\frac{d^{+}f}{dt}\right).$$

PROOF. Since P is a contraction, it is enough to prove the result at t=0 for a curve g(t)=v+tz. Thus Theorem 2 will be a consequence of the Theorem 1 applied with L=Id if we prove

LEMMA 1. Let K and v be as in Theorem 1. Then, for any $w \in \overline{S_K(Pv) \cap [v-Pv]^{\perp}}$ we have P(v+tw)=Pv+tw+o(t).

PROOF. We have to prove that

$$\lim_{t \le 0} \left(\frac{P(v+tw)-Pv}{t} - w \right) = 0.$$

First if $w \in S_K(Pv) \cap [v-Pv]^1$, then $Pv+tw \in K$ for small t. Moreover, for any $u \in K$ we have

$$\langle v+tw-(Pv+tw), u-(Pv+tw)\rangle = \langle v-Pv, u-Pv\rangle - t\langle v-Pv, w\rangle$$
.

And then, by virtue of $w \in [v-Pv]^{\perp}$, this expression is ≤ 0 , by the definition of Pv. So P(v+tw)-Pv=tw for t small enough, and the result is true for $w \in S_K(Pv) \cap [v-Pv]^{\perp}$. Since the maps: $w \to \frac{P(v+tw)-Pv}{t}-w$ are uniformly lipschitzian for t>0, the result is true by density for $w \in \overline{S_K(Pv) \cap [v-Pv]^{\perp}}$.

REMARK 1. It is also possible to deduce simply the result of Theorem 2 from Proposition 1 and the estimate $\langle \gamma(t), \gamma(t) - z \rangle \leq 0$.

II. Study of the projection onto the positive cone of a Hilbert lattice.

Let X, Y be two real Banach spaces, and $T: X \rightarrow Y$ a positively homogeneous map, of degree 1. The equivalence of the three following assertions will be used later:

- i) T is continuous at 0, from X to Y with the weak topology of Y.
- ii) T is continuous at 0, from X to Y.
- iii) $\exists M < +\infty : \forall x \in X$, $||Tx||_Y \leq M||x||_X$.

It is enough to see that i) \Rightarrow iii). If iii) is not satisfied, there exists a sequence $\{x_n\}$ of vectors in X, such that

$$||x_n||_X \leq 1$$
, $||Tx_n||_Y \geq n^2$.

We set $y_n = \frac{x_n}{n}$. Then $y_n \to 0$, $||Ty_n||_Y = \frac{1}{n} ||Tx_n||_Y \ge n$, so Ty_n has no limit point for the weak topology of Y.

THEOREM 3. Let X, Y be two Banach spaces. We assume that Y is a reflexive Banach lattice, and that $K = \{y \in Y, y \ge 0\}$ is closed. Let $T: X \rightarrow Y$ be positively homogeneous of degree 1, and $\forall x_1, x_2, T(x_1+x_2) \le Tx_1+Tx_2$. Then,

- a) T is continuous from X to Y with its weak topology if and only if it is continuous at 0.
- b) If we have for any $x \in X$, $||Tx||_Y = ||x||_X$, and Y is uniformly convex, then T is continuous from X to Y with the strong topology.

PROOF. T being continuous at 0, there exists M such that

$$\forall x \in X$$
, $||Tx||_Y \leq M||x||_X$.

So if $x_n \rightarrow x$, Tx_n is bounded in Y. Let y be a weak limit-point for the sequence Tx_n . We have

$$Tx_n-Tx+T(x-x_n)\in K$$
 and $Tx-Tx_n+T(x_n-x)\in K$.

Since T is continuous at 0, as $n \to +\infty$, $T(x-x_n) \to 0$ and $T(x_n-x) \to 0$. Since K is weakly closed, passing to the limit we have $y-Tx \in K$ and $Tx-y \in K$ and hence y=Tx.

COROLLARY 1. Let H be a Hilbert lattice, with $K = \{x \in H, x \ge 0\}$ closed.

a) The map $x \rightarrow x^+ = \sup\{x, 0\}$ is continuous from H to H with the weak topology, if and only if it is bounded. As a particular case, this is the case if we have

$$\forall x \in H, \langle x^+, x^- \rangle \leq 0.$$

b) If we have for any $x \in H$, $\langle x^+, x^- \rangle = 0$, then the previous mapping is continuous from H to H.

PROOF. We consider $Tx=x^++x^-$. Since we have $\forall x \in H$, $|Tx|^2-|x|^2=4\langle x^+,x^-\rangle$, we observe that $|Tx|\leq |x|\Leftrightarrow \langle x^+,x^-\rangle\leq 0$, and $|Tx|=|x|\Leftrightarrow \langle x^+,x^-\rangle=0$. Using $x^+=\frac{1}{2}(x+Tx)$, Corollary 1 appears as an immediate consequence of Theorem 3.

COROLLARY 2. H and K being as in the beginning of Corollary 1, we assume that for any $x \in H$, $|x^+| \leq M|x|$. Also let $u \in K$ and $h \in (\prod_K (u))^{\perp}$. Then $\overline{S_K(u) \cap [h]^{\perp}} = \prod_K (u) \cap [h]^{\perp}$.

PROOF. First, $-\phi \le u$, if $\phi \in K-u$. Since $u \ge 0$, $u \ge \sup\{-\phi, 0\} = \phi^-$, so $\phi^- \in -(K-u)$. Since the positive part is positively homogeneous of degree 1, and

continuous from H to the weak topology of H, the condition $\psi \in \Pi_K(u) \cap [h]^\perp$ implies $\psi^- \in K \cap -\Pi_K(u) \subset [h]^\perp$. Then $\psi^+ = \psi + \psi^- \in K \cap [h]^\perp \subset S_K(u) \cap [h]^\perp$. Let now $\psi_n \to \psi^-$ with $\psi_n \in -S_k(u)$. Then we have $\psi_n^+ \to \psi^-$, and $(-\psi_n)^- = \psi_n^+ \in -S_K(u) \cap K \subset -S_K(u) \cap [h]^\perp$, so that $\varphi_n = \psi^+ - \psi_n^+ \in S_K(u) \cap [h]^\perp$, and $\varphi_n \to \psi$.

