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Abstract The recent literature is replete with papers

evaluating computational tools (often those operating on

3D structures) for their performance in a certain set of

tasks. Most commonly these papers compare a number of

docking tools for their performance in cognate re-docking

(pose prediction) and/or virtual screening. Related papers

have been published on ligand-based tools: pose prediction

by conformer generators and virtual screening using a

variety of ligand-based approaches. The reliability of these

comparisons is critically affected by a number of factors

usually ignored by the authors, including bias in the data-

sets used in virtual screening, the metrics used to assess

performance in virtual screening and pose prediction and

errors in crystal structures used.
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Abbreviations

AUC Area under the curve

DPI Diffraction-coordinate precision index

RMSD Root mean square deviation

ROC Receiver operator characteristic

Introduction

Based on the large number of papers recently published, it

has become obvious that a large proportion of the

computational chemistry community, both in academia and

in industry, is very interested in evaluating and comparing

software for a number of different purposes. A large

number of publications have appeared over the last 5 years

or so that are focused on the evaluation of docking tools for

pose prediction [1], virtual screening [2] and affinity pre-

diction [3]. There have also been a number of recent

publications examining the performance of ligand-based

tools in similar tasks. The ligand-based tools have also

been evaluated in the areas of pose reproduction (by con-

former generators [4–6]), virtual screening [7] and affinity

prediction [8]. In the following sections some issues with

studies on pose prediction and virtual screening will be

discussed.

Pose prediction

A common method of evaluating a docking program is to

gauge its performance in cognate re-docking or self-

docking. In this process a ligand is extracted from a co-

crystal structure with its target protein and the program is

challenged to pose the ligand as closely as possible to its

experimentally identified structure. It may be argued that

cognate re-docking is not a task commonly faced in the

normal use of docking tools, since cross-docking (docking

of a ligand into a structure with which it was not crystal-

lised) is the actual application of a docking tool [9].

However, the exercise remains popular, doubtless in part

due to the relative ease of execution of a self-docking study

and partly for comparison with previous studies. As has

been pointed out previously [10], comparing docking pro-

grams for their ability to predict the bioactive pose of a

ligand is difficult for a number of reasons, some of which

are obvious while others are subtler. However, the
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operational difficulties in comparing programs in a robust

way should not cause other sources of error to be ignored.

It is a truism that it is meaningless to compute a property

with greater precision than the accuracy of the experiment

that measures that property. Unfortunately, as will be seen

in subsequent sections, this is often ignored by authors of

papers in the area of pose prediction.

When comparing tools for pose prediction, the heavy

atom root mean square deviation (RMSD) between the

computed and experimental poses is the de facto standard.

A regrettably common method to compare docking tools

for pose prediction success––illustrated, for example, in the

papers presenting results from the MolDock program [11]

or the Glide XP evaluation [8]––is to compare the average

RMSDs across a set of structures. The use of the average

RMSD admits of many possible problems of interpretation,

not least of which is the biasing of the average by a few

very large or very small numbers. In the case of the Mol-

Dock results, the mean RMSD across a set of structures

was used to suggest that the performance of MolDock was

comparable to that of GLIDE and superior to that of Sur-

flex (see Table 1). However, the use of the median RMSD,

which is far less biased by a few extrema, suggests a dif-

ferent conclusion—that MolDock is in fact somewhat

superior to Surflex, but not as good as GLIDE. For a

similar analysis on the drawbacks of using average RMSD

as a comparator, see Cole et al. [10]. A number that is

noticeably absent from this, and all other comparisons of

docking tools using RMSD, is an error bar on the average

RMSD (which can be calculated by bootstrapping). With-

out such an error bar it is impossible to assert that any tool

compared in this study is actually better than any other.

A separate issue with these two experiments involves

contamination of the dataset used to evaluate the perfor-

mance of the tools. In the case of the Glide results the

RMSD’s given are not to the deposited crystallographic

pose but rather to one that results from a pre-processing

step, as noted by the authors of the MolDock paper [11]. As

such this is not an ‘‘apples to apples’’ comparison, since the

Glide pre-processing step optimizes protein and ligand

coordinates using the force-field component of the Glide

scoring function, which necessarily introduces bias in the

structure. In the MolDock case the authors have essentially

trained the MolDock fitness function on the 77 complexes

that they use to evaluate its performance. As such the

reported results give no indication of the likelihood of

success in predicting a pose for a system upon which

MolDock was not trained.

The RMSD between two poses is a geometric measure,

comparing the atomic positions between the experimental

structure and the docked or predicted structure. Other

metrics based on comparing the geometry of the experi-

mental and the computed pose have been developed, such as

relative displacement error (RDE) [12]. These, and all other

atom-based metrics, suffer from the drawbacks pointed out

by Cole et al. [10]. A more serious problem for metrics like

RMSD and RDE is that they attempt to indicate the quality

of reproduction of a model for the data, not the crystallo-

graphic data itself, i.e., the electron density. This

disconnection between RMSD as a metric of quality for

pose prediction and the original crystallographic data has

been a cause for concern. Some attempts have been made to

arrive at metrics that better reflect the reproduction of the

actual crystallographic data, in particular real-space

refinement (RSR) [13]. Unfortunately, RSR has not been

widely used, possibly because it is more difficult to calcu-

late than atom-based metrics like RMSD or RDE. Other

metrics that are not based purely on atom position, such as

interaction-based accuracy classification (IBAC) [14], try to

reflect the ultimate use of the predicted pose, i.e., deter-

mining the nature of the interactions that the ligand makes

with the protein. While the IBAC approach has value in that

it assesses a computed pose by its interactions with the

protein, it is not amenable to automation; it is therefore

tedious to assemble sufficient data to make statistically

robust comparisons between tools based on IBAC.

However, the problem of choosing which metric to use

to compare pose prediction studies is dwarfed by the dif-

ficulty in choosing a dataset of protein–ligand co-

complexes upon which to perform the comparison. A

widespread tendency in conformer reproduction and pose

prediction studies is to ignore even the possibility of error

in the crystal structures that are being reproduced. Crystal

structures are often treated as perfect, infinitely precise and

accurate representations of the atomic details of a protein–

ligand complex. There are a number of reasons why this is

not so; a few will be discussed in the following paragraphs.

Crystal structures are models

This statement makes up the warp and weft of crystallog-

raphy, yet in the transition of crystallographic data from

crystallographer to computational chemist the distinction

between the actual data and a model for that data is often

lost. The actual data in crystallography is, of course, dif-

fraction data leading to electron density. The atom

Table 1 Comparison of RMSD results from a set of docking engines

MolDock GLIDE Surflex

Mean 1.38 1.38 1.86

SD 1.49 1.74 2.02

Median 0.92 0.69 1.10
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positions that make up a crystal structure are a model that

attempts to explain this data in as complete a fashion as

possible. This is illustrated in Fig. 1.

The process of fitting or modeling the atoms (of a ligand

or of a protein) into the electron density is not always

straightforward, and the problems are often more serious

when the fitting of a ligand into density is being carried out.

The sources of these problems include:

(i) Incomplete or fragmentary density;

(ii) The electron density not defining the positions of all

atoms unambiguously;

(iii) Poor structural parameters are used for the fitting

process, which can give inappropriate conformations

(particularly of ligands);

(iv) Errors by the users, arising from careless treatment of

the data or lack of expertise with small molecules.

A variety of metrics can be calculated for a given crystal

structure that attempts to give an indication of the quality

of the model. While no single number can encompass the

quality of a structure, some of the metrics of quality are

more useful than others. The most commonly used is the

nominal resolution. This is a measure only of the quantity

(of data collected) and not of the quality of the data nor,

most especially, of the quality of the model fitted to that

data. (For a discussion on the problems with resolution, see

Ref. [15]) It is therefore unfortunate that nominal resolu-

tion is often the only criterion used to select a protein

structure, and that its meaning is often misconstrued. For

example, in a paper [16] by Nissink et al. the following

incorrect statement is made: ‘‘The resolution of a protein

structure is directly related to the accuracy of the data.’’

Not only is this statement not entirely true, it also confuses

what the nominal resolution means (quantity of data col-

lected) with the accuracy of a model, which are two very

different things. A metric that does attempt to assess the

quality of the fit of the crystallographic model to the source

data is the so-called Rfree, introduced by Brunger [17]. Rfree

is an indication of how well an atomic model explains a

small percentage of the density data that was omitted

during the fitting process, and is thus an unbiased metric

that can be reliably used to distinguish a well fitted model

from a poorly fitted model. Unfortunately, Rfree is infre-

quently used as a metric of quality when selecting crystal

structures for docking studies or other purposes (see Ref.

[18] for the use of Rfree as a criterion for selection of

structures). More frequent use of Rfree as one of a set of

metrics for selection of crystal structures could help to

avoid the selection of poorly fitted models for pose

reproduction.

Crystal structures have unavoidable imprecision

As already discussed, nominal resolution is not a metric of

quality for a structure and although Rfree indicates the

quality of the fit of the model to the original data it can

provide no estimate of the uncertainty in the atomic posi-

tions within that model. It is often assumed that the

experimental uncertainty in the atomic positions in a

crystallographic model can be estimated by use of the

isotropic B-factor, which is supposedly a measure of the

thermally driven fluctuation in atomic positions. However

B-factors are a refined parameter and so they cannot be

compared between structures without detailed knowledge

of the restraints used [19]. It is therefore impermissible to

use low B-factors as a sure indication of low positional

uncertainty. Nor is it possible that there exists a uniform

cut-off for B-factors that indicates low positional uncer-

tainty in all structures, though such an assumption is

frequently made [20]. Another potential problem with

B-factors is that they can be over-refined in the pursuit of

better quality metrics for a structure. An example is given

in Fig. 2, which shows the ligand (leucinol) from the

structure 5ER1 from the RCSB [21] annotated with its

B-factors. The B-factors for every atom in the ligand are

\1. In contrast, B-factors even for well-located atoms in

Fig. 1 Fitting atoms into electron density produces a crystallographic

model
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high quality models, are generally not \5 [22]. In this

instance the crystallographer has over-refined the B-factors

of the ligand atoms in order to improve the quality of the

overall model. In this model the B-factors are unphysically

low only as a consequence of a pathology of the refinement

process. Accordingly, B-factors as an indication of local

mobility in a protein structure should be treated with cau-

tion, as they are not simply an experimentally derived

quantity but are free parameters in the refinement process.

