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Abstract: The use of statistical inference in linguistics and related areas like psychology
typically involves a binary decision: either reject or accept some null hypothesis using
statistical significance testing. When statistical power is low, this frequentist data-analytic
approach breaks down: null results are uninformative, and effect size estimates associated
with significant results are overestimated. Using an example from psycholinguistics, 10

several alternative approaches are demonstrated for reporting inconsistencies between
the data and a theoretical prediction. The key here is to focus on committing to a
falsifiable prediction, on quantifying uncertainty statistically, and learning to accept the
fact that—in almost all practical data analysis situations—we can only draw uncertain
conclusions from data, regardless of whether we manage to obtain statistical significance 15

or not. A focus on uncertainty quantification is likely to lead to fewer excessively bold
claims that, on closer investigation, may turn out to be not supported by the data.

Keywords: experimental linguistics;statistical data analysis; statistical inference; un-
certainty quantification

1 Introduction 20

Statistical tools are widely employed in linguistics and in related areas like psychology to
quantify empirical evidence from planned experiments and corpus analyses. Usually, the
goal is to objectively assess the evidence for one or another scientific position. Typically,
conclusions from data are framed in decisive language. Examples are statements like:
“we found a significant/robust effect of (some factor) X on (dependent variable) Y.” If 25

researchers fail to find a significant effect, too often they will incorrectly conclude that
they have evidence for no effect: phrases like “X had no effect on Y” are often used in
published papers: the conclusion is often framed as evidence of absence, rather than
absence of evidence. Claims based on data tend to be stated deterministically because
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established practice in psychology, psycholinguistics, and linguistics generally tells us
to place our results into one of two bins: “significant” or “not significant”; Greenland
(2017) calls it dichotomania. When a result turns out to be statistically significant, we are
taught to believe that we have found the truth. Even a single, small-sample experiment
can be treated as big news, worthy of publication in a major journal. This way of thinking5

is fundamentally incorrect, a distortion of the underlying statistical theory.
A major reason for these misunderstandings stems from the perfunctory education

provided in statistics, in both linguistics and psychology programs worldwide. Learning
statistical theory and practice are inseparable from scientific reasoning; and contrary to
what is an increasingly popular belief in linguistics, experimentally grounded research is10

no guarantee that research will become more grounded in objective facts, as opposed to
the subjective beliefs that are traditionally used in intuition-based linguistic theorizing.
What’s missing in statistics education in these fields is basic training in what kinds of
answers statistics can and cannot provide.

We begin by revisiting the underlying principles and assumptions of null hypothesis15

significance testing. This review, although very basic in nature, is necessary because in
our experience many researchers are not clear on the details of the one-sample t-test.
Then, we suggest some alternative ways in which conclusions can be drawn from data.
In this paper, we assume that the reader has encountered some of the foundational ideas
behind null hypothesis significance testing: the t- and p-value, Type I, II errors, and20

statistical power. A recent introductory book that is specifically aimed at linguists is
available (Winter 2019); also see Navarro (2013) and the special issue on Emerging
Data Analysis in Phonetic Sciences (Roettger et al. 2019).

We stress that there is nothing fundamentally new in this paper. Many researchers,
especially in psychology, have covered the topics we discuss in published work, and25

much more extensively than we do here; the reader will benefit from reading this lit-
erature. Some examples are Cumming (2014); Kruschke (2013, 2014); Kruschke and
Liddell (2018); Simmons et al. (2011); Verhagen and Wagenmakers (2014); Wagen-
makers et al. (2018); Yarkoni (2020). The contribution of the present paper is only to
demonstrate, through some practical examples, how uncertainty can be communicated in30

linguistic research, and to explain why statistical significance testing is not informative
unless certain very specific conditions are met.

1.1 The logic of significance testing

The standard logic of significance-based testing can be illustrated by considering a
simple example. Suppose we are interested in the difference in reading times between two35

conditions a and b. To make the discussion concrete, we will consider here a phenomenon
called agreement attraction (Wagers et al. 2009). The claim in the psycholinguistics
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literature is that in sentences like (1), which are both ungrammatical, comprehenders
read the auxiliary verb were faster in (1a) than in (1b).

(1) a. *The bodybuilder−𝑝𝑙𝑢𝑟𝑎𝑙
+𝑠𝑢𝑏𝑗𝑒𝑐𝑡 who met the trainers+𝑝𝑙𝑢𝑟𝑎𝑙

−𝑠𝑢𝑏𝑗𝑒𝑐𝑡 were{𝑝𝑙𝑢𝑟𝑎𝑙𝑠𝑢𝑏𝑗𝑒𝑐𝑡} . . .

b. *The bodybuilder−𝑝𝑙𝑢𝑟𝑎𝑙
+𝑠𝑢𝑏𝑗𝑒𝑐𝑡 who met the trainer−𝑝𝑙𝑢𝑟𝑎𝑙

−𝑠𝑢𝑏𝑗𝑒𝑐𝑡 were{𝑝𝑙𝑢𝑟𝑎𝑙𝑠𝑢𝑏𝑗𝑒𝑐𝑡} . . .

Several theoretical explanations have been proposed to account for this observed speedup. 5

One of them (Engelmann et al. 2020; Vasishth et al. 2019; Wagers et al. 2009) is the
claim that when the human sentence comprehension system encounters the plural marked
auxiliary verb were, an attempt is made to access a plural-marked subject from memory
in order to determine who the main actor of the sentence is. The search in memory
for a plural-marked subject is initiated using a set of so-called retrieval cues (shown in 10

brackets at the auxiliary verb in 1); the nouns are assumed to have a feature-specification
marking, among other things, its subject status and number. The correct target for
retrieval is the subject noun bodybuilder but it does not have the right plural feature
specification (this is what makes both the sentences ungrammatical). However, there
is a non-subject (trainers) in (1a) that is plural-marked, and this noun occasionally is 15

mistaken for the grammatical subject of the sentence.
Thus, based on the quantitative predictions (shown later, in Figure 5) of the model

reported in Engelmann et al. (2020), the research hypothesis is that the auxiliary verb
in (1a) will be read faster than in (1b). The statistical test of this hypothesis can be
carried out in the frequentist paradigm by assuming that the reading times at the auxiliary 20

verb in (1a) and (1b) have some unknown but fixed true mean reading times 𝜇𝑎 and 𝜇𝑏

respectively. A null hypothesis is set up which states that the difference between these
two means is 0, i.e., that the two means are identical. Conventionally, we write this null
hypothesis as 𝐻0 : 𝛿 = 𝜇𝑎 − 𝜇𝑏 = 0.

Having set up the null hypothesis, we collect data from 𝑛 participants for both (1a) 25

and (1b); usually, a Latin square design is employed (Arunachalam 2013). How the
sample size 𝑛 is decided on will be discussed in Section 3. For now, we assume that we
somehow decide to sample data from 𝑛 participants, and each participant delivers one
data point for condition (a) and one for condition (b). If each participant delivers more
than one data point for each condition, an average of those multiple points is taken, