HOW TO DRAW A GRAPH

By W. T. TUTTE

[Received 22 May 1962]

1. Introduction

We use the definitions of (11). However, in deference to some recent attempts to unify the terminology of graph theory we replace the term 'circuit' by 'polygon', and 'degree' by 'valency'.

A graph G is 3 -connected (nodally 3 -connected) if it is simple and non-separable and satisfies the following condition; if G is the union of two proper subgraphs H and K such that $H \cap K$ consists solely of two vertices u and v, then one of H and K is a link-graph (arc-graph) with ends u and v.

It should be noted that the union of two proper subgraphs H and K of G can be the whole of G only if each of H and K includes at least one edge or vertex not belonging to the other. In this paper we are concerned mainly with nodally 3 -connected graphs, but a specialization to 3 -connected graphs is made in § 12.

In § 3 we discuss conditions for a nodally 3 -connected graph to be planar, and in $\S 5$ we discuss conditions for the existence of Kuratowski subgraphs of a given graph. In $\S \S 6-9$ we show how to obtain a convex representation of a nodally 3 -connected graph, without Kuratowski subgraphs, by solving a set of linear equations. Some extensions of these results to general graphs, with a proof of Kuratowski's theorem, are given in §§ 10-11. In $\S 12$ we discuss the representation in the plane of a pair of dual graphs, and in § 13 we draw attention to some unsolved problems.

2. Peripheral polygons

In this section we use the 'nodes' and 'branches' of a graph defined in ((11) §4).

Let J be a polygon of G and let $\beta(J)$ denote the number of bridges of J in G. If $\beta(J) \leqslant 1$ we call J a peripheral polygon of G.

Let B be any bridge of J in a non-separable graph G. The vertices of attachment of B, which must be at least two in number, subdivide J into arc-graphs. We call these the residual arc-graphs of B in J. If one of these includes all the vertices of attachment of a second bridge B^{\prime} of J in G we say that B^{\prime} avoids B. Then B avoids B^{\prime}.
(2.1) Let G be a nodally 3-connected graph. Let J be a polygon of G and B any bridge of J in G. Then either J is peripheral or J has another bridge B^{\prime} which does not avoid B.

Proof. Suppose that J is not peripheral and that every other bridge of J avoids B. Let B^{\prime} be a second bridge of J. There is a residual arc-graph M of B in J which includes all the vertices of attachment of B^{\prime}. Let H be the union of M and all the bridges of J other than B, having all their vertices of attachment on M. Let K be the union of all the other bridges, including B, and the complementary arc-graph of M in J. Then H and K are proper subgraphs of G whose union is G, and $H \cap K$ consists solely of the two ends of M. But neither H nor K is an arc-graph joining the ends of M. This contradicts the hypothesis that G is nodally 3 -connected.

Fig. 1
(2.2) Let G be a nodally 3-connected graph. Let K_{1} be a polygon of G, B_{1} a bridge of K_{1} in G, C a subgraph of B_{1}, and L a branch of G in K_{1}. Then we can find a peripheral polygon J of G such that $L \subset J$ and $J \cap C \subseteq K_{1} \cap C$.

Proof. If K_{1} is peripheral we can put $J=K_{1}$. Consider the remaining case $\beta\left(K_{1}\right) \geqslant 2$.

Let B^{\prime} be a second bridge of K_{1}. By (2.1) we can choose B^{\prime} so that it does not avoid B_{1}. Let its residual arc-graph containing L be L^{\prime}, with ends x and y. By ((11)(2.4)) we can find a simple path P from x to y in B^{\prime} which avoids K_{1}. This construction is illustrated in Fig. 1, in which the thick lines represent K_{1}.

Consider the polygon $K_{2}=L^{\prime} \cup G(P)$. It has a bridge B_{2} which contains B_{1}. Moreover, the only vertices of B_{1} which are vertices of attachment of
B_{2} are those in L^{\prime}. Since B_{1} does not avoid B^{\prime}, by (2.1), there is a vertex u of attachment of B_{1} which is not on L^{\prime}. Hence B_{2} contains the complementary arc-graph of L^{\prime} in K_{1}. We thus have

$$
\begin{align*}
B_{1} & \subset B_{2}, \tag{1}\\
B_{1} \cap K_{2} & \subset B_{1} \cap K_{1} \tag{2}\\
C \cap K_{2} & \subseteq C \cap K_{1} . \tag{3}
\end{align*}
$$

If K_{2} has a second bridge we repeat the foregoing procedure with K_{2} replacing K_{1} and B_{2} replacing B_{1}. By (1) the process must terminate. When it does we have a peripheral polygon K_{n} such that $L \subset K_{n}$. Moreover,

$$
C \cap K_{n} \subseteq C \cap K_{1}
$$

by repeated application of (3). We may therefore put $J=K_{n}$.
(2.3) Let G be a nodally 3 -connected graph which is not a polygon or a linkgraph, and let L be a branch of G. Then we can find two peripheral polygons J_{1} and J_{2} of G such that $J_{1} \cap J_{2}=L$.

Proof. By ((11) (2.5)) we can find a polygon of G containing L. By (2.1) we can construct a peripheral polygon J_{1} of G such that $L \subset J_{1}$. Since $G \neq J_{1}, J_{1}$ has a bridge.

Let the bridge of J_{1} be B. As the ends, a and b say, of L are nodes they are vertices of attachment of B. There is a simple path P from a to b in B avoiding J_{1}. Let K_{1} denote the polygon $L \cup G(P)$. Let C be the complementary arc-graph of L in J_{1} and let B_{1} be the bridge of K_{1} containing C. By (2.2) there is a peripheral polygon J_{2} of G such that $L \subset J_{2}$ and $J_{2} \cap C \subseteq K_{1} \cap C \subseteq L$. Hence $J_{1} \cap J_{2}=L$.
(2.4) Let G be a nodally 3 -connected graph, K a polygon of G, B a bridge of K in G, and L a branch of G contained in K. Let J_{1} and J_{2} be peripheral polyyons of G such that $L \subseteq J_{1} \cap J_{2}$ and neither $B \cap J_{1}$ nor $B \cap J_{2}$ is a subgraph of K. Then we can find a peripheral polygon J_{3}, distinct from J_{1} and J_{2}, such that $L \subset J_{3}$.

Proof. Write $C=\left(B \cap J_{1}\right) \cup\left(B \cap J_{2}\right)$. By (2.2) we can find a peripheral polygon J_{3} of G such that $L \subset J_{3}$ and $J_{3} \cap C \subseteq K \cap C$. The second of these properties ensures that J_{3} is distinct from J_{1} and J_{2}.

Consider the set of cycles of a connected graph G, as defined in (11). The rank of this set, the maximum number of cycles independent under mod-2 addition, is

$$
\begin{equation*}
p_{1}(G)=\alpha_{1}(G)-\alpha_{0}(G)+1 \tag{4}
\end{equation*}
$$

This is shown, for example, in (5) and (12). We refer to the elementary cycle associated with a peripheral polygon as a peripheral cycle.
(2.5) Let G be a nodally 3 -connected non-null graph. Then we can find a set of $p_{1}(G)$ independent peripheral cycles of G.

Proof. Suppose we have found a set of $r<p_{1}(G)$ independent peripheral cycles of G (r may be zero). Let U be the set of all their linear combinations. We can find a cycle not in U. Since this cycle is a sum of elementary cycles we can find an elementary cycle $S_{1} \notin U$. ((11) (3.2).)

Assume that S_{1} is not peripheral. Let B_{1} and B^{\prime} be distinct bridges of G. S_{1}. By (2.1) we may suppose that B^{\prime} does not avoid B_{1}.

Suppose first that B^{\prime} has two vertices of attachment, x and y, such that each of the residual arc-graphs M_{1} and M_{2} of x and y in $G . S_{1}$ includes a vertex of attachment of B as an internal vertex. We can find a simple path P from x to y in B^{\prime} avoiding $G . S_{1}$. Let X_{i} denote the polygon $M_{i} \cup G(P),(i=1,2)$. The sum of the elementary cycles $E\left(X_{1}\right)$ and $E\left(X_{2}\right)$ is S_{1}. Hence we may assume without loss of generality that $E\left(X_{1}\right) \notin U$. We write $E\left(X_{1}\right)=S_{2}$. Evidently there is a bridge B_{2} of $G . S_{2}$ in G such that $B_{1} \subset B_{2}$.