An alternative to using the average B-factor for esti-

mating the uncertainty of the position of atoms an atom in a

structure is the average coordinate precision (or diffraction-

component precision index, DPI). The DPI expresses the

average precision for the atomic coordinates in a protein

structure [23] and as such can be used as a measure of the

experimental precision of the atomic positions in that

structure. The original formulation of DPI was very com-

plex and has recently been recast in a more easily

calculable way by Blow [24]. The use of DPI as a metric of

quality for crystal structures used for docking studies was

introduced to the computational community by Goto et al.

[18], and their formula is given in Eq. 11.

r r, Bavg

� �
¼ 2:2Natoms

1=2Va
1=2nobs

�5=6Rfree ð1Þ

In this treatment the standard error of position, r(r), is

related to the number of atoms in the unit cell, Natoms, the

volume of the unit cell, Va, the number of crystallographic

observations, nobs and the Rfree. It should be noted that the

formula presented by Goto et al. is not precisely the same

formula that Blow derives in his paper. In Eq. 1 the pre-

factor is given as 2.2, while in the original work by Blow

the prefactor is given as 1.28. This is because Blow is

calculating coordinate error for a particular axis, r(x, y,

or z), while Goto et al. are calculating the error in the

distance, r(r), giving rise to the H3 difference between

the two prefactors. As such it is appropriate to consider the

error in the coordinates, r(x, y, z) as a measure of the

uncertainty in the atomic positions, and the error in inter-

atomic distances, r(r), when comparing a computed and an

experimental structure.

The resolution of a crystallographic model, as has been

mentioned, is often used to select protein structures for

pose prediction by docking or conformer generation stud-

ies, on the assumption that resolution imparts some

information on the quality and precision of the model. The

DPI is a much more direct estimate of the reliability of

crystallographic models when it comes to comparing

experimental and computed atom positions (as is done in

conformer reproduction or pose prediction). It is therefore

of interest to compare the nominal resolution for a large

number of ‘‘good quality’’ crystal structures with the DPI

(r(r)) for the same structures. A good dataset for this

comparison is provided by the extensive investigations

performed by Kirchmair et al. [4]. Here 776 co-crystal

structures were used to provide experimental ligand

structures that were then compared to sets of computed

conformations from conformer generation applications. For

556 of these crystal structures there exists sufficient data to

allow the DPI to be calculated and the relationship between

the nominal resolution for these structures and their DPI is

shown in Fig. 3. It is obvious from Fig. 3 that the statement

by Kirchmair that ‘‘0.5 Å approximately represents the

accuracy of protein X-ray crystallography’’ is not sup-

ported by the actual properties of the crystal structures they

studied. In fact, in those cases where the DPI can be cal-

culated, almost 56% of the structures from their paper have

DPIs [ 0.5 Å.

Figure 3 illustrates a number of other interesting points.

While the expectation that greater coordinate precision will

arise from structures with better nominal resolution is

generally borne out by the data, there are many exceptions.

Table 2 shows some examples of structures where the

nominal resolution gives an unexpected estimation of

coordinate precision. In the top half of the table are

Fig. 2 B-factors for the ligand in the 5ER1 crystal structure
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Fig. 3 Coordinate error for 556 structures from the paper by

Kirchmair et al. [4]1 Goto et al.’s formula to calculate DPI.
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structures with good nominal resolution but unexpectedly

high DPI, while the lower half of the table shows some

structures with low nominal resolution and either unex-

pectedly low or unexpectedly high DPIs. Accordingly,

simply using nominal resolution as a metric of quality for

structures to be used in a pose prediction or conformer

generation study is insufficient to guarantee that structures

of appropriate quality will be used.

With the DPI for a structure in hand one can set a lower

limit on the precision with which a computed conformation

can reproduce an experimental one—the RMSD between

the two conformations cannot be less than the DPI for the

experimental structure. It can be seen that over half

(55.6%) of the structures in this set has DPIs [ 0.5 Å,

while Kirchmair et al. report pose reproduction statistics

both at\0.1 Å and at\0.5 Å RMSD. Since in over half of

the structures in this dataset the DPI is [0.5 Å, Kirchmair

et al. report pose reproductions at \0.5 Å RMSD that are

more precise than the accuracy of the source data allows.

This analysis is made on the conservative assumption that

the error in the atomic positions in the computed pose is

zero. In the Goto et al. paper [18] the assumption is made

that the errors in the computed pose are the same as for the

experimental pose. In this analysis a computed and

experimental pose must be different by an RMSD of

H2 9 DPI for the difference to be significant, which would

mean that an even higher proportion of the poses in the

Kirchmair set have been reproduced with a greater preci-

sion than the experimental accuracy.