CQROLLARY 3. Let H be a Hilbert lattice as in Corollary 1. We suppose now that for any $x \in H$, $\langle x^+, x^- \rangle \leq 0$. Then, for any $u \in K$ we have $\text{Proj}_{\Pi_K(u)}(K^\perp) \subset -K$.

We shall use

LEMMA 2. Let C_1 , C_2 be two closed convex subsets of H. If $\exists \varepsilon > 0$ such that $\forall x \in C_1$, $\forall y \in C_2$, $\langle x, y \rangle \geq (\varepsilon - 1)|x||y|$, then the sum $C_1 + C_2$ is closed.

PROOF. We may suppose $\varepsilon \leq 1$. Then,

$$\forall x \in C_1, \forall y \in C_2, |x+y|^2 \ge |x|^2 + 2(\varepsilon - 1)|x||y| + |y|^2 \ge \varepsilon(|x|^2 + |y|^2).$$

Let $z=\lim_{n\to+\infty}(x_n+y_n)$, $x_n\in C_1$, $y_n\in C_2$. Then $|x_n|$ and $|y_n|$ are bounded in H. If $x_{n_p}\to x$, $y_{n_p}\to y$, $z=x+y\in C_1+C_2$.

PROOF OF COROLLARY 3. It is equivalent to prove

$$K^{\perp} \subset (\prod_{K}(u))^{\perp} + \prod_{K}(u) \cap -K$$
.

By Lemma 2, with $\varepsilon=1$, the sum $(\Pi_K(u))^{\perp}+\Pi_K(u)\cap -K$ is closed. So, by duality we have to check $\Pi_K(u)\cap (\Pi_K(u)\cap -K)^{\perp}\subset K$. If $w\in \Pi_K(u)$, $w^{-}\in K\cap -\Pi_K(u)$. If moreover $w\in (\Pi_K(u)\cap -K)^{\perp}$, we get $\langle w^{-},w\rangle\geq 0$. Then,

$$|w^-|^2 = \langle w^+ - w, w^- \rangle = \langle w^+, w^- \rangle - \langle w, w^- \rangle \leq 0$$

 $\Rightarrow w^- = 0$, or $w \in K$.

Let H be a Hilbert lattice, such that $K = \{x \in H, x \ge 0\}$ is closed, and let M be a constant such that for any $x \in H$, $|x^+| \le M|x|$.

For $g: [0, T[\rightarrow H]$, we consider the solution u(t) of the variational inequality:

$$\left\{ \begin{array}{l} u(t) \in K \\ \forall v \in K, \ \langle g(t) - u(t), v - u(t) \rangle \leq 0. \end{array} \right.$$

Then we have

Theorem 4. If g is right-differentiable, then u is also right-differentiable. Its derivative $\frac{d^+u}{dt}$ is given by the variational system

(S)
$$\begin{cases} \frac{d^{+}u}{dt} \in \Pi_{K}(u(t)) \cap [g(t)-u(t)]^{\perp}, \\ \text{for all } w \in K \cap [g(t)-u(t)]^{\perp}, \left\langle \frac{d^{+}u}{dt}, w-u(t) \right\rangle \geq \left\langle \frac{d^{+}g}{dt}, w-u(t) \right\rangle, \\ \left| \frac{d^{+}u}{dt} \right|^{2} = \left\langle \frac{d^{+}g}{dt}, \frac{d^{+}u}{dt} \right\rangle. \end{cases}$$

PROOF. Let P be the projection operator onto K. First we notice that

if $v \in H$, then

$$\Pi_{K}(Pv) \cap [v - Pv]^{\perp} = \overline{(K + [Pv]) \cap [v - Pv]^{\perp}} \quad \text{(Corollary 2)}$$

$$= \overline{K \cap [v - Pv]^{\perp} + [Pv]} \quad \text{(since } \langle v, v - Pv \rangle = 0)$$

$$= \Pi_{K \cap [v - Pv]^{\perp}}(Pv).$$

g(t) being right-differentiable, we know from Corollary 2 and Theorem 2 that u(t) is also right-differentiable, and $\frac{d^+u}{dt}$ is characterized by the relations:

$$\frac{d^+u}{dt} \in \prod_{K}(u(t)) \cap [g(t)-u(t)]^{\perp},$$

$$\forall w_1 \in \prod_{\mathit{K}} (\mathit{u}(t)) \cap [\mathit{g}(t) - \mathit{u}(t)]^{\perp}, \left\langle \frac{d^+\mathit{u}}{dt}, w_1 - \frac{d^+\mathit{u}}{dt} \right\rangle \geq \left\langle \frac{d^+\mathit{g}}{dt}, w_1 - \frac{d^+\mathit{u}}{dt} \right\rangle.$$

Setting $w_1=0$, and then $w_1=2\frac{d^+u}{dt}$, we get $\left|\frac{d^+u}{dt}\right|^2=\left\langle\frac{d^+g}{dt},\frac{d^+u}{dt}\right\rangle$. In the residual inequality $\left\langle\frac{d^+u}{dt},w_1\right\rangle \geq \left\langle\frac{d^+g}{dt},w_1\right\rangle$, it is necessary and sufficient to substitute $w_1=w-u(t),\ w\in K\cap [g(t)-u(t)]^\perp$.