In the remaining case it is easy to verify, first that each vertex of attachment of B^{\prime} is a vertex of attachment of B_{1}, and then that B^{\prime} and B_{1} have the same vertices of attachment, three in number. Let us denote them by x, y, and z. By ((11) (4.3)) there is a Y-graph Y of B^{\prime}, with ends x, y, and z, which spans G.S. Let the arms of Y ending at x, y, and z be A_{x}, A_{y}, and A_{z} respectively. If $L_{x y}$ is the residual arc-graph of B and B^{\prime} in $G . S_{1}$ with ends x^{-}and y we denote the polygon $L_{x y} \cup A_{x} \cup A_{y}$ by X_{s}. We define X_{x} and X_{y} analogously. The sum of the elementary cycles $E\left(X_{x}\right)$, $E\left(X_{\nu}\right)$, and $E\left(X_{z}\right)$ is S_{1}. We may therefore assume without loss of generality that $E\left(X_{x}\right) \notin U$. We now write $E\left(X_{x}\right)=S_{2}$. Again we observe that there is a bridge B_{2} of $G . S_{2}$ in G such that $B_{1} \subset B_{2}$.

In either case if $G . S_{2}$ has a second bridge we repeat the procedure with S_{2} replacing S_{1} and B_{2} replacing B_{1}. We then obtain an elementary cycle $S_{3} \notin U$ such that some bridge B_{3} of $G . S_{3}$ satisfies $B_{2} \subset B_{3}$. Continuing in this way until the process terminates we obtain a peripheral cycle $S_{n} \notin U$.

We now have a set of $r+1$ independent peripheral cycles of G. If $r+1<p_{1}(G)$ we repeat the operation to obtain a set of $r+2$, and so on. The theorem follows.
(2.6) Let G be a nodally 3-connected non-null graph, with at least two edges, which is not a polygon. Suppose that no edge of G belongs to more than two distinct peripheral polygons. Then G has just $p_{1}(G)+1$ distinct peripheral cycles, and they constitute a planar mesh of G.

Proof. Let \mathbf{M} be the class of all peripheral cycles of G. Each edge of G belongs to just two members of \mathbf{M}, by (2.3). Each non-null cycle of G
is a sum of members of \mathbf{M}, by (2.5). Hence \mathbf{M} satisfies the conditions for a planar mesh of G given in (11).

It is clear that the members of \mathbf{M} sum to zero. But there is no proper non-null subset of \mathbf{M} whose members sum to zero, by ((11)(3.4)). Hence \mathbf{M} has just $p_{1}(G)+1$ members.
(2.7) A peripheral polygon K of a non-separable graph G belongs to every planar mesh of G.

Proof. Suppose $\mathbf{M}=\left\{J_{1}, J_{2}, \ldots, J_{k}\right\}$ is a planar mesh of G not including K. Then each subclass of \mathbf{M} summing to K has two or more members. It follows that the residual graphs of $G . K$, as defined in ((11)§3), are proper subgraphs of G. But each has all its vertices of attachment on $G . K$, by ((11) (3.6)). Hence $\beta(K) \geqslant 2$, contrary to hypothesis.
(2.8) If \mathbf{M} is a planar mesh of a nodally 3-connected graph G, then each member of \mathbf{M} is peripheral.

Proof. If G is edgeless, a link-graph, or a polygon this result is trivial. Otherwise it follows from (2.3) and (2.7).

These two theorems show that a nodally 3 -connected graph has at most one planar mesh. (See (13) (14).)

We can determine whether a given nodally 3 -connected graph G has a planar mesh as follows. Assuming G has at least two edges and is not a polygon we construct $p_{1}(G)$ independent peripheral cycles by the method of (2.5). If a planar mesh exists it consists of these $p_{1}(G)$ cycles and their mod-2 sum.

3. Planarity

Let G be any graph. Let f be a l-1 mapping of $V(G)$ onto a set U of $\alpha_{0}(G)$ distinct points of a sphere or closed plane Π. If e is any edge of G with ends v and w we choose an open arc in Π with end-points $f(v)$ and $f(w)$ and denote it by $f(e)$. If e is a loop the two end-points of $f(e)$ coincide. We now define a graph H as follows. $V(H)=U, E(H)$ is the set of all arcs $f(e), e \in E(G)$, and the incident vertices of an edge $f(e)$ are its two endpoints. We call H a representation of G in Π if it satisfies the following conditions.
(i) No edge of H contains any vertex of H.
(ii) If e and e^{\prime} are distinct edges of G, then $f(e)$ and $f\left(e^{\prime}\right)$ are disjoint.

A graph G is said to be planar if it has a representation in Π.
Let H be a representation in Π of a planar graph G. If $K \subseteq H$ then the union of $V(K)$ and the edges of K is the complex $|K|$ of K. If K is a polygon of H then $|K|$ is a simple closed curve. Any residual domain of $|K|$ which
does not meet $|H|$ is then called a face of H bounded by K. If B is a bridge of a polygon K in H then, by ((11) (2.4)), $|B|$ does not meet both residual domains of $|K|$. We therefore have

(3.1) Each peripheral polygon of H bounds a face of H.

Now distinct faces of H are clearly disjoint. Hence, by the topology of Π, no edge of H belongs to the bounding polygons of three distinct faces. But each peripheral polygon of G corresponds under f to a peripheral polygon of H. Hence, by (3.1), we have the following theorem.
(3.2) If a graph G has three distinct peripheral polygons with a common edge, then G is non-planar.

4. The Kuratowski graphs

A graph defined by six nodes $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$, and nine branches, each A_{i} being joined to each B_{j} by a single branch, is a Kuratowski graph of Type I. A graph defined by five nodes $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}$, and ten branches, each pair of distinct nodes being joined by a single branch, is a Kuratowski graph of Type II. Examples of the two types are given in Fig. 2.

Fig. 2
(4.1) Every Kuratowski graph is non-planar.

Proof. This well-known result can be regarded as a consequence of (3.2). It is easily verified that in a graph of Type I each 4-branched polygon $A_{i} B_{j} A_{k} B_{l}$ is peripheral, and each branch belongs to three such polygons. In a graph of Type II each 3 -branched polygon $A_{i} A_{j} A_{k}$ is peripheral, and there are three of them through each branch.

Corollary. Any graph having a Kuratowski subgraph is non-planar.

5. Peripheral polygons and Kuratowski subgraphs

Let J be a polygon of a graph G. Let $a_{1}, a_{2}, a_{3}, a_{4}$ be distinct vertices of J such that a_{1} and a_{3} separate a_{2} from a_{4} on J. Let L_{13} and L_{24} be disjoint arc-graphs of G spanning J, the ends of L_{13} being a_{1} and a_{3}, and those of L_{24} being a_{2} and a_{4}. Then we say that L_{13} and L_{24} are crossing diagonals of J.
(5.1) Given a peripheral polygon of G with a pair of crossing diagonals we can find a Kuratowski subgraph of G of Type I.

Proof. We use the foregoing notation, J being the peripheral polygon. Since J is peripheral, L_{13} and L_{24} have internal vertices x and y respectively. (See Fig. 3.) By ((11)(2.4)) there is a simple path P from x to y

Fig. 3
in G avoiding J. Let x^{\prime} be the last vertex of P in $V\left(L_{13}\right)$ and y^{\prime} the next vertex of P in $V\left(L_{24}\right)$. Let L be the arc-graph defined by the part of P extending from x^{\prime} to y^{\prime}. Then $J \cup L_{13} \cup L_{24} \cup L$ is a Kuratowski graph of Type I. Its nodes are $a_{1}, a_{2}, a_{3}, a_{4}, x^{\prime}, y^{\prime}$. Its branches are arc-graphs $a_{1} a_{2}, a_{2} a_{3}, a_{3} a_{4}$, and $a_{4} a_{1}$ in J, arc-graphs $x^{\prime} a_{1}$ and $x^{\prime} a_{3}$ in L_{13}, arc-graphs $y^{\prime} a_{2}$ and $y^{\prime} a_{4}$ in L_{24}, and L.
(5.2) Let J be a peripheral polygon of a graph G. Let a, b, and c be distinct vertices of J. Let Y_{1} and Y_{2} be Y-graphs of G, each with ends a, b, and c, which span J. Suppose further that $Y_{1} \cap Y_{2}$ consists solely of the vertices a, b, and c. Then we can find a Kuratowski subgraph of G.

Proof. Let the centres of Y_{1} and Y_{2} be y_{1} and y_{2} respectively. There is a simple path P from y_{1} to y_{2} in G avoiding J. Let x_{1} be the last vertex of P in $V\left(Y_{1}\right)$ and x_{2} the next vertex of P in $V\left(Y_{2}\right)$. Let L be the arc-graph defined by the part of P extending from x_{1} to x_{2}.

If $x_{1}=y_{1}$ and $x_{2}=y_{2}$ it is clear that the $J \cup Y_{1} \cup Y_{2} \cup L$ is a Kuratowski graph of Type II. We may therefore suppose, without loss of generality, that $x_{1} \neq y_{1}$ and that x_{1} is on the arm $a y_{1}$ of Y_{1}.