The same tendency to reproduce experimental data with

a precision greater than the experimental accuracy is seen

frequently in pose prediction experiments with docking

engines. In Fig. 4 nominal resolution is plotted against the

DPI for crystal structures from two well known docking

validation sets, those for GOLD [25] and GLIDE [3]. The

two graphs are plotted on the same scale to allow direct

comparison. On each graph is also plotted an estimate of

the theoretical lower limit for the atomic precision (the

pink line). A formula describing the relationship between

nominal resolution and DPI is given in Eq. 22 below, based

on a derivation by Blow [24].

r r, Bavg

� �
¼ 0:22 1þ sð Þ1=2VM

�1=2C�5=6Rfreedmin
5=2 ð2Þ

The variables found in Eq. 2 are as follows: s is the

percent solvent present in the crystal, Vm is the asymmetric

unit volume to molecular weight ratio, C is the complete-

ness of the data, and dmin is the nominal resolution of the

structure. The ideal lines shown in Fig. 4 were calculated

using Eq. 2 and assuming an s of 0.0, a Vm of 2.5, a C of

100%, and that Rfree is equal to the resolution/10.

Inspection of Fig. 4 shows that the GOLD set contains

one structure (1YEE) whose calculated DPI lies below the

theoretical lower limit. This is probably due to a mistran-

scription error in the PDB file. The PDB file for the 1YEE

structure gives the number of reflections as 77209, while

the number of unique reflections is 21342—a disparity that

Table 2 Resolution and DPI for selected structures from the Kir-

chmair dataset

PDB code Resolution (Å) DPI (Å)

1FC7 1.38 0.69

1FDO 1.38 0.60

1JJT 1.8 1.37

1JJE 1.8 1.25

1CIB 2.5 5.54

1ILH 2.76 0.14

1C8M 2.8 0.18

1QJX 2.8 0.25
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Fig. 4 The nominal resolution versus the coordinate error for a

subset of the Gold (structures with resolution \2.5 Å) and the Glide

data sets

2 Blow’s derivation for the relationship between nominal resolution

and atomic precision using the Goto et al. [18] coefficient.
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cannot be reconciled by reference to the data redundancy

for this structure. Accordingly the calculated DPI for 1YEE

is too low because the reported number of reflections is

erroneously high. In the GLIDE set all structures have DPIs

higher than our predicted theoretical minimum. In fact, in

this set 52% of the structures have a DPI [ 0.5 Å, and in

31% of the cases the reported RMSD for redocking is less

than the DPI (so that the prediction is more precise than

experimental accuracy allows). This is only one example of

a publication in which protein structures are assumed to be

free of uncertainty in their atomic positions; the literature

abounds with others.

The combination of Rfree and the DPI for a structure can

give a good overall picture of the quality of a model and

the reliability of the atom positions within that model. In

spite of the availability of these and other measures of

quality, there are a number of test sets of protein co-crystal

structures used for evaluating docking engines that appear

to have been selected by other criteria that do not relate in

any way to their quality [26]. Accordingly, the results from

these studies should be treated with some caution.

Crystal structures have avoidable errors

The Rfree and the DPI are global measures of quality; other,

local, measures of quality are also useful. For example, if a

small portion of the atoms in a structure have been poorly

fitted to the density, this will not be revealed by any global

measure of fit. Only a local measure would reveal the error.

A relatively common problem in co-crystal structures in

the PDB is poor fitting of small molecules to the density,

giving unrealistic ligand structures. These poorly fitted

ligand structures are then used as a ‘‘standard’’ to judge the

quality of a docking program’s or conformer generator’s

performance. While the poor quality of some ligand

structures in PDB models has been known for some time

[27], these reports have been anecdotal and few systematic

attempts to avoid such poorly solved structures (other than

visual inspection) appear to have been undertaken. If

appropriate attention is not paid to selecting good quality

ligand structures, then a dataset could be constructed that

contains ligand structures that have significant errors. For

pose prediction studies, poorly solved ligand structures in

the dataset must be avoided. It is senseless to try to com-

putationally reproduce an ‘‘experimental’’ ligand structure

that has been incorrectly fitted to the electron density.

Examples of some possible errors in ligand structures that

should result in structures that are not computationally

reproducible are shown in Figs. 5 and 6.

In the case of the 1A8T structure (Fig. 5), the deposited

ligand coordinates contain two serious atom–atom clashes

that give the resulting conformation very high energy

(28.4 kcal/mol above a refitted structure by the MMFF94

forcefield [28]). The deposited coordinates are clearly in

error in this case and no docking engine or conformer

generator should be expected to reproduce such a structure.

The error shown in Fig. 6 for the 1A4k structure is of a

more subtle nature. Here the crystallographer has fitted a

highly strained cis-amide into the electron density with no

compelling reason from the electron density to do so. The

amide group is packing against a tyrosine residue from a

symmetry mate in the unit cell, and makes no polar inter-

action with it. The corresponding trans-amide, which fits

the experimental density just as well, is 15.5 kcal/mol

lower in energy (using the MMFF94 force-field). Also this

trans amide is able to make a hydrogen bond (with a

backbone carbonyl group) that is not available to the cis

conformation. Once again, this model should not be

reproduced by a docking engine or conformer generator, as

it is obviously not the correct solution.