COROLLARY 4. We add the hypothesis

$$\forall x \in H$$
, $\langle x^+, x^- \rangle \leq 0$.

If we have $\frac{d^+g}{dt} \in K^\perp$ for any $t \in [0, T[$, the system (S) can be replaced by the simpler one:

(S₀)
$$\begin{cases} \frac{d^{+}u}{dt} \in \Pi_{K}(u(t)) \cap -K \\ \forall w \in K, \left\langle \frac{d^{+}u}{dt}, w - u(t) \right\rangle \geq \left\langle \frac{d^{+}g}{dt}, w - u(t) \right\rangle \\ \left| \frac{d^{+}u}{dt} \right|^{2} = \left\langle \frac{d^{+}g}{dt}, \frac{d^{+}u}{dt} \right\rangle. \end{cases}$$

PROOF. By Corollary 3, if $\frac{d^+g}{dt} \in K$, we get

$$\operatorname{Proj}_{\Pi_{K}(u(t))}\left(\frac{d^{+}g}{dt}\right) \in \prod_{K}(u(t)) \cap -K \subset [g(t)-u(t)]^{\perp} \cap -K.$$

So

$$\operatorname{Proj}_{\Pi_{K}(u(t))}\left(\frac{d^{+}g}{dt}\right) = \operatorname{Proj}_{\Sigma_{K}(g(t))}\left(\frac{d^{+}g}{dt}\right) = \frac{d^{+}u}{dt} \in -K.$$

III. Applications to variational inequalities.

First we recall the essential results about capacity theory in Dirichlet spaces. For more details, c. f. A. Ancona [1].

Let (X, \mathcal{A}, ξ) be a positively measured topological space with its borelian

 σ -algebra. We assume that X is locally compact, admitting a countable compact covering, and, for any \mathcal{K} compact $\subset X$, $\xi(\mathcal{K}) < +\infty$. We consider a vector subspace H of $L^2(X)$, with a hilbertian scalar product denoted by $((\))_H$ with the following properties i) \sim vi).

- i) The inclusion of H into $L^2(X)$ is continuous,
- ii) H is a sublattice of $L^2(X)$ for the order defined by $K=\{u\in H, u\geq 0, \xi. a. e. in X\}$,
 - iii) $\forall x \in H, ((x^+, x^-))_H \leq 0.$
- iv) Let $\mathcal{C}(X)$ be the space of continuous functions with compact support in X.

$$Z=\mathcal{C}(X)\cap H$$
 is dense in H and in $\mathcal{C}(X)$.

- v) $\forall \mathcal{K}$ compact $\subset X$, $\forall V$ a neighbourhood of \mathcal{K} in X, $\exists f \in Z$ such that $f \leq 1$ in X, supp $(f) \subset V$, f = 1 in \mathcal{K} . Using the Hahn-Banach theorem, one can deduce from v) the following.
- vi) If $\mu \in H^*$ such that $\langle \mu, f \rangle \geq 0$, $\forall f \in K \cap Z$, then there exists a nonnegative measure $\tilde{\mu}$ such that $\tilde{\mu}|_{Z} = \mu|_{Z}$. By iv) this measure is unique.

For $x \in H$, we set $Tx = x^+ + x^-$. The norm in H^* is denoted by $\| \|_{H^*}$. Denoting by $\mathcal{M}(X)$ the space of Radon measures in X, we can draw the following inclusion diagram

$$Z \xrightarrow{H} L^2(X) \xrightarrow{\mathcal{M}(X)} Z^* = (H \cap \mathcal{C}(X))^*.$$

DEFINITION 1. Let $A \in \mathcal{A}$, f a measurable function such that its ξ . a. e. equivalence class is in H, we set

 $f \ge \lambda$ in A in the sense of $H(f \ge_H \lambda \text{ in } A)$

$$\Leftrightarrow \exists f_n \in H, \ f_n \xrightarrow{f} \text{ as } n \to +\infty, \text{ and } f_n \geq \lambda, \ \xi. \text{ a. e. in a neighbourhood of } A.$$

Our aim is to define pointwise the elements of H, in a manner which is both more precise than ξ a. e. equivalence, and compatible with the inequality of Definition 1. For that we define an adequate notion of magnitude for measurable sets.

DEFINITION 2. For $A \in \mathcal{A}$, we introduce the closed convex set

$$\Gamma_A = \{u \in H, u \geq 1 \text{ in } A\},$$

and then

$$\operatorname{cap}(A) = \left\{ \begin{array}{ll} \inf_{u \in \Gamma_A} \|u\|^2_H & \text{if } \Gamma_A \neq \emptyset \\ +\infty & \text{if } \Gamma_A = \emptyset. \end{array} \right.$$

PROPOSITION 2. Let \mathcal{K} be a compact set $\subset X$. Then $f \geq_H \lambda$ in $\mathcal{K} \Leftrightarrow \exists f_n \in Z$, $f_n \geq \lambda$ in \mathcal{K} , $f_n \rightarrow f$.

PROOF. a) Let us first suppose that $f_n \to f$, $f_n \in \mathbb{Z}$, $f_n \ge \lambda$ in \mathcal{K} . We choose $h \in \mathbb{Z}$ such that h=1 in \mathcal{K} . Then $g_n = f_n + \frac{1}{n}h$ converges to f as $n \to +\infty$, and $g_n \ge 1$ in a neighbourhood of \mathcal{K} .

b) As a particular case, let us first suppose $f \ge_H 0$ in \mathcal{K} . We introduce $C_1 = \{ f \in H, f \ge_H 0 \text{ in } \mathcal{K} \}$ and $C_2 = \{ f \in Z, f \ge 0 \text{ in } \mathcal{K} \}$.