Now $Y_{2} \cup L$ is a bridge of $Y_{1} \cup J$ in $J \cup Y_{1} \cup Y_{2} \cup L$ with vertices of attachment a, b, c, and x_{1}. Hence, by ($\left.(\mathbf{1 1})(4.3)\right)$, there is a Y-graph $Y_{3} \subseteq Y_{2} \cup L$, with ends b, c, and x_{1}, which spans $Y_{1} \cup J$ (Fig. 4). We denote the centre of Y_{3} by y_{3}.

Fig. 4
We can obtain a Kuratowski graph of Type I from $J \cup Y_{1} \cup Y_{3}$ by deleting the branch bc (but retaining its two ends).
(5.3) Let J be a peripheral polygon of a graph G. Let a and b be distinct vertices of J, and let N be one of the residual arc-graphs of a and b in J. Let Y_{1} and Y_{2} be Y-graphs of G spanning J and such that $Y_{1} \cap Y_{2} \subset J$. Suppose that the ends of Y_{i} are a, b, and c_{i}, with c_{i} in $V(N) .(i=1,2$.) Then we can find a Kuratowski subgraph of G.

Proof. If $c_{1}=c_{2}$ this follows from (5.2). Otherwise J has a pair of crossing diagonals and we apply (5.1).
(5.4) Let L be a branch of a graph G such that L is contained in two distinct peripheral polygons J_{1} and J_{2}. Suppose $J_{1} \cap J_{2} \neq L$. Then we can find a Kuratowski subgraph of G of Type I.

Proof. Let the ends of L be a and b. Let the other branches of G having b as an end, and contained in J_{1} and J_{2}, be L_{1} and L_{2} respectively. Since J_{1} and J_{2} are distinct we can arrange, replacing L by another branch of G common to J_{1} and J_{2} if necessary, that L_{1} and L_{2} are distinct. Let their ends, other than b, be c_{1} and c_{2} respectively.

Suppose $c_{1} \in V\left(J_{2}\right)$, so that L_{1} is a bridge of J_{2}. Since J_{2} is peripheral G then consists solely of three branches joining the nodes b and c_{1}. These
branches are evidently L, L_{1}, and L_{2}. Hence $J_{1} \cap J_{2}=L$, contrary to hypothesis. We deduce that $c_{1} \notin V\left(J_{2}\right)$. Similarly $c_{2} \notin V\left(J_{1}\right)$.

Consider the vertices of J_{2} in order, beginning with b, c_{2}. Let d be the next member of this sequence in $V\left(J_{1}\right)$. If $d=a$ we have $J_{1} \cap J_{2}=L$, contrary to hypothesis. Hence $d \neq a$. Moreover, b and d separate a and c_{1} in J_{1}. Let N be the residual arc-graph of b and d in J_{2} not including a (Fig. 5).

Fig. 5

Since J_{2} is peripheral we can find a simple path P from a to c_{1} in G avoiding J_{2}. Let x be the last vertex of P on the residual arc-graph of b and d in J_{1} which contains a, and let y be the next vertex of P on the complementary arc-graph of J_{1}. Let N^{\prime} be the arc-graph defined by the part of P extending from x to y.
N and N^{\prime} are crossing diagonals of J_{1}. An application of (5.1) completes the proof.
(5.5) Let L be a branch of a graph G common to three distinct peripheral polygons J_{1}, J_{2}, and J_{3} of G. Then we can find a Kuratowski subgraph of G.

Proof. By (5.4) we may suppose $J_{1} \cap J_{2}=J_{2} \cap J_{3}=J_{3} \cap J_{1}=L$. Let the ends of L be a and b. Let the complementary arc-graphs of L in J_{1}, J_{2}, and J_{3} be L_{1}, L_{2}, and L_{3} respectively.

Since J_{1} is peripheral both L_{2} and L_{3} have internal vertices. Moreover, we can find internal vertices x_{2} of L_{2} and x_{3} of L_{3}, and an arc-graph N_{23} of G with ends x_{2} and x_{3} such that N_{23} spans $J_{1} \cup J_{2} \cup J_{3}$. Similarly we can find internal vertices x_{1} of L_{1} and x_{3}^{\prime} of L_{3}, and an arc-graph N_{13} with ends x_{1} and x_{3}^{\prime} such that N_{13} spans $J_{1} \cup J_{2} \cup J_{3}$. (See Fig. 6.)

Suppose first that N_{23} and N_{13} have a common internal vertex. Then $N_{23} \cup N_{13}$ is a bridge of $J_{1} \cup J_{2} \cup J_{3}$ in $J_{1} \cup J_{2} \cup J_{3} \cup N_{23} \cup N_{13}$. So by ((11) (4.3)) there is a Y-graph $Y \subseteq N_{23} \cup N_{13}$, with ends x_{1}, x_{2}, and x_{3}, which spans $J_{1} \cup J_{2} \cup J_{3}$. But then $Y \cup L_{1} \cup L_{2} \cup L_{3}$ is a Kuratowski graph of Type I.

In the remaining case $L_{1} \cup N_{13}$ and $L_{2} \cup N_{23}$ are Y-graphs spanning J_{3} and having their intersection contained in L_{3}. An application of (5.3) completes the proof.

Fig. 6

6. Barycentric mappings

Let J be a peripheral polygon of a nodally 3 -connected graph G having no Kuratowski subgraphs. We suppose further that there are at least three nodes of G in $V(J)$. We denote the set of nodes of G in $V(J)$ by $N(J)$, and the number of such nodes by n.

Let Q be a (geometrical) n-sided convex polygon in the Euclidean plane. Let f be a l-1 mapping of $N(J)$ onto the set of vertices of Q such that the cyclic order of nodes in J agrees, under f, with the cyclic order of vertices of Q.

We write $m=\alpha_{0}(G)$ and enumerate the vertices of G as $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$, so that the first n are the nodes of G in J. We extend f to the other vertices of G by the following rule. If $n<i \leqslant m$ let $A(i)$ be the set of all vertices of G adjacent to v_{i}, that is joined to v_{i} by an edge. For each v_{j} in $A(i)$ let a unit mass m_{j} be placed at the point $f\left(v_{j}\right)$. Then $f\left(v_{i}\right)$ is required to be the centroid of the masses m_{j}.

To investigate the feasibility of this requirement we set up a system of Cartesian coordinates, denoting the coordinates of $f\left(v_{i}\right), 1 \leqslant i \leqslant m$, by $\left(x_{i}, y_{i}\right)$. Define a matrix $K(G)=\left\{C_{i j}\right\}, 1 \leqslant(i, j) \leqslant m$, as follows. If $i \neq j$ then $C_{i j}$ is minus the number of edges joining v_{i} and v_{j}. If $i=j$ then $C_{i j}$ is the valency of v_{i}. Then the foregoing requirement specifies the
coordinates x_{j} and y_{j}, for $n<j \leqslant m$, as the solutions of the equations

$$
\begin{align*}
& \sum_{j=1}^{m} C_{i j} x_{j}=0, \tag{5}\\
& \sum_{j=1}^{m} C_{i j} y_{j}=0, \tag{6}
\end{align*}
$$

where $n<i \leqslant m$. For $1 \leqslant j \leqslant n$ the coordinates x_{j} and y_{j} are of course already known.

Let K_{1} be the matrix obtained from $K(G)$ by striking out the first n rows and columns. Let G_{0} be the graph obtained from G by deleting the edges of J and identifying all the vertices of J to form a single new vertex. Then, with a suitable enumeration of the vertices of G_{0}, we can say that K_{1} is obtained from $K\left(G_{0}\right)$ by striking out the first row and column. Hence the determinant of K_{1} is the number of subgraphs of G_{0} which are trees containing all the vertices, and this number is non-zero since G_{0} is connected (see for example ((1) §3)).

Since $\operatorname{det}\left(K_{1}\right) \neq 0$ equations (5) and (6) have unique solutions for the unknown coordinates x_{j} and $y_{j}(n<j \leqslant m)$.

We refer to the mapping f, thus extended, as a barycentric mapping of G.
Choose a line l in the plane and define $\varphi(i), \mathrm{l} \leqslant i \leqslant m$, as the perpendicular distance of $f\left(v_{i}\right)$ from l, counted positive on one side of l and negative on the other. We call $v_{i} \varphi$-active if there is an adjacent vertex v_{j} of G such that $\varphi(j) \neq \varphi(i)$. Thus all the vertices of J are φ-active.

The nodes v_{i} of J with the greatest value of $\varphi(i)$ are the positive φ-poles of G (with respect to f). The number of positive φ-poles is either 1 or 2 . In the latter case the two positive φ-poles are joined by a side of Q parallel to l. In each case there is a unique vertex-graph or arc-graph $G^{+} \subset J$ joining the positive φ-poles. Similarly the nodes v_{i} of J with the least value of $\varphi(i)$ are the negative φ-poles of G, and they are vertices of a subgraph G^{-}of G analogous to G^{+}.