One of the only studies that bears on the issue of ligand

strain was published by Perola and Charifson in 2004 [29].

The authors examined ligand strain in a number of public

structures from the RCSB database and proprietary

Fig. 5 Ligand conformation from 1A8T structure. The conformation

has two serious atom–atom clashes

Fig. 6 Ligand conformation from the 1A4K structure. The cis-amide

group is an error of fitting
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structures from Vertex internal collection and found that

10% of the ligand structures examined had high strain

(10 kcal/mol or greater above the global minimum). The

two examples discussed above, 1A8T and 1A4K, are both

part of the Perola dataset. Clearly these two ligand struc-

tures have high strain energies due to errors in fitting and

not due to a fundamental property of the ligand’s confor-

mation in complex with the protein. Close examination of

the rest of the models for the ligands (where structure

factors are available) showed that a number of them are

incorrect, and re-solving them provided lower energy

structures in about 85% of the cases [30]. Recent re-

examination of the Perola dataset by the Snyder group has

provided further insights into the large strain energies

originally reported [31]. It is therefore most likely that the

vast majority of ligand conformations in complex with a

protein show strain energies less than 6 kcal/mol, unless

the ligand is rather large [32]. Those ligand conformations

with strain energies higher than 10 kcal/mol are almost

certainly incorrect. As such low ligand strain should be

among the criteria for selection of structures for pose

prediction, as structures with high strain are very likely to

arise from errors in the fitting process.

It is clear from the foregoing discussion that, while

crystal structures are an invaluable source of information

on protein–ligand binding, these structures are not without

many sources of confounding errors. These errors, those

inherent to the data and the process of fitting, as well as

those introduced by human error or the insufficiencies of

the fitting program, should be borne in mind before using

crystal structure data. The selection of a reliable set of

structures for pose prediction is a therefore not a trivial

task. An excellent study considering these issues can be

found in Hartshorn et al. [33].

Virtual screening

Virtual screening can be defined as any method that ranks a

set of compounds by some score. Successful virtual

screening relies on having a scoring method that assigns

good scores to interesting molecules (usually defined as

active against a target protein of interest) and worse scores

to uninteresting (inactive) molecules. Accordingly a suc-

cessful virtual screen will provide, from the top of this

ranked list, a set of compounds for experimental screening

that is highly enriched in active molecules. This topic has

been of great interest both in academia and in the phar-

maceutical industry in recent years, and a large number of

publications have appeared on the subject. While a few of

the publications have investigated virtual screening con-

ducted prospectively [34–36], the vast majority have been

concentrated in the area of retrospective virtual screening.

In the rest of this article we shall concern ourselves solely

with the retrospective experiments. The goal of such

experiments is often to identify an application that per-

forms well on a given target, or across a wide range of

targets, with a view to utilizing this application in pro-

spective virtual screens.

There are a number of approaches to quantitating the

success of a particular tool for virtual screening. The most

often used, and simplest to calculate, is enrichment at a

given percentage of the database screened. Enrichment

(EF) is defined according to Eq. 33 (Hitssampled
x% = number

of hits found at x% of the database screened, Nsam-

pled
x% = number of compounds screened at x% of the

database, Hitstotal = number of actives in entire database,

Ntotal = number of compounds in entire database).

EF ¼ ðHitssampled
x%=Nsampled

x%Þ � (Ntotal/Hitstotal) ð3Þ

Enrichment appears to measure the quantity of most

interest to those performing virtual screening: the ability of

a tool to place a large proportion of the active compounds

at the top of the ranked list. Enrichment is also simple to

calculate and understand, so it seems the ideal metric with

which to compare tools for their virtual screening perfor-

mance. However, enrichment suffers from a number of

significant drawbacks, especially when comparing results

between studies or using enrichment to predict future

performance:

(i) It is dependent on the structure of the dataset, in that

datasets with larger proportions of actives will have a

narrower range of possible enrichments.

(ii) It penalizes ranking one active compound above

another.

(iii) It exhibits pernicious behaviour at the cut-off at

which the enrichment is calculated.

(iv) It gives no weight to where in the ranked list a known

active compound appears. Thus to calculate enrich-

ment at 1% in a virtual screen of 10,000 compounds,

the number of actives (N) in the top ranked 100

compounds is needed. However the enrichment at

1% is the same whether the N active compounds are

ranked at the very top of the list or at the very bottom

of the top ranked 100.

(v) It is difficult to calculate analytically errors in

enrichment, and there is no available literature for

such a calculation.