To prove $\overline{C}_2 \supset C_1$, we have just to check that if $\mu \in H^*$ is nonnegative on C_2 , it is also nonnegative on C_1 . But if μ is nonnegative on C_2 , it is trivially nonnegative on $K \cap Z$. So by vi), we can identify (in Z^*) μ with a nonnegative measure $\tilde{\mu}$ in X. By iv), μ is nonnegative on C_2 if and only if supp $(\tilde{\mu}) \subset \mathcal{K}$. Since μ is nondecreasing in H ordered by K, to prove that μ is nonnegative on C_1 , it is sufficient to check that $\mu(u)=0$, $\forall u \in K$ such that u=0, ξ . a. e in a neighbourhood of \mathcal{K} . (Because $u=\lim (u_n^+-u_n^-)$, with $u_n\in H$, $u_n\geq 0$, ξ . a. e in a neighbourhood of \mathcal{K}). Let $\psi_n\in Z$ such that ψ_n converges to u. Then $\psi_n^+-u^+=u$. So we get a subsequence n_k and numbers $\alpha_{p,n_k}\geq 0$ for $1\leq p$ $\leq n_k$ such that $\sum_{p=1}^{n_k} \alpha_{p,n_k} \psi_p^+ = \varphi_k \xrightarrow[n\to+\infty]{} u$. And $\varphi_k \in K \cap Z$. By hypothesis, u=0, ξ . a. e in an open $V \supset \mathcal{K}$. We consider $h \in K \cap Z$ such that supp $(h) \subset V$, h=1 in \mathcal{K} . And for any $l \in N$, inf $\{\varphi_k, l \cdot h\} \to 0$ as $k \to +\infty$, hence also

$$\langle \mu, \inf \{ \varphi_k, l \cdot h \} \rangle_{H,H^*} \longrightarrow 0$$
 as $k \to +\infty$.

On the other hand, $\tilde{\mu}(T(\varphi_k-\varphi_{k+\tau}))=\langle \mu,T(\varphi_k-\varphi_{k+\tau})\rangle_{H,H^*}\leq \|\mu\|_{H^*}\|T(\varphi_k-\varphi_{k+\tau})\|_H$ $\leq \|\mu\|_{H^*}\|\varphi_k-\varphi_{k+\tau}\|_H$ by iii). So φ_k , being a Cauchy sequence in $L^1(\tilde{\mu})$, converges to ζ in $L^1(\tilde{\mu})$. By Fatou lemma: $\tilde{\mu}(\zeta)=\tilde{\mu}(\liminf_{h,l\to+\infty}\{\inf\{\varphi_k,l\cdot h\}))\leq 0$. And so $\tilde{\mu}(\varphi_k)\to 0$ as $k\to +\infty$. Since $\varphi_k\to u$ and $\mu\in H^*$, we get $\mu(u)=0$. In the general case, we consider $h\in K\cap Z$, $h\leq 1$, h=1 in \mathcal{K} . Then $f-\lambda h\geq_H 0$ in $\mathcal{K}\Rightarrow \exists \varphi_n\in Z$, $\varphi_n\geq 0$ in \mathcal{K} , $\|\varphi_n-(f-\lambda h)\|\leq \frac{1}{n}$. Then $\psi_n=\lambda h+\varphi_n\geq \lambda$ in \mathcal{K} , and $\|\psi_n-f\|\leq \frac{1}{n}$.

COROLLARY 5. $\forall A \in \mathcal{A}$, $\operatorname{cap}(A) = 0 \Rightarrow \forall \mu \in H^* \cap \mathcal{M}^+(X), \ \mu(A) = 0$.

First if \mathcal{K} is a compact subset of X, such that $\operatorname{cap}(\mathcal{K})=0$, then $\forall \varepsilon>0$, $\exists \varphi \in Z \colon \varphi \geq 1$ in \mathcal{K} and $\|\varphi\|_{H} < \varepsilon$. Hence $\tilde{\mu}(\mathcal{K}) \leq \tilde{\mu}(\varphi) = \langle \mu, \varphi \rangle_{H,H^*} \leq \|\mu\|_{H^*} \varepsilon$, $\forall \varepsilon>0$. Now if A is only measurable, we consider a sequence of compact sets \mathcal{K}_n such that $\bigcup_{n\geq 0} \mathcal{K}_n = X$. Setting $A_n = \mathcal{K}_n \cap A$, we have $\operatorname{cap}(A_n) = 0$, and $\mu(A_n) = \sup \{\mu(\mathcal{K}) \colon \mathcal{K} \subset A_n, \mathcal{K} \text{ compact}\} = 0$.

PROPOSITION 3. Let $(A_n)_{n\in\mathbb{N}}$ be measurable sets $\subset X$. Then $\operatorname{cap}(\bigcup_{n\geq 0}A_n)$ $\leq \sum_{n\geq 0}\operatorname{cap}(A_n)$.

LEMMA 3. $\forall A \subset X$, $B \subset X$ measurable sets, $\operatorname{cap}(A \cup B) \leq \operatorname{cap} A + \operatorname{cap} B$. It is enough to prove that if $(u, v) \in H \times H$, then

$$\|\sup\{u,v\}\|^2 \le \|u\|^2 + \|v\|^2$$
.

First, if $w \in H$, then we have

$$||u+w^{+}||^{2} = ||u||^{2} + 2((u, w^{+})) + ||w^{+}||^{2}$$

$$= ||u||^{2} + 2((u+w^{+}, w^{+})) - ||w^{+}||^{2} \le ||u||^{2} + 2((u+w, w^{+})) - ||w^{+}||^{2}$$

$$= ||u||^{2} + ||w+u||^{2} - ||u+w-w^{+}||^{2} \le ||u||^{2} + ||w+u||^{2}.$$

Setting w=v-u, we have sup $\{u,v\}=u+w^+$, and v=w+u.