Let P be a simple path in G. We call P a rising (falling) φ-path if each vertex of P other than the last corresponds to a smaller (greater) value of the function $\varphi(i)$ than does the immediately succeeding vertex.
(6.1) Suppose that v_{i}, where $n<i \leqslant m$, is a φ-active vertex. Then it has adjacent vertices v_{j} and v_{k} such that $\varphi\left(v_{j}\right)<\varphi\left(v_{i}\right)<\varphi\left(v_{k}\right)$.

Proof. This follows from the definition of a φ-active vertex, together with the fact that $f\left(v_{i}\right)$ is at the centroid of the points $f\left(v_{j}\right)$ such that v_{i} and v_{j} are adjacent.
(6.2) Let v_{i} be a φ-active vertex. Then we can find a rising φ-path P from v_{i} to a positive φ-pole, and a falling φ-path P^{\prime} from v_{i} to a negative φ-pole.

Proof. If v_{i} is a positive φ-pole it defines a degenerate path which may be taken as P. If v_{i} is not a positive φ-pole it has an adjacent vertex v_{j} such that $\varphi(j)>\varphi(i)$, by (6.1). But v_{j} satisfies the definition of a φ-active vertex. Hence either it is a positive φ-pole or it has an adjacent vertex v_{k} such that $\varphi(k)>\varphi(j)$. Continuing in this way until the process terminates we obtain a sequence $v_{i}, v_{j}, v_{k}, \ldots$ defining a rising φ-path P from v_{i} to a positive φ-pole.

The path P^{\prime} is constructed analogously.

7. φ-inactive vertices

We continue with the discussion of the barycentric mapping f defined in § 6 .

Suppose that v_{i} is a φ-inactive node of G. Then $i>n$. Let Z be the subgraph of G defined by the vertices v_{j} such that $\varphi(j)=\varphi(i)$, and the edges which join pairs of such vertices. Let Z_{1} be the edgeless subgraph of Z defined by its vertices of attachment. Let B be the bridge of Z_{1} in Z having v_{i} as a vertex.

Since G is non-separable, B has at least two vertices of attachment. If it has only two, G is not nodally 3 -connected, contrary to hypothesis. For if B was an arc-graph v_{i} would not be a node of G. Hence there exist three vertices of attachment, x, y, and z, of B in Z. These vertices belong to Z_{1}, that is they are vertices of attachment of Z. They are therefore φ-active.

By ((11) (4.3)) there is a Y-graph $Y \subseteq B$, with ends x, y, and z.
By (6.2) we can construct rising φ-paths P_{x}, P_{y}, and P_{z} from x, y, and z respectively to positive φ-poles. Write $T=G^{+} \cup G\left(P_{x}\right) \cup G\left(P_{y}\right) \cup G\left(P_{z}\right)$. Then T is a bridge of B in $T \cup B$, with vertices of attachment x, y, and z. Hence, by ($(\mathbf{1 1})(4.3)$), there is a Y-graph $Y^{+} \subseteq T$ with ends x, y, and z. Any other vertex v_{t} of Y^{+}satisfies $\varphi(t)>\varphi(i)$.

Similarly, using falling φ-paths, we can find a Y-graph Y - of G with ends x, y, and z such that any other vertex v_{t} of Y^{-}satisfies $\varphi(t)<\varphi(i)$.

As any vertex v_{t} of Y satisfies $\varphi(t)=\varphi(i)$, the intersection of any two of Y, Y^{+}, and Y^{-}consists solely of the vertices x, y, and z. Hence $Y \cup Y^{+} \cup Y^{-}$is a Kuratowski graph of Type I. From this contradiction we deduce
(7.1) Every node of G is φ-active.
(7.2) Suppose $v_{i} \notin V(J)$. Then $f\left(v_{i}\right)$ is in the interior of Q.

Proof. Suppose the contrary. Then we can choose l so that the interior of Q lies entirely on the negative side of l and $\varphi(i) \geqslant 0$. Then no rising φ-path can be constructed from v_{i} to a positive φ-pole. Hence v_{i} is
φ-inactive, by (6.2). It is not a node of G, by (7.1). Hence it is an internal vertex of a branch L of G. The other internal vertices of L are also φ-inactive, by (6.1). Hence every vertex v_{j} of L satisfies $\varphi(j)=\varphi(i)$. As the ends of L are nodes they must be two positive φ-poles. It follows that L is a bridge of J in G. Since J is peripheral, G has no nodes except the ends of L. This is contrary to assumption.

8. Peripheral polygons in a barycentric mapping

A peripheral polygon K of the graph G under discussion must have at least three vertices of attachment. For otherwise $G=H \cup K$, where $H \cap K$ consists entirely of the two nodes of G on K. Since G has at least three nodes this is contrary to the assumption that G is nodally 3 -connected.
(8.1) Let K be a peripheral polygon of G such that $V(K)$ includes just three nodes x, y, and z of G. Then $f(x), f(y)$, and $f(z)$ are not collinear.

Proof. Suppose that $f(x), f(y)$, and $f(z)$ are collinear. We choose l to pass through all three of them. Then each vertex v_{t} of K satisfies $\varphi(t)=0$, by (6.1).

By (6.2) and (7.1) we can construct rising φ-paths from x, y, and z to positive φ-poles. Let these paths be P_{x}, P_{y}, and P_{z} respectively. Write $T=G^{+} \cup G\left(P_{x}\right) \cup G\left(P_{y}\right) \cup G\left(P_{z}\right)$. Then T is a bridge of K in $K \cup T$ with vertices of attachment x, y, and z. By ((11) (4.3)) we can find a Y-graph $Y \subseteq T$ with ends x, y, and z. Each vertex v_{t} of Y other than x, y, and z satisfies $\varphi(t)>0$.

Similarly, using falling φ-paths, we can find a Y-graph $Y^{\prime} \subseteq G$ with ends x, y, and z such that any other vertex v_{\imath} of Y^{\prime} satisfies $\varphi(t)<0$.

Applying (5.2) we find that G has a Kuratowski subgraph, contrary to assumption.
(8.2) Let K be a peripheral polygon of G. Let v_{p}, v_{q}, v_{r}, and v_{s} be nodes of G in $V(K)$ such that v_{p} and v_{r} separate v_{q} and v_{s} in K. Then it is not true that

$$
\begin{equation*}
\varphi(p) \geqslant \varphi(q) \leqslant \varphi(r) \geqslant \varphi(s) \leqslant \varphi(p) \tag{7}
\end{equation*}
$$

Proof. Assume (7). Construct rising φ-paths P_{p} and P_{r}, from v_{p} and v_{r}, to positive φ-poles. ((6.2), (7.1).) In the connected graph $G\left(P_{r}\right) \cup G\left(P_{p}\right) \cup G^{+}$ we can find a simple path P from v_{p} to v_{r}. Let $v_{p^{\prime}}$, be the last vertex of P on the residual arc-graph of v_{q} and v_{s} in K containing v_{p}, and let $v_{r^{\prime}}$, be the next vertex of P on the residual arc-graph of v_{q} and v_{s} in K containing v_{r}. Let N_{1} be the arc-graph defined by the part of P extending from $v_{p^{\prime}}$ to $v_{r^{\prime}}$ (See Fig. 7.)

Now $v_{p^{\prime}}$ and $v_{r^{\prime}}$ are nodes of G in $V(K)$ which separate v_{q} and v_{s} in K. Moreover,

$$
\begin{equation*}
\varphi\left(p^{\prime}\right) \geqslant \varphi(q) \leqslant \varphi\left(r^{\prime}\right) \geqslant \varphi(s) \leqslant \varphi\left(p^{\prime}\right) . \tag{8}
\end{equation*}
$$

N_{1} spans K, and each vertex v_{j} of N_{1} other than $v_{p^{\prime}}$ and $v_{r^{\prime}}$ satisfies $\varphi(j)>\min \left[\varphi\left(p^{\prime}\right), \varphi\left(r^{\prime}\right)\right]$.

Fig. 7
A similar construction with falling φ-paths from v_{q} and v_{s} yields two nodes $v_{q^{\prime}}$ and $v_{s^{\prime}}$ of G in $V(K)$ which separate $v_{p^{\prime}}$ and $v_{r^{\prime}}$ in K and satisfy

$$
\begin{equation*}
\varphi\left(p^{\prime}\right) \geqslant \varphi\left(q^{\prime}\right) \leqslant \varphi\left(r^{\prime}\right) \geqslant \varphi\left(s^{\prime}\right) \leqslant \varphi\left(p^{\prime}\right) \tag{9}
\end{equation*}
$$

It yields also an arc-graph N_{2}, with ends $v_{q^{\prime}}$ and $v_{s^{\prime}}$, which spans K and is such that each vertex v_{j} of N_{2} other than $v_{q^{\prime}}$ and $v_{s^{\prime}}$ satisfies

$$
\varphi(j)<\max \left[\varphi\left(q^{\prime}\right), \varphi\left(s^{\prime}\right)\right] \leqslant \min \left[\varphi\left(p^{\prime}\right), \varphi\left(r^{\prime}\right)\right] .
$$

Now N_{1} and N_{2} are crossing diagonals of K. Hence G has a Kuratowski subgraph, by (5.1), contrary to hypothesis.
(8.3) The nodes of any peripheral polygon K of G are mapped by f onto distinct points of the plane, no three of which are collinear.