With regard to point (i), experiments performed on

different datasets cannot be compared when using enrich-

ment, as the dynamic range of enrichment will be different

for different datasets, but there are several cases where this

has been done [37]. Early enrichment can also suggest

3 Enrichment calculation.
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overly impressive performance for tools that rank a small

fraction of the active molecules very early in the list, but

fail to give good ranks to the majority of the actives [37]. It

has been shown by Seifert [38] that enrichment does not

detect significant pathologies in the ranking function. Other

metrics have been developed by some groups specifically

to address some of these problems: RIE by Merck [39],

cumulative probability by Molsoft [40] and average num-

ber of outranking decoys by Schrodinger [3]. These metrics

have, historically, only been used by the groups that

invented them and are thus not useful for comparison to

studies conducted by other groups. This lack of direct

comparability across studies is compounded by the fact that

these metrics cannot be converted into a more commonly

used metric that could be used to compare results. Also, as

with enrichment, it is unknown how to estimate analyti-

cally errors in any of these metrics.

A metric used to determine success in detecting a signal

in a background of noise is the receiver operator charac-

teristic (ROC). The ROC curve is derived by plotting noise

(fraction of false positives) on the x-axis versus signal

(fraction of true positives) on the y-axis. The area under the

ROC curve (AUC) is a widely used measure in a variety of

fields including medical statistics, criminology and bioin-

formatics [41, 42]. When applied to virtual screening the

ROC illustrates success in ranking actives (signal) above

decoys (noise). The AUC for the ROC curve shows per-

formance of a given tool when screening across the entire

database is examined, not just at fixed, early points in the

screen as enrichment does. The theoretically perfect per-

formance of a virtual screening application gives the

maximum area under a ROC curve (1.0), while random

performance of a tool gives an AUC of 0.5. Areas under the

curve of less than 0.5 imply a systematic ranking of decoys

higher than known actives. For recent applications of the

ROC curve in virtual screening, see [2, 43]. The AUC for

the ROC curve is also known as the ‘discrimination’.

Discrimination is defined as the fraction of occurrences that

a randomly chosen true positive (active) is given a better

score than a randomly chosen true negative (decoy). This

number then allows prediction of the likely effectiveness of

a tool in experiments that have not yet been conducted.

This predictive ability is not provided by metrics such as

enrichment, cumulative probability and average number of

outranking decoys, because while the ROC describes a

property of the application studied, the other metrics

essentially describe a property of the experiment. The AUC

assesses virtual screening performance across the entire

database and many practitioners of virtual screening are,

rightly, most concerned about early performance of the

tools they use. This is one reason why enrichment is so

commonly used to measure success. The metric of early

performance based on the ROC curve is the true positive

rate at fixed false positive rates. The true positive rate at a

false positive rate of, for example, 1% is a much more

robust measure than the enrichment at 1% and provides

similar information about the early performance of a tool.

The AUC also offers the advantage that a statistically

robust estimate of its errors can be estimated analytically

from the AUC itself, using a method developed by Hanley

[41]. This is not a property possessed by enrichment,

average number of outranking decoys etc. For these metrics

errors can only be estimated (by bootstrapping or other

approaches) from the raw data, which is rarely provided.

The error in the AUC, as with other metrics, is reduced by

increasing the number of positives (active compounds) and

by increasing the number of negatives (inactives). The

Hanley treatment shows that the error in the AUC is most

significantly reduced by increasing the number of actives,

while increasing the number of decoys has a much smaller

impact on the error. Therefore virtual screening datasets

with high proportions of active compounds will provide

results with lower error bars for the AUC. With the error

for an AUC available, meaningful comparisons can be

made between two or more different tools. However the

other metrics used for virtual screening mentioned above

do not allow an analytical estimation of their errors.

Comparisons designed to determine which tool is superior

for a given purpose, that are based on metrics assumed to

be free of errors, are fraught with difficulty.

While the choice of metric may affect the relative

ranking of tools compared on the same datasets, the com-

position of those datasets has a very profound effect on the

results generated. Until very recently it has been common

practice to assemble a dataset for virtual screening by

seeding a set of active molecules against a target of interest

into a background of compounds (decoys) chosen essen-

tially at random. These decoys compounds were often

drawn from public sources such as vendor catalogues. An

example of this approach is the seminal paper on virtual

screening by docking from the Rognan lab where decoy

compounds were selected at random from the publicly

available compounds [44]. This set of decoys, or a subset

thereof, has been used extensively since its publication in

2000 [2 and references therein] so that this same set of

decoy compounds has been used in more than 45 different

published virtual screening experiments on a wide variety

of target systems. Given the huge variety in the types of

active molecules camouflaged in this same set of decoys it

seems intuitively obvious that in some cases the active

compounds for a given target will be very easily discrimi-

nated from these decoys. As such a number of the virtual

screening experiments performed using this set of decoy

compounds have given good results purely due to differ-

ences in simple properties between the actives and the

decoys (vide infra). In the Rognan dataset there were
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10 active compounds for each of the targets studied and 990

randomly selected decoys. There are two problems arising

from constructing a dataset in this way. The first is that the

small number of active compounds means that the errors

can be very high (vide supra). The second is that trivial

property differences between the active compounds and the

decoys can result in undeservedly good performance. The

first issue, low prevalence, is still widespread in retrospec-

tive virtual screening studies. Although low prevalence

reduces the reliability of the results, many virtual screening

experiments are still conducted using very low numbers of

active compounds. Reasons for this could include a desire to

mimic ‘‘real’’ HTS experiments, where hit rates are often on

the order of 0.01–0.1% [45] or to allow enrichment, the

most commonly used metric for success in these studies,

the maximal dynamic range. Tribelleau et al. [43] show that

the dynamic range of enrichment, the difference between

random and maximal performance, decreases as the pro-

portion of active molecules in a dataset rises. For a recent

example of a retrospective virtual screening study with

deliberately large numbers of actives, providing high sta-

tistical power and small error bars, see Ref. [37].