LEMMA 4. Let $(\Gamma_n)_{n\in\mathbb{N}}$ be a sequence of closed convex sets in H. Then if Γ_n is decreasing,

$$\operatorname{dist}(x, \bigcap_{n\geq 0} \Gamma_n) = \sup_{n\geq 0} \operatorname{dist}(x, \Gamma_n).$$

The proof of Lemma 4 is trivial.

Now to deduce Proposition 3, we set $B_n = \bigcup_{0 \le i \le n} A_i$, and $\Gamma_n = \Gamma_{B_n}$ (c. f. Def.

2). Then $\Gamma_{\substack{n \geq 0 \\ n \geq 0}} = \bigcap_{n \geq 0} \Gamma_n$ (c.f. [1], Prop. 6). And

$$\operatorname{cap}\left(\bigcup_{n\geq 0} A_n\right) = \left[\operatorname{dist}\left(0,\bigcap_{n\geq 0} \Gamma_n\right)\right]^2 = \sup_{n\geq 0} \operatorname{cap}\left(B_n\right)$$

$$\leq \sup_{n\geq 0} \left(\sum_{i=0}^{n} \operatorname{cap}(A_i) \right) = \sum_{n\geq 0} \operatorname{cap}(A_n)$$
.

As a particular case, $\operatorname{cap}(A) = 0$ and $\operatorname{cap}(B) = 0$ imply $\operatorname{cap}(A \cup B) = 0$. We shall say that a property is true quasi-everywhere in X (q. e.) if it is true in $X \setminus A$, with $\operatorname{cap}(A) = 0$. So if P and Q are true q. e. in X, the property "P and Q" is also q. e. in X.

DEFINITION 4. Let f be a measurable function: $X \rightarrow R$. We shall say that f is quasi-continuous if there exists a nonincreasing sequence $\{\omega_n\}$ of open sets in X such that $\lim_{n \to \infty} \operatorname{cap}(\omega_n) = 0$, and $f \mid X \setminus \omega_n$ continuous, $\forall n$.

PROPOSITION 4. If f is quasi-continuous and $f \ge 0$, ξ . a. e, then cap($\{f < 0\}$) =0.

PROOF. We set $A = \{x \in X, f(x) > 0\}$. Since $A \setminus \omega_n$ is an open subset of $X \setminus \omega_n$, $A \cup \omega_n$ is open in X. Since $\xi(A) = 0$, if $\varphi_n \in H$, $\varphi_n \ge 1$, ξ . a. e in ω_n , we have $\varphi_n \ge 1$, ξ . a. e in $A \cup \omega_n$, a neighbourhood of A. So $\operatorname{cap}(A \cup \omega_n) \le \operatorname{cap}(\omega_n)$.

COROLLARY 6. If f_1 and f_2 are two quasi-continuous functions having the same ξ , a. e equivalence class, $\operatorname{cap}(\{f_1 \neq f_2\}) = 0$.

We give now the fundamental results of this theory.

THEOREM 5. If $x \in H$, it has a q.e defined quasi-continuous representative. Moreover, for any \tilde{x} quasi-continuous representative for x, $\exists \{f_n\}$ such that $\forall n \in N$, $f_n \in Z$, f_n converging to \tilde{x} pointwise q.e in X, and in the norm of the space H.

By Corollary 6, two quasi-continuous representatives are equal q.e. So it suffices to see that there exists a quasi-continuous representative for x, which is a limit, pointwise q.e and in H of a sequence $f_n \in \mathbb{Z}$. We consider a sequence $f_n \in \mathbb{Z}$ such that

$$f_n \xrightarrow{H} x$$
, $\sum_{k=1}^{\infty} 4^k ||f_{k+1} - f_k||^2 < +\infty$.

If $\omega_k = \{\zeta \in X, |(f_{k+1} - f_k)(\zeta)| > 2^{-k}\}$, $\operatorname{cap}(\omega_k) \leq 4^k \|f_{k+1} - f_k\|^2$. Setting $\omega_n' = \bigcup_n^{\infty} \omega_k$, we have $\operatorname{cap}(\omega_n') \leq \sum_n^{\infty} 4^k \|f_{k+1} - f_k\|^2$. f_n converges simply outside of $\bigcap_1^{\infty} \omega_n'$, uniformly on each $X \setminus \omega_n'$. The limit function \tilde{x} (we set $\tilde{x} = 0$ in $\bigcap_1^{\infty} \omega_n'$) has the desired properties.

THEOREM 6. We consider $x \in H$, with quasi-continuous representative \tilde{x} . If $\nu \in H^* \cap \mathcal{M}^+(X), \tilde{x}$ is measurable for ν , ν . a. e defined, $\tilde{x} \in L^1(\nu)$, and $\int_X \tilde{x} d\nu = \langle x, \nu \rangle_{H,H^*}$.

By Theorem 5 and Corollary 5, \tilde{x} is ν a.e. defined. Moreover, let $f_n \in Z$ be such that $f_n \to \tilde{x}$ in H, and q.e in X. Then f_n is a Cauchy sequence in $L^1(\nu)$ and H: its limit in the two spaces is equal to \tilde{x} . Since the equality to check is true by the definition of the $f_n \in Z$, the proof is done. Now if we consider $x \in H$, it will be understood that we consider a quasi-continuous representative. The important properties contained in the following remark will be used later, but not proved, c.f. [1] (the proof relies on potential-theoretic tools).