Proof. Suppose that v_{p}, v_{q}, and v_{r} are distinct nodes of K such that $f\left(v_{p}\right), f\left(v_{q}\right)$, and $f\left(v_{r}\right)$ are collinear. Choose l to pass through $f\left(v_{p}\right), f\left(v_{q}\right)$, and $f\left(v_{r}\right)$. There is a fourth node v_{s} of K, by (8.1), and we can adjust φ so that $\varphi(s) \leqslant 0$. We can further adjust the notation so that v_{p} and v_{r} separate v_{q} and v_{s} in K. But then (7) is true and this contradicts (8.2). We deduce that no three distinct vertices of K are mapped by f onto
collinear points. This implies that any two nodes v_{p} and v_{q} of K are mapped by f onto distinct points. For K has a third node, v_{r} say, and if $f\left(v_{p}\right)=f\left(v_{q}\right)$ the points $f\left(v_{p}\right), f\left(v_{q}\right)$, and $f\left(v_{r}\right)$ are collinear.
(8.4) Let L be a branch of G having just $t \geqslant 1$ internal vertices, and let its ends be a and b. Then $f(a)$ and $f(b)$ are distinct and f maps the internal vertices onto t distinct points of the segment $f(a) f(b)$ subdividing it into $t+1$ equal parts. Moreover, the order of the vertices from a to b in L agrees with that of their images in $f(a) f(b)$.

Proof. $f(a)$ and $f(b)$ are distinct by (2.3) and (8.3). The rest of Theorem (8.4) follows at once from the definition of a barycentric mapping.

Let e be any edge of G, with ends u and v. By (8.3) and (8.4), $f(u)$ and $f(v)$ are distinct. We denote the open segment $f(u) f(v)$ by $f(e)$.
(8.5) Let K be any peripheral polygon of G. Then f maps the nodes of G in K onto the vertices of a (geometrical) convex polygon Q_{K} so that the cyclic order of nodes in K agrees with that of vertices in Q_{K}.

Proof. Let the branches of G in K, taken in their cyclic order in K, be $L_{1}, L_{2}, \ldots, L_{k}, L_{1}$. By $\S 7, k \geqslant 3$. Let the common end of L_{i} and L_{i+1} $\left(1 \leqslant i \leqslant k, L_{k+1}=L_{1}\right)$ be w_{i}.

The two ends of L_{i} are mapped by f onto distinct points of the plane (8.3). Let these determine a line l_{i}. This line determines two open halfplanes one of which, D_{i} say, contains the images under f of all the other nodes of G in K, that is all the vertices w_{i}, by (8.2). The intersection of the closures of the half-planes D_{i} is a convex polygon Q_{K} of the kind required.

Using (8.4) we see that the images of the vertices of K are distinct points of the boundary of Q_{K} : and that their cyclic order on Q_{K} agrees with that of the vertices in K.

If $K \neq J$ we define R_{K} as the interior of Q_{K}. But we define R_{J} as the exterior of Q_{J}, that is of Q.
(8.6) Let e be any edge of R. Then just two distinct peripheral polygons of G pass through e, and the two corresponding regions R_{K} lie on opposite sides of the segment $f(e)$.

Proof. That e belongs to just two peripheral polygons $K_{\text {, and }} K^{\prime}$ of G follows from (2.3) and (5.5). If one of these is J the theorem follows from (7.2). Suppose therefore that neither K nor K^{\prime} is J.

Let L be the branch of G containing e, and let v_{r} and v_{s} be its two ends. Choose l to pass through the distinct points $f\left(v_{r}\right)$ and $f\left(v_{s}\right),(8.3) . v_{r}$ and v_{s} are not φ-poles, since e is not an edge of the peripheral polygon J.

Assume that R_{K} and $R_{K^{\prime}}$ are on the same side of l, which we can suppose to be the positive side. Choosing nodes v_{p} and v_{q} of K and K^{\prime} respectively, distinct from v_{r} and v_{s}, we have $\varphi(p)>0, \varphi(q)>0$. Construct rising φ-paths P_{p} and P_{q}, from v_{p} and v_{q} respectively, to positive φ-poles. Construct also falling φ-paths P_{r} and P_{s}, from v_{r} and v_{s} respectively, to negative φ-poles. In the connected graph $G\left(P_{r}\right) \cup G\left(P_{s}\right) \cup G^{-}$we can find an arc-graph N with ends v_{r} and v_{s}. This arc-graph has at least one internal vertex, and each internal vertex v_{l} satisfies $\varphi(t)<0$.

Considering the connected graph $G\left(P_{p}\right) \cup G\left(P_{q}\right) \cup G^{+}$we see that there is a bridge B of the polygon $L \cup N$ in G meeting each of K and K^{\prime} in at least one vertex not in $V(L)$. Hence, by (2.4), there is a third peripheral polygon through e, which is impossible by (5.5).

9. Barycentric representations

Let H be a graph whose vertices are the points $f(v), v \in V(G)$, and whose edges are the open segments $f(e), e \in E(G)$. The incident vertices of an edge $f(e)$ are its two end-points. Let $|H|$ be the union of $V(H)$ and the segments $f(e)$, and let S be its complementary set in the plane. For each point A of S we define $\delta(A)$ as the number of distinct peripheral polygons K of G such that $A \in R_{K}$. By the definition of the regions R_{K}, and (7.2), the function δ has the value 1 throughout the exterior of Q.
(9.1) $\delta(A)=1$ for each A in S.

Proof. We may assume that A is in the interior of Q. Choose a point B outside Q such thiat the segment $A B$ passes through no vertex of H and is parallel to no edge of H. The points of intersection of $A B$ with edges of H subdivide $A B$ into subsegments within each of which the function δ must be constant. But δ has the same value within any two neighbouring subsegments, by (8.6). Hence $\delta(A)=\delta(B)=1$.

From (9.1) we deduce that no region R_{K} contains any point of $|H|$.
If two distinct edges e and e^{\prime} of G are such that the open segments $f(e)$ and $f\left(e^{\prime}\right)$ have a common point P it follows that the two segments lie on a common line l. Then no peripheral polygon of G contains both e and e^{\prime}, by (8.3) and (8.4). Hence if A in S is sufficiently near P there are twc distinct peripheral polygons K, one through e and the other through e^{\prime}, such that $A \in R_{K}$. This is contrary to (9.1). We deduce that $f(e)$ and $f\left(e^{\prime}\right)$ are disjoint.

From these two observations we deduce further that no edge of H contains any vertex of H, and that no two distinct vertices of G are mapped by f onto the same point of the plane.

It follows that H is a representation of G in the closed plane. We call it a barycentric representation of G on the convex polygon Q. It is a convex representation of G as defined in (11), provided we ignore the trivial distinction that the segments $f(e)$ are closed in (11) and open in the present paper. We sum up our results as follows.
(9.2) Let G be a nodally 3-connected graph having no Kuratowski subgraph. Let J be a peripheral polygon of G which includes just $n \geqslant 3$ nodes of G. Let Q be an n-sided convex polygon in the Euclidean plane. Then there is a unique barycentric representation of G on Q mapping the nodes of G occurring on J onto the vertices of Q in any arbitrarily specified way preserving the cyclic order.
(9.3) Let G be a nodally 3-connected graph having at least one polygon. Then if G has no Kuratowski subgraph we can construct a convex representation of G.

Proof. If G is a polygon this result is trivial. Otherwise we can find a peripheral polygon J of G, by (2.2), and since G is a non-separable there are at least two nodes of G in $V(J)$.

If there are more than two nodes of G in $V(J)$ we use (9.2). Otherwise since G is nodally 3 -connected it consists of two nodes u and v joined by three distinct branches L_{1}, L_{2}, and L_{3}. Since G is simple we may suppose L_{1} and L_{2} to have internal vertices. We may now represent $G \cdot$ by a convex polygon with one diagonal, in an obvious way.