The second issue, systematic differences in simple prop-

erties between decoys and actives in retrospective virtual

screening experiments, is much more serious. As has been

pointed out in a number of publications, scoring functions in

docking programs, which are almost always additive, are

sensitive to molecular size or heavy atom count, the number

of hydrogen bonds that the molecule can make etc.

Accordingly, systematic differences in these simple molec-

ular properties between actives and decoys will cause

systematic differences in ranking. For example, active

compounds with higher average heavy atom counts will tend

to rank better than the decoys when scored by a function that

is sensitive to heavy atom count. For a fuller discussion of

this issue see Verdonk et al. [46]. An example of the influ-

ence of the selection methods for decoys on virtual screening

performance is shown in Fig. 7. In this figure, two retro-

spective virtual screening studies against CDK-2 using the

docking tool FRED [47] are compared using ROC curves. In

both cases the same actives were docked against the same co-

crystal structure, while different decoy compounds were

used. In one case (the green line), the decoys were chosen at

random from the Maybridge compound collection [48], in

the other (the red line), decoys were chosen to match the

properties of the actives based on simple 1D properties. The

striking difference, especially in early performance, is

obvious. Clearly the performance of FRED is heavily

affected by the nature of the decoy compounds, and to obtain

a predictive indication of the utility of FRED in virtual

screening decoy sets similar to those giving the red line

should be used. It is worthy of note that the AUC’s for the

two experiments shown are different by more than their

respective 95% confidence intervals, so that this difference is

indeed statistically significant.

Another example of how much of the signal that separates

active from inactive compounds arises from systematic dif-

ferences between their properties is shown in Fig. 8. In these

eight examples, drawn from the Surflex-Dock dataset [2], the

performance of three 3D virtual screening methods––Surflex-

Dock, ROCS [49] and FRED––is compared to a simple 1D

method. In this 1D approach [46, 50], compounds are ranked

by distance in an Euclidean property space to the centre of the

space defined by the active compounds. The Euclidean space

is defined by five simple molecular properties: number of

donors, number of acceptors, number of rotatable bonds,

XlogP and 0.01 9 molecular weight. This concept of ranking

compounds by distance in a high dimensional Euclidean

property space has recently been published as a virtual

screening method, known as DACCS [51].

It is clear from Fig. 8 that in four of the eight cases

(OPPA, HIV-PR, TK and PARP) the active compounds are

very dissimilar from the background set, as the 1D ranking

method gives very good virtual screening performance. In a

fifth case (TS) the performance of 1D method is as good as

any of the 3D methods, although none of the tools perform

particularly well. Accordingly, judging virtual screening

Fig. 7 Effect of decoy selection method on virtual screening by

docking
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performance for any tool using such datasets is unlikely to

be productive as most of the ‘‘signal’’ separating actives

from decoys lies purely in differences in simple molecular

properties. A further confounding issue with these datasets

is that a large number of the active compounds in these sets

are close structural analogues of one another. For ligand-

based methods this high structural similarity amongst the

actives can cause the actives to be very easily discrimi-

nated from the decoys, while a structure-based method may

have more difficulty. Accordingly, while property bias is

an important consideration in constructing decoy sets,

analogue bias should be carefully considered when

selecting sets of active compounds.

A recent effort to avoid some pathologies arising from

poorly selected decoy sets has come from the work of Huang

et al. [52] with the Database of Useful Decoys, or DUD. In

this work decoys were selected to match the same simple

molecular properties of the active compounds using a sim-

ilar approach to that mentioned earlier, so that the decoys are

not trivially separable from the actives. DUD represents a

very wide-ranging dataset (actives against 40 target pro-

teins) that has been designed to evaluate the underlying

performance of docking tools, and not the sensitivity of that

tool’s scoring metric to differences in simple molecular

properties. Note that the DUD decoy selection approach uses

a discontinuous representation of the molecular properties,

while the approach mentioned above uses a continuous

representation. The similarity between these two approaches

for decoy selection and the DACCS approach for active

selection is striking. It is a topic of further investigation

whether much of the reported success of the DACCS method

is due to over-training/poor active compound selection.