REMARK 2. a) If $A \in \mathcal{A}$ and $f \in H$, then we have $f \geq_H \lambda$ on $A \Leftrightarrow \operatorname{cap}(\{f < \lambda\} \cap A) = 0$.

b) If $f_n \in H$ and $f_n \to f$ in H, then there exists a subsequence f_{n_k} such that $f_{n_k}(x) \to f(x)$ q. e. in X.

We now apply Theorem 4 to differentiation in variational inequalities. Let $\Omega \subset \mathbb{R}^N$ an open bounded set, with smooth boundary Γ .

EXAMPLE 5. $H=H_0^1(\Omega)$, with the scalar product:

$$(u, v)_{H_0^1} = \int_{\Omega} \operatorname{grad} u \cdot \operatorname{grad} v \, dx$$
.

Let $f:[0,T[\rightarrow H^{-1}(\Omega)]$ be a right-differentiable curve. We may consider the one-parameter depending variational problem

$$\begin{cases} u(t) \ge 0, & \Delta u(t) \le -f(t) \\ (\Delta u(t) + f(t))u(t) = 0 \end{cases}$$

in the following sense: u(t) is chosen quasi-continuous for the H_0^1 -capacity (defined later), $\forall t > 0$, $-(\Delta u(t) + f(t)) = \nu(t)$ is a nonnegative distribution in Ω , hence an element of $\mathcal{M}^+(\Omega) \cap H^{-1}(\Omega)$ and $\forall t \in [0, T[, u(t) = 0, \nu(t)]$. a.e. in Ω . This problem can be represented by the variational inequality:

$$\begin{cases} u(t) \in K = \{v \in H_0^1, v \ge 0 \text{ a. e. in } \Omega\} \\ \forall v \in K, \int_{\mathcal{Q}} \operatorname{grad} u(t) \cdot \operatorname{grad} (v - u(t)) dx \ge \int_{\mathcal{Q}} f(t) (v - u(t)) dx \end{cases}$$

and introducing $g(t)=(-\Delta)^{-1}f(t)$, it becomes

$$\left\{\begin{array}{l} u(t) \! \in \! K \\ \forall v \! \in \! K, (u(t), v \! - \! u(t))_{H^1_0} \! \geq \! (g(t), v \! - \! u(t))_{H^1_0}. \end{array}\right.$$

First we observe that H is a lattice for the order given by K. If $u \in H_0^1(\Omega)$, grad $u^+ \cdot \operatorname{grad} u^- = 0$, a. $e \Rightarrow (u^+, u^-)_H = 0$. The properties i), iv) and v) are trivially checked, so setting $X = \Omega$, $H = H_0^1(\Omega)$, we can apply the capacity theory.

LEMMA 5. $u \in K \Rightarrow \prod_{K} (u) = \{w \in H, w \ge 0 \text{ q. e in } \{u = 0\}\}.$

The inclusion $\Pi_K(u) \subset \{w \in H, w \geq 0 \text{ q. e in } \{u=0\}\}$ is a consequence of Remark 2, b). On the other hand, $[\Pi_K(u)]^{\perp} = K^{\perp} \cap [u]^{\perp} = \{z \in H, -\Delta z = \nu \in \mathcal{M}^+(\Omega), \nu(\{u>0\})=0\}$ so that $(\Pi_K(u))^{\perp} \subset \{w \in H, w \geq 0 \text{ q. e in } \{u=0\}\}^{\perp}$ by Theorem 6. And $\{w \in H, w \geq 0 \text{ q. e in } \{u=0\}\} = \Pi_K(u)$ since $\Pi_K(u)$ is closed.

COROLLARY 7. The solution u(t) of problem (1) is right-differentiable, the derivative $\frac{d^+u}{dt}$ is given by

(1.1)
$$\begin{cases} \frac{d^{+}u}{dt} \geq 0 & q. e \text{ in } \{u(t)=0\}, \quad \nu(t)\left(\left\{\frac{d^{+}u}{dt} > 0\right\}\right) = 0 \\ \forall w \in K_{t}, \left(\frac{d^{+}u}{dt}, w - u(t)\right)\right)_{H_{0}^{1}} \geq \int_{\boldsymbol{\varrho}} \frac{d^{+}f}{dt} (w - u(t)) dx \\ \int_{\boldsymbol{\varrho}} \left|\operatorname{grad}\left(\frac{d^{+}u}{dt}\right)\right|^{2} dx = \int_{\boldsymbol{\varrho}} \frac{d^{+}u}{dt} \cdot \frac{d^{+}f}{dt} dx \end{cases}$$

where $\nu(t) = \Delta(g(t) - u(t))$, and

$$K_t = \{ w \in H_0^1(\Omega), \quad w \ge 0 \text{ and } \nu(t) \ (w > 0) = 0 \}.$$

PROOF. We show that if $\zeta \ge 0$ q. e in $\{u(t)=0\}$, $(\zeta, g(t)-u(t))_{H_0^1}=0 \Leftrightarrow \nu(t)(\zeta>0)$ =0. By Theorem 6, $\zeta \in L^1(\nu(t))$, and

$$\int_{\mathcal{Q}} \zeta d\nu(t) = \langle \zeta, \Delta(g(t) - u(t)) \rangle_{H,H^*} = -(\zeta, g(t) - u(t))_{H}.$$

Since (u(t), g(t) - u(t)) = 0, we have $\nu(t)(u(t) > 0) = 0$. Thus $(\zeta, g(t) - u(t)) = -\int_{\{u(t) = 0\}} \zeta d\nu_{(t)}$, and we are done.