10. Straight representations

The planar meshes and subclasses of planar meshes discussed below are sets in which a particular element may be considered to appear more than once. In a union $\mathbf{M} \cup \mathbf{N}$ the multiplicity of an element is taken to be the sum of its multiplicities in \mathbf{M} and \mathbf{N}.
(10.1) Let G be the union of two proper subgraphs H and K such that $H \cap K$ is either null or a vertex-graph ((11) §2). Let \mathbf{M}_{H} and \mathbf{M}_{K} be planar meshes of H and K respectively. Then $\mathbf{M}_{H} \cup \mathbf{M}_{K}$ is a planar mesh of G. Moreover, any planar mesh of G can be represented in this form.

Proof. $\mathbf{M}_{H} \cup \mathbf{M}_{K}$ satisfies condition (i) of ((11) § 1) for a planar mesh of G. Let J be any non-null cycle of G. Then $J \cap E(H)$ and $J \cap E(K)$ are disjoint cycles of H and K respectively. Each is either null or a sum of members of \mathbf{M}_{H} or \mathbf{M}_{K}. Hence J is a sum of members of $\mathbf{M}_{H} \cup \mathbf{M}_{K}$. Thus $\mathbf{M}_{H} \cup \mathbf{M}_{K}$ satisfies condition (ii) of ((11) §1).

Now let \mathbf{M} be any planar mesh of G. Since no polygon of G can have edges in both H and K we can write $\mathbf{M}=\mathbf{M}_{H}^{\prime} \cup \mathbf{M}_{K}^{\prime}$, where the members of \mathbf{M}_{H}^{\prime} are contained in E_{H} and those of \mathbf{M}_{K}^{\prime} in E_{K}. It is evident that each edge of H occurring in any member of \mathbf{M}_{H}^{\prime} occurs in just two of them.

If J is a non-null cycle of H it is a sum of members of \mathbf{M}. But the members of \mathbf{M}_{K}^{\prime} involved in this sum add up to $J \cap E(K)=\emptyset$. Hence J is a sum of members of $\mathbf{M}_{\boldsymbol{H}}^{\prime}$. We deduce that $\mathbf{M}_{\boldsymbol{H}}^{\prime}$ is a planar mesh of H. Similarly \mathbf{M}_{K}^{\prime} is a planar mesh of K. The theorem follows.
(10.2) Let G be the union of two proper subgraphs H and K such that $H \cap K$ consists solely of two vertices x and y. Let L_{H} and L_{K} be arc-graphs with ends x and y in H and K respectively. Let \mathbf{M}_{H} and \mathbf{M}_{K} be planar meshes of $H \cup L_{K}$ and $K \cup L_{H}$ respectively. Then the following propositions hold.
(i) We can write $\mathbf{M}_{H}=\left\{C_{1}, C_{2}, \ldots, C_{h}\right\}$ and $\mathbf{M}_{K}=\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}$ so that $E\left(L_{K}\right) \subseteq C_{1} \cap C_{2}$ and $E\left(L_{H}\right) \subseteq D_{1} \cap D_{2}$.
(ii) The class

$$
\begin{aligned}
\mathbf{M}=\left\{C_{1}+D_{1}+E(\right. & \left.L_{H}\right)+E\left(L_{K}\right) \\
& \left.C_{2}+D_{2}+E\left(L_{H}\right)+E\left(L_{K}\right), C_{3}, \ldots, C_{h}, D_{3}, \ldots, D_{k}\right\}
\end{aligned}
$$

is then a planar mesh of G.
Proof. $L_{H} \cup L_{K}$ is a polygon of both $H \cup L_{K}$ and $K \cup L_{H}$. Hence any specified edge of L_{K} belongs to just two members C_{1} and C_{2} of \mathbf{M}_{H}. Since L_{K} spans H it follows that $E\left(L_{K}\right) \subseteq C_{1} \cap C_{2}$. A similar argument involving L_{H} and \mathbf{M}_{K} completes the proof of (i).

It is clear from the construction of M that each edge of G occurring in any member of M occurs in just two of them. Moreover, each member of M is an elementary cycle of G. For example, $C_{1}+D_{1}+E\left(L_{H}\right)+E\left(L_{K}\right)$ corresponds to the union of the arc-graphs $H .\left(C_{1}+E\left(L_{K}\right)\right)$ and $K .\left(D_{1}+E\left(L_{H}\right)\right)$, which is a polygon.

Let J be any non-null cycle of G. It may happen that the number of edges of $J \cap E(H)$ incident with x, loops being counted twice, is even. Then $J \cap E(H)$ and $J \cap E(K)$ are cycles of H and K respectively. If $J \cap E(H)$ is non-null it can be represented as a sum of members of M_{H} other than C_{1}, since the members of \mathbf{M}_{H} sum to zero. Then the sum cannot involve C_{2} either and so $J \cap E(H)$ is a sum of members of M. A similar argument applies to $J \cap E(K)$. It follows that J is a sum of members of M. In the remaining case the number of edges of $\left(J+C_{1}+D_{1}+E\left(L_{H}\right)+E\left(L_{K}\right)\right) \cap E(H)$ incident with x is even. Hence $J+C_{1}+D_{1}+E\left(L_{H}\right)+E\left(L_{K}\right)$, and therefore also J, is a sum of members of \mathbf{M}. We deduce that \mathbf{M} is a planar mesh of G.
(10.3) Let G be the union of two proper subgraphs H and K having only a vertex v in common. Let A_{H} and A_{K} be links of H and K respectively incident with v, and let their other ends be w_{H} and w_{K} respectively. Let G^{\prime} be formed from G by adjoining a new link A with ends w_{H} and w_{K}. Then if G has a planar mesh so does G^{\prime}.

Proof. Let \mathbf{M} be a planar mesh of G. By (10.1), $\mathbf{M}=\mathbf{M}_{H} \cup \mathbf{M}_{K}$, where
\mathbf{M}_{H} and \mathbf{M}_{K} are planar meshes of H and K respectively. We note the elementary cycle $Z=\left\{A, A_{H}, A_{K}\right\}$ of G^{\prime}.

If A_{H} belongs to no member of \mathbf{M}_{H} we adjoin Z to \mathbf{M}_{H} as a single extra term, denoting the resulting class by \mathbf{N}_{H}. Otherwise we delete a term, Z_{H} say, of \mathbf{M}_{H} containing A_{H}, and adjoin one extra term $Z+Z_{H}$, again denoting the resulting class by \mathbf{N}_{H}. If A_{H} belongs to no member of \mathbf{M}_{H} it is convenient to write $Z_{H}=\emptyset$. We define \mathbf{N}_{K} and Z_{K} similarly, and write $\mathbf{M}^{\prime}=\mathbf{N}_{H} \cup \mathbf{N}_{K}$.

The above construction ensures that each edge of G^{\prime} belonging to a term of \mathbf{M}^{\prime} belongs to just two such terms. If X is any non-null cycle of G^{\prime} then either X or $X+Z$ is a cycle X_{1} of G, and $X_{1} \cap E(H)$ and $X_{1} \cap E(K)$ are cycles of H and K respectively. If $X_{1} \cap E(H)$ is non-null it can be expressed as the sum of the members of a subset of \mathbf{M}_{H} which does not involve every occurrence of Z_{H}, if $Z_{H} \neq \emptyset$. Hence $X_{1} \cap E(H)$ is a sum of members of N_{H}, and similarly $X_{1} \cap E(K)$ is a sum of members of \mathbf{N}_{K}. We deduce that X is a sum of members of \mathbf{M}^{\prime}. The theorem follows.
(10.4) Let G be the union of two subgraphs H and L, where L is an arc-graph spanning H. Let $\mathbf{M}_{H}=\left\{C_{1}, C_{2}, C_{3}, \ldots, C_{h}\right\}$ be a planar mesh of H such that the ends x and y of L are vertices of $G . C_{1}$. Let the residual arc-graphs of x and y in $G . C_{1}$ be L_{1} and L_{2}. Then $\mathbf{M}=\left\{E\left(L \cup L_{1}\right), E\left(L \cup L_{2}\right), C_{2}, \ldots, C_{h}\right\}$ is a planar mesh of G.

Proof. Clearly M satisfies condition (i) of ((11) §1) for a planar mesh of G. If J is any non-null cycle of G then either J or $J+E\left(L \cup L_{1}\right)$ is a cycle of H and therefore a sum of terms of \mathbf{M}_{H} not including C_{1}. Hence J is a sum of members of \mathbf{M}.

We say that \mathbf{M} is obtained from \mathbf{M}_{H} by subdividing C_{1}.
(10.5) Let G be the union of two subgraphs H and L, where L is an arc-graph spanning H. Let $\mathbf{M}=\left\{C_{1}, C_{2}, \ldots, C_{g}\right\}$ be a planar mesh of G such that $C_{1} \cap C_{2}=L$. Let the complementary arc-graphs of L in $G . C_{1}$ and $G . C_{2}$ be L_{1} and L_{2} respectively. Then $\mathbf{M}_{H}=\left\{E\left(L_{1} \cup L_{2}\right), C_{2}, \ldots, C_{g}\right\}$ is a planar mesh of H.