The work of Huang et al. with the DUD dataset showed

that, at least for DOCK, this approach of specifically

matching the properties of the decoys to those of the actives

can produce more difficult decoy sets than those chosen

purely for drug-likeness in a number of cases. It should be

noted that the differences in performance reported in the

DUD paper are essentially anecdotal, since no error bars are

reported. With that caveat in mind inspection of Fig. 4 of the

DUD paper, in which comparisons of performance of DOCK

between the DUD ‘‘own’’ decoy sets and some commonly

available agnostic decoys are shown, is instructive. In 10 of

the 12 cases presented the DUD ‘‘own’’ decoy set is the most

challenging of the four decoy sets compared, implying that a

property-matched decoy set can provide a more difficult

background set than an ‘‘agnostic’’ or general decoy set. For a

drug-like decoy set chosen without specific reference to the

active compounds being screened for, which is therefore to

be expected to be less challenging than decoy sets designed

with specific reference to the actives being searched for, see

Ref [53]. The DUD datasets also have relatively high prev-

alence (the design goal was to achieve a prevalence close to

3%, though this varies slightly from target to target), giving

the results generated with DUD reasonably low errors

(except for those cases where the number of actives is small).

This is not to say that DUD is perfectly constructed––there

are still some large differences between the properties of the

actives and the decoys in some cases and in some cases there

are so few active molecules that statistically robust results

cannot be generated. An important property not considered

in the selection of the DUD decoys is formal charge. As such,

there are some sets of the DUD actives that are easily dis-

criminated from the decoys based on formal charge. For

example, the mean formal charge on the neuraminidase

ligands is +1.76, while the mean charge on the decoys is

+0.76. For acetylcholinesterase, the mean charge on the

actives is -1.68, while the mean charge on the decoys is -

0.76. As with the datasets illustrated in Fig. 8, the DUD

active sets were not chosen with a view to structural diversity

and some of the active sets consist entirely of closely anal-

ogous compounds. Very recently the original DUD dataset

has been extended by adding more active compounds and by

clustering the actives to remove trivially graph similar

actives from the set [54]. This makes ‘‘DUD 2.0’’ a suitable

dataset not only for docking approaches but also ligand-

based techniques. It should be noted that there is a limit to the

acceptable level of similarity between actives and pre-

sumptive decoys. When the decoys are too similar to the

actives the assumption that the decoys are inactive becomes

increasingly untenable, giving rise to large numbers of ‘‘false

false positives’’. Accordingly the problem of decoy selection

is not yet completely solved, and may not admit of a single

solution for all problems or tools. However, since in retro-

spective work the point is purely to gain a measure of the

expectation of performance in as yet unperformed studies,

the use of carefully designed decoy sets is mandatory.

It is unfortunate that the docking targets in DUD (39

crystal structures and 1 homology model) were not selected

with as much care as the small molecule datasets. In 6 of

the 38 co-crystal structures in DUD (there is one apo

structure in the set), the DPIs are 1.5 Å or more, resulting

in significant uncertainty in the positioning of any atom in

these structures. These structures are ALR2 (1AH3), COX-

2 (1CX2), EGFR (1M17), GR (1M2XZ), InhA (1P44) and

p38 (1KV2). Accordingly docking results from these

structures should be interpreted with great care.

Conclusions

Large numbers of evaluations and comparisons of tools for

pose prediction and virtual screening have been published in

recent years, an indication of significant interest in identify-

ing tools that will have robust performance in one or both of

these areas. Unfortunately the vast majority of these studies
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have been invalidated by poor choice of datasets, lack of

consideration of error in source data and use of metrics that do

not permit robust comparisons. For those papers using crystal

structure data, too little account is taken both of the

unavoidable imprecision in these structures and of the errors

of fitting that are regrettably frequently seen in structures in

the RCSB. In many cases nominal resolution, a measure of

the quantity of data gathered, is confused with a measure of

quality for the structure and other metrics indicating quality

and reliability (DPI and Rfree) are ignored. When performing

pose prediction geometric measures such as RMSD are

almost always used to compare the experimental and pre-

dicted pose. These measures are uniformly used without

taking into account either the inevitable imprecision in the

atomic positions in crystal structures or the fact that using

geometric measures necessarily implies comparing a model

for the source data with a computed pose. In almost no cases

are crystal structures inspected for errors in fitting. Without

taking all these sources of error into account the results of any

publication that uses crystal structure data will be suspect and

of little use in deciding what tools are the most suitable for the

task at hand. In papers concerned with virtual screening there

has been, until recently, too little focus on eliminating trivial

reasons for good performance from a given tool. The DUD

dataset [52] has illustrated ways in which challenging virtual

screening datasets can be constructed and, since it is publicly

available, DUD offers the opportunity for a common

benchmark upon which a wide variety of tools can be com-

pared. The plethora of metrics used to judge and compare

virtual screening performance serves merely to confuse the

field rather then to clarify it. The lack of confidence intervals

on metrics for success makes meaningful comparisons

between tools almost impossible to interpret. The AUC for

ROC offers great promise as a metric for virtual screening, as

it offers the possibility of predictive value along with robust

errors. For an exemplary use of ROC in virtual screening tests

see a recent paper by Jain [55]. It is hoped that the field will

soon converge to a single metric of virtual screening perfor-

mance, such as the ROC, that will allow robust and direct

comparisons between tools and between studies.
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