Remark 3. We could deduce from Corollary 7 the study of t-differentiation for the variational problem

$$\left\{ \begin{array}{ll} u(t) \geqq \phi(t) \\ \Delta u(t) \leqq -f(t) \end{array} \right. \quad (\Delta u(t) + f(t))(u(t) - \phi(t)) = 0 \ .$$

COROLLARY 8. Under the additional hypothesis: $\frac{d^+f}{dt} \leq 0$, $\forall t \in [0, T[$, the derivative $\frac{d^+u}{dt}$ satisfies the system

$$\begin{cases} \frac{d^{+}u}{dt} \leq 0, & \frac{d^{+}u}{dt} = 0 \quad q. e \text{ in } \{u(t) = 0\}, \\ \forall w \in K, \int_{\mathbf{Q}} \operatorname{grad}\left(\frac{d^{+}u}{dt}\right) \cdot \operatorname{grad}\left(w - u(t)\right) dx \geq \int_{\mathbf{Q}} \frac{d^{+}f}{dt} (w - u(t)) dx, \\ \int_{\mathbf{Q}} \left| \operatorname{grad}\left(\frac{d^{+}u}{dt}\right) \right|^{2} dx = \int_{\mathbf{Q}} \frac{d^{+}f}{dt} \cdot \frac{d^{+}u}{dt} dx, \end{cases}$$

which is equivalent to

$$\left\{ \begin{array}{l} \frac{d^{+}u}{dt} \leq 0 \;, \quad \frac{d^{+}u}{dt} = 0 \qquad q. \; e \; \; in \; \; \{u(t) = 0\} \;, \\ \\ \Delta \frac{d^{+}u}{dt} + \frac{d^{+}f}{dt} = -\mu(t) \;, \qquad \mu(t) \in \mathcal{M}^{+}(\Omega) \;, \\ \\ \mu(t) \; \; (u(t) > 0) = 0 \;. \end{array} \right.$$

Example 6. $\mathcal{H}=H^1(\Omega)$ with the scalar product $(u,v)=\int_{\Omega}\operatorname{grad} u\cdot\operatorname{grad} v\cdot dx$ $+\int_{\Omega}uvdx$

$$K = \{u \in \mathcal{H}, u \mid_{\Gamma} \ge 0, \text{ a. e on } \Gamma\}$$
.

Let $f: [0, T[\to L^2(\Omega)])$ and $\varphi: [0, T] \to L^2(\Omega)$ be two right-differentiable functions. We consider the t-depending variational inequality

(2)
$$\begin{cases} u(t) \in \mathbf{K}, & \forall t \in [0, T[, \\ \forall v \in \mathbf{K}, & (u(t), v - u(t)) \ge \int_{\mathcal{Q}} f(t)(v - u(t)) dx + \int_{\Gamma} \varphi(t)(v - u(t)) d\Gamma. \end{cases}$$

We notice that by the "trace theorem", the mapping:

$$w \in H \to \int_{\Omega} f(t)w \, dx + \int_{\Gamma} \varphi(t)w |_{\Gamma} d\Gamma$$

is continuous for every t, and so represented by an element of $(H^1(\Omega))^*$.

We introduce $H=H^{1/2}(\Gamma)$, $K=\{w\in H, w\geq 0\}$, and for $u\in H$ we consider the solution \check{u} of the equation $\check{u}\in \mathcal{H}$, $-\Delta \check{u}+\check{u}=0$, $\check{u}|_{\varGamma}=u$. We define the scalar product on H by the $((u,v))_H=(\check{u},\check{v})_H$. H is a Hilbert sublattice of $L^2(\Gamma)$ for the ordering given by K since we have sup $\{u,v\}\in H$, $\forall (u,v)\in H\times H$. On the other hand, it can be regarded as a subspace of \mathcal{H} , by means of the map:

We now follow an idea of Sylverstein [4] to show that

$$\forall u \in H, ((u^+, u^-))_H \leq 0.$$

If $u \in H$, we set $Tu = u^+ + u^-$. And for $x \in \mathcal{A}$, $Cx = x^+ + x^-$, x^+ being the positive part for the natural ordering on $H^1(\Omega)$.

First we remark that for any $v \in \mathcal{K}$ such that $v|_{\varGamma} = 0$, and for any $w \in H$, we have $(\check{w}, v) = 0$. Then for $u \in H$, we have $\check{T}u|_{\varGamma} = \mathcal{C}\check{u}|_{\varGamma} = Tu$, taking w = Tu, $v = \check{T}u - \mathcal{C}\check{u}$, we also have $|\check{T}u|^2 - |\mathcal{C}\check{u}|^2 = (2\check{T}u, \check{T}u - \mathcal{C}\check{u}) - |\check{T}u - \mathcal{C}\check{u}|^2 = -|\check{T}u - \mathcal{C}\check{u}|^2 \le 0$. Hence, $||Tu||_{H} = |\check{T}u| \le |\mathcal{C}\check{u}| = |\check{u}| = ||u||_{H}$, $\forall u \in H$. The properties i), iv) and v) are easy to check, setting $X = \varGamma$, H as above, we may apply the capacity theory. The inequality (2) admits the pointwise formulation:

$$\begin{cases} u(t) \geq 0, \text{ a. e on } \Gamma \\ -\Delta u(t) + u(t) = f(t) \text{ in } \Omega \\ \frac{\partial u(t)}{\partial n} \geq \varphi(t) \text{ on } \Gamma \text{ and } \left(\frac{\partial u(t)}{\partial n} - \varphi(t) \right) u(t) = 0 \text{ on } \Gamma \text{,} \end{cases}$$