Proof. \mathbf{M}_{H} clearly satisfies condition (i) of ((11) §1). Any non-null cycle J of H is a cycle of G, and therefore a sum of members of \mathbf{M} other than C_{1}. This sum does not involve C_{2} since $J \cap E(L)=\emptyset$. Hence J is a sum of members of M_{H}.
(10.6) Let G be a graph having a planar mesh \mathbf{M}. Then each subgraph of G has a planar mesh.

Proof. Suppose we form a graph K from G by deleting a single edge A. We form a class \mathbf{M}_{K} from \mathbf{M} as follows. If A belongs to no member of \mathbf{M},
then $\mathbf{M}_{K}=\mathbf{M}$. In the remaining case A belongs to just two terms C_{1} and C_{2} of \mathbf{M}. If $C_{1}=C_{2}$ we form \mathbf{M}_{K} by deleting these two terms from \mathbf{M}. Otherwise $C_{1}+C_{2}$ can be expressed as a sum of disjoint elementary cycles of K, by ($(\mathbf{1 1})(3.2))$. We then form \mathbf{M}_{K} by replacing C_{1} and C_{2} by this set of elementary cycles, each counted once only.

By this construction \mathbf{M}_{K} satisfies condition (i) for a planar mesh of K. If J is any non-null cycle of K it can be expressed as a sum of terms of \mathbf{M}, not involving C_{1} if C_{1} and C_{2} exist. In the latter case the sum does not involve C_{2} either since $A \notin E(K)$. Hence J is a sum of members of \mathbf{M}_{K}. We deduce that \mathbf{M}_{K} is a planar mesh of K.

Suppose $H \subseteq G$. We can remove edges from G, one by one, until we obtain a subgraph H^{\prime} of G such that $E\left(H^{\prime}\right)=E(H)$. Then H can be obtained from H^{\prime} by deleting some isolated vertices. H^{\prime} has a planar mesh, by repeated application of the preceding argument if $E(H) \neq E(G)$, and H has the same planar mesh, by (10.1).
(10.7) If a graph has a planar mesh it has no Kuratowski subgraph.

Proof. The Kuratowski subgraph would have a planar mesh, by (10.6). This is impossible, by (2.7) and the proof of (4.1).
(10.8) Let G be any simple graph having a planar mesh. Then by adding new links to G, with ends in $V(G)$, we can construct a nodally 3-connected graph T having a planar mesh.

Proof. Suppose that G is the union of two proper subgraphs H and K such that $H \cap K$ is null. Choose vertices x in $V(H)$ and y in $V(K)$ and adjoin a new link A with ends x and y. The new graph G_{1} is simple. Now H and K have planar meshes, by (10.1), and the link-graph $G_{1} \cdot\{A\}$ has a null planar mesh. Hence G_{1} has the same planar mesh as G, by two applications of (10.1).

Continuing in this way until the process terminates we construct a simple connected graph T_{1} with the same planar mesh as G.

Now suppose T_{1} is the union of two proper subgraphs H and K such that $H \cap K$ is a vertex-graph. Since T_{1} is connected, the common vertex v is incident with edges A_{H} in $E(H)$ and A_{K} in $E(K)$. Let the other ends of A_{H} and A_{K} be w_{H} and w_{K} respectively. Adjoining a new link A joining w_{H} and w_{K} we obtain a new simple graph G_{2}. This graph has a planar mesh, by (10.3).

Continuing in this way until the process terminates we obtain a simple non-separable graph T_{2} such that $G \subseteq T_{2}$ and T_{2} has a planar mesh \mathbf{M}_{2}.

Suppose that T_{2} is not nodally 3 -connected. Then it is a union of two proper subgraphs H and K whose intersection consists solely of two nodes x and y, and neither of which is an arc-graph with ends x and y. By
((11) (3.3)) there exists C_{1} in \mathbf{M}_{2} meeting both $E(H)$ and $E(K)$. There is a second member C_{2} of \mathbf{M}_{2} with this property, for otherwise the terms of \mathbf{M}_{2} would not sum to zero.

If A_{1} is an edge of T_{2} with ends x and y we may assume $A_{1} \in E(H)$. If a member of \mathbf{M}_{2} meeting both $E(H)$ and $E(K)$ contains A_{1} it can, being the set of edges of a polygon, contain no other edge of H. If all such members of \mathbf{M}_{2} contained A_{1} there would be just two of them, and (3.3) of (11) would be violated at x. We may suppose that $G . C_{1}$ has vertices a in $V(H)$ and b in $V(K)$ distinct from x and y. Joining a and b by a new link A we obtain a new simple graph G_{3}.

Now G_{3} has a planar mesh, by (10.4). Proceeding in this way until the process terminates we obtain a nodally 3 -connected graph T such that $G \subseteq T$ and T has a planar mesh M.
(10.9) If G is a simple graph having a planar mesh we can find a straight. representation of G in the plane. (See (3).)

Proof. First we embed G in a nodally 3 -connected graph T with a planar mesh M. This has no Kuratowski subgraph, by (10.7). We can obtain a straight representation of T, by (9.3), and this induces a straight representation of G. (If T has no polygon it has at most one edge, by ((11) (2.5)), and a straight representation is obviously possible.)
(10.10) Let G be any graph having a planar mesh. Then G is planar.

Proof. If A is an edge of G with ends u and v, possibly coincident, we can replace it by a new vertex w and two new links, A^{\prime} joining u and w and $A^{\prime \prime}$ joining v and w. We call this process subdividing A. Clearly the cycles of the new graph G_{1} can be derived from those of G by replacing A, wherever it occurs, by the two edges A^{\prime} and $A^{\prime \prime}$. Accordingly, if the process is applied to the members of a planar mesh of G it yields a planar mesh of G_{1}.

By repeated subdivision we can convert G into a simple graph T, and by the above observations T has a planar mesh.

By (10.9) we can construct a straight representation of T. We can reverse the subdivisions in this and so obtain a representation of G.

11. Characterizations of planar graphs

The conditions for planarity established by Kuratowski ((2)(6)) and MacLane (7) can be derived from the foregoing results as follows.
(11.1) Let G be any graph. Then the propositions ' G is planar', ' G has a planar mesh', and ' G has no Kuratowski subgraph' are equivalent.

Proof. If G has a planar mesh it is planar, by (10.10). If G is planar it has no Kuratowski subgraph, by (4.1), Corollary.

If possible choose G so that it has no Kuratowski subgraph, and no planar mesh, and so that $\alpha_{1}(G)+\alpha_{0}(G)$ has the least value consistent with these conditions. Clearly G is not a polygon or a link-graph.

Suppose G is nodally 3 -connected. Then it has three distinct peripheral polygons with a common edge, by (2.3) and (2.6). Hence it has a Kuratowski subgraph by (5.5), contrary to the definition of G.

Suppose that G is non-separable. Since it is not nodally 3 -connected it is a union of two proper subgraphs H and K such that $H \cap K$ consists solely of two vertices x and y, and neither H nor K is an arc-graph. Since G is non-separable both H and K must be connected. Hence x and y are joined by arc-graphs $L_{H} \subseteq H$ and $L_{K} \subseteq K$. Now $H \cup L_{K}$ and $K \cup L_{H}$ are proper subgraphs of G. By the choice of G they have planar meshes. Hence G has a planar mesh, by (10.2).

From this contradiction we deduce that G is separable. It is a union of two proper subgraphs H and K such that $H \cap K$ is either null or a vertex graph. H and K have planar meshes, by the choice of G. Hence G has a planar mesh, by (10.1), a contradiction.

We deduce that any graph without a Kuratowski subgraph must have a planar mesh. The proof of the theorem is now complete.

Given a vertex a of a graph G we write $T(a)$ for the set of all links of G incident with a. Given any set V of vertices of G we define $T(V)$ as the set of all links of G having one end in V and one in $V(G)-V$. We refer to the sets $T(V)$ as the coboundaries of G. Evidently each coboundary is a mod- 2 sum of sets of the form $T(a), a \in V(G)$, and the coboundaries form a group with respect to mod-2 addition.

A graph G^{*} with the same edges as G, and such that the cycles of G are the coboundaries of G^{*}, is a dual graph of G.
(11.2) A graph is planar if and only if it has a dual graph.

Proof. Suppose that G is planar. Let $\mathbf{M}=\left\{C_{1}, C_{2}, \ldots, C_{o}\right\}$ be a planar mesh of G (11.1). Let the edges of G belonging to no C_{i} be $A_{1}, A_{2}, \ldots, A_{k}$. Denote the vertices of a graph G^{*} by $v_{1}, v_{2}, \ldots, v_{g}, w_{1}, w_{2}, \ldots, w_{k}$. Put $E\left(G^{*}\right)=E(G)$. Take $A_{i}, 1 \leqslant i \leqslant k$, to be a loop of G^{*} incident with w_{i}. If A in $\mathscr{E}\left(G^{*}\right)$ satisfies $A \in C_{i} \cap C_{j}, i \neq j$, we take A to be a link of G^{*} joining v_{i} and v_{j}. In G^{*} we then have $T\left(w_{i}\right)=\emptyset$ and $T\left(v_{i}\right)=C_{i}$. Hence the coboundaries of G^{*} are the linear combinations of the members of M, that is they are the cycles of G. Thus G has a dual graph G^{*}.

Conversely, suppose that G has a dual graph G^{*}. Let the vertices a of G^{*} such that $T(a)$ is non-null be enumerated as $v_{1}, v_{2}, \ldots, v_{q}$. Consider the class $N=\left\{T\left(v_{1}\right), T\left(v_{2}\right), \ldots, T\left(v_{g}\right)\right\}$. Each term is a cycle of G, each edge of G belonging to a term of N belongs to just two of them, and each cycle
of G is a sum of members of \mathbf{N}. We can therefore convert \mathbf{N} into a planar mesh of G by replacing each $T\left(v_{i}\right)$ by a class of disjoint elementary cycles of G summing to $T\left(v_{i}\right)$. ((11) (3.2).) Hence G is planar, by (11.1).

We see from (11.2) that the problem of deciding whether a given graph is planar is a special case of a more general problem, that of deciding whether a given class of subsets of a collection S, closed under mod-2 addition, can be represented as the class of coboundaries of a graph. This wider problem has practical importance as well as theoretical interest. It is analysed in (8), (9), and (10).

The results of the present paper suggest that the more general problem could be tackled by constructing analogues of peripheral cycles. I hope to discuss such a procedure in another paper.

The theorems of (9) yield, on specialization, another characterization of planar graphs: a graph is non-planar if and only if it has a polygon whose bridges cannot be classified in two sets so that the members of each set avoid one another.

12. Representations of dual graphs

Let G be a non-null 3 -connected graph in which the valency of each vertex is at least 3. Suppose that G has a planar mesh $\mathbf{M}=\left\{C_{1}, C_{2}, \ldots, C_{0}\right\}$.

Let the vertices v_{j} and edges A_{j} of $G . C_{i}$ be, in their natural cyclic order, $v_{0}, A_{1}, v_{1}, A_{2}, \ldots, v_{n-1}, A_{n}, v_{n}=v_{0}$. We introduce a new vertex w_{i} and join it to each v_{j} in $V\left(G . C_{i}\right)$ by a single new edge $A_{i j}$. Fig. 8 illustrates the case $i=1$. We repeat the operation for each member of M, arranging that the new vertices w_{k} are all distinct. Let us denote the resulting graph by G_{0}, and the class $\left\{w_{k}\right\}$ by W.

Now G_{0} can be constructed by repeatedly subdividing faces as in (10.4). We may therefore deduce from (10.4) that G_{0} is planar, and has a planar mesh $\mathbf{M}_{0}=\left\{T_{1}, T_{2}, T_{3}, \ldots, T_{q}\right\}$ with the following property: $G . T_{i}$ is a triangle in which one vertex is a w_{k} and the opposite edge is an edge of G.

Consider an edge A_{j} of G. It belongs to two members T_{r} and T_{s} of \mathbf{M}_{0}. Now A_{j} belongs to two distinct members of \mathbf{M}, by ((11) (3.4)), and therefore T_{r} and T_{s} correspond to distinct members of W. Accordingly $G_{0} .\left(T_{r}+T_{s}\right)$ is a quadrangle X_{j} of G_{0}. Of its four distinct vertices two belong to W and two are the ends of A_{j} in G. We define G^{\natural} as the graph obtained from G_{0} by deleting all the edges A_{j} of G. By (10.5) G^{\natural} is planar and it has a planar mesh \mathbf{M}^{\natural} whose members are the sets $E\left(X_{j}\right)$.

The above construction is illustrated in Fig. 8. The full lines represent G and the broken ones G^{\natural}.
(12.1) G^{\natural} is 3-connected.

Proof. Suppose G^{\natural} is the union of the two proper subgraphs H and K, where $H \cap K$ consists solely of two or fewer vertices.
Suppose both H and K have vertices of G not in $H \cap K$. Since G is 3 -connected one such vertex in $V(H)$ must be joined to one in $V(K)$ by an edge A_{j} of G. Considering the quadrangle X_{j} we see that $H \cap K$ has two distinct vertices, both in W. Call them w_{1} and w_{2}. Since the members of \mathbf{M}^{\natural} sum to zero there is a second member of \mathbf{M}^{\natural} having edges in both H and K. That is, another quadrangle X_{k} has both w_{1} and w_{2} as vertices. But then the two peripheral polygons $G . C_{1}$ and $G . C_{2}$ of G have two distinct branches of G in common, which is impossible, by (2.3) and (2.8).
We may now assume that $V(H)-V(H \cap K)$ includes no vertex of G. Suppose that a vertex u of $H \cap K$ is joined by an edge A to a vertex v in $V(H)-V(K)$. Then $v \in W$, and is joined only to members of $V(G)$ in $V(H \cap K)$. But since G is simple each w_{i} in W is joined to three or more distinct vertices of G. We deduce that any member of $E(H)$ has both ends in $H \cap K$. The theorem follows.

Fig. 8
It follows from (2.8) that the quadrangles X_{j} are peripheral polygons of G^{\natural}. By (9.2) we can construct a barycentric realization of G^{\natural} on a 4 -sided convex polygon Q in the plane. We suppose X_{1} to play the part of J in $\S \S 5-8$. In each of the convex polygons $Q_{X}, j>1$, in the barycentric representation we construct the diagonal joining the two opposite vertices of the quadrangle corresponding to vertices of G. In the quadrangle Q let the vertices corresponding to vertices of G be u and v. We join these by the 'infinite segment' of the line $u v$ outside Q. We may consider the plane to be closed by a point Ω at infinity, and say that u and v are joined by a straight segment through Ω.

Allowing the use of this infinite segment we obtain a set of diagonals giving a straight representation of G. Using the other diagonals of the quadrangles we obtain a straight representation of the dual graph G^{*} of G.
(There is essentially only one dual graph of G since G has only one planar mesh, by (2.6) and (2.8).) We then have simultaneous straight representations of G and G^{*} in which the only intersections are of corresponding edges, and two corresponding edges meet in just one point.

13. Unsolved problems

The result of § 12 raises the following questions. Can we construct simultaneous straight representations, with intersections limited as above, of G and G^{*} in which the residual regions of each representation are convex? Or such that corresponding edges are represented by perpendicular segments?

We might also consider representations of a planar graph on a geometrical sphere such that the vector drawn from the centre to any vertex is in the direction of the resultant of the vectors drawn to its neighbouring vertices. Does every nodally 3 -connected planar graph have such a representation and if so is the representation unique for each graph ?

Finally we may remark that very little is known about representations of graphs in the projective plane and higher surfaces (4).

REFERENCES

1. R. L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte, 'The dissection of rectangles into squares', Duke Math.J. 7 (1940) 312-40.
2. G. A. Dirac and S. Schuster, 'A theorem of Kuratowski', Indag. Math. 16 (1954) 343-8.
3. I. Fary, 'On straight line representation of planar graphs', Acta Univ. Szeged Sect. Sci. Math. 11 (1948) 229-33.
4. I. N. Kagno, 'The mapping of graphs on surfaces', J. Math. Phys. M.I.T. 16 (1937) 46-75.
5. D. König, Theorie der endlichen und unendlichen Graphen (Leipzig, 1936).
6. C. Kuratowski, 'Sur le problème des courbes gauches en topologie', Fundamenta Math. 15 (1930) 271-83.
7. S. Maclane, 'A combinatorial condition for planar graphs', ibid. 28 (1937) 22-32.
8. W. T. Tutte, 'A homotopy theorem for matroids. I-II', Trans. American Math. Soc. 88 (1958) 144-74.
9. -_ 'Matroids and graphs', ibid. 90 (1959) 527-52.
10. - 'An algorithm for determining whether a given binary matroid is graphic', Proc. American Math. Soc. 11 (1960) 905-17.
11. W. T. Tutte, 'Convex representations of graphs', Proc. London Math. Soc. (3) 10 (1960) 304-20.
12. O. Veblen, Analysis situs, American Math. Soc. Colloquium Publications V_{2}, 2nd edn (New York, 1931).
13. H. Whitney, 'Non-separable and planar graphs', Trans. American Math. Soc. 34 (1932) 339-62.
14. -- ' 2 -isomorphic graphs', American J. Math. 55 (1933) 245-54.

University of Waterloo, Ontario