where $u|_{\Gamma}$ is chosen quasi-continuous for the $H^{1/2}(\Gamma)$ -capacity, in the sense that $\frac{\partial u(t)}{\partial n} - \varphi(t)$ is a positive measure on Γ , and setting $\nu(t) = \frac{\partial u(t)}{\partial n} - \varphi(t)$, $\nu(t)(u(t)>0)=0$. For $u\in\mathcal{K}$, we set $u_1=u|_{\Gamma}$, $u_2=\operatorname{Proj}_{H^1_0(\Omega)}(u)$. Introducing the solution $\varphi(t)$ of the problem

$$\begin{cases}
-\Delta \psi(t) + \psi(t) = 0 \\
\frac{\partial \psi(t)}{\partial n} = \varphi(t) \text{ on } \Gamma
\end{cases}$$

and setting $g(t) = \phi(t)|_{\Gamma}$, the system (2) is equivalent to

$$\begin{cases}
-\Delta u_{2}(t)+u_{2}(t)=f(t), \\
u_{1}(t) \in K, \\
\forall v \in K, ((u_{1}(t), v-u_{1}(t))) \geq ((g(t), v-u_{1}(t))).
\end{cases}$$

Setting $\nu(t) = \frac{\partial u(t)}{\partial n} - \varphi(t)$ (a nonnegative measure on Γ) and

$$K_{(t)} = \{ v \in H, v \mid_{\Gamma} \ge 0, \text{ q. e, } \nu(t)(v \mid_{\Gamma} > 0) = 0 \}$$
,

we get immediately from Theorem 4 the following

COROLLARY 9. u(t) is right-differentiable, and $\frac{d^+u}{dt}$ is the solution of the variational problem

$$\left\{ \begin{aligned} \frac{d^{+}u}{dt} \mid_{\varGamma} \geq 0, & q. \ e \ \ in \ \varGamma \cap \{u(t) = 0\}, \ \nu(t) \left(\frac{d^{+}u}{dt} \mid_{\varGamma} > 0\right) = 0, \\ \forall w \in K_{(t)}, \left(\frac{d^{+}u}{dt}, w - u(t)\right)_{H^{1}(\mathbf{Q})} \geq \int_{\mathbf{Q}} \frac{d^{+}f}{dt} (w - u(t)) dx + \int_{\varGamma} \frac{d^{+}\varphi}{dt} (w - u(t)) d\varGamma, \\ \int_{\mathbf{Q}} \left|\frac{d^{+}u}{dt}\right|^{2} dx + \int_{\mathbf{Q}} \left|\operatorname{grad}\left(\frac{d^{+}u}{dt}\right)\right|^{2} dx = \int_{\mathbf{Q}} \frac{d^{+}f}{dt} \cdot \frac{d^{+}u}{dt} dx + \int_{\varGamma} \frac{d^{+}\varphi}{dt} \cdot \frac{d^{+}u}{dt} d\varGamma. \end{aligned}$$

COROLLARY 10. Under the additional hypotheses that $\forall t, \frac{d^+f}{dt} \in \mathcal{M}^-(\Omega)$, $\frac{d^+\varphi}{dt} \in \mathcal{M}^-(\Gamma)$, the derivative $\frac{d^+u}{dt}$ satisfies the system

$$(2.2) \begin{cases} \frac{d^{+}u}{dt} \leq 0, & \frac{d^{+}u}{dt} = 0 \quad q.e \text{ in } \Gamma \cap \{u(t) = 0\}, \\ \forall w \in K, \left(\frac{d^{+}u}{dt}, w - u(t)\right)_{H^{1}(\mathcal{Q})} \geq \int_{\mathcal{Q}} \frac{d^{+}f}{dt} (w - u(t)) dx + \int_{\mathcal{Q}} \frac{d^{+}\varphi}{dt} (w - u(t)) d\Gamma, \\ \int_{\mathcal{Q}} \left|\frac{d^{+}u}{dt}\right|^{2} dx + \int_{\mathcal{Q}} \left|\operatorname{grad}\left(\frac{d^{+}u}{dt}\right)\right|^{2} dx = \int_{\mathcal{Q}} \frac{d^{+}f}{dt} \cdot \frac{d^{+}u}{dt} dx + \int_{\Gamma} \frac{d^{+}\varphi}{dt} \cdot \frac{d^{+}u}{dt} d\Gamma. \end{cases}$$

So
$$\frac{\partial}{\partial n} \left(\frac{d^+u}{dt} \right) - \frac{d^+\varphi}{dt} = \mu(t)$$
, with $\mu(t) \in \mathcal{M}^+(\Gamma)$, $\mu(t)(u(t) > 0) = 0$.

SKETCH OF PROOF. In \mathcal{K} , $\frac{d^+g}{dt} \in \mathbf{K}^\perp$ because $\frac{\partial}{\partial n} \left(\frac{d^+g}{dt} \right) = \frac{d^+\varphi}{dt} \leq 0$. So $\frac{d^+\mu_1}{dt} \in -K$, and the inequality for μ_1 gets simpler. Moreover, we have $\frac{d^+u}{dt}|_{\Gamma} \leq 0$, and $(-\Delta + \hat{I}) \left(\frac{d^+u}{dt} \right) \leq 0$ in Ω . So $\frac{d^+u}{dt} \leq 0$ by the max. principle. The rest of deduction is a purely algebraic matter.

Corollaries 8 and 10 are results of H. Brézis, who got them from direct functional arguments. The idea of Lemma 1 is due to F. Mignot ([3]).

References

- [1] A. Ancona, théorie du potentiel dans les espaces fonctionnels à forme coercive.
- [2] H. Brezis, thése, Th. II. 10 and II. 11 (J. Math. pures et appl. 51, 1972).
- [3] F. Mignot, thèse, to appear.
- [4] Sylverstein, Illinois J. of Math., March 1973.

A. HARAUX
Universite Paris VI
Laboratoire Analyse Numerique
4, Place Jussieu
75230 Paris, Cedex 05

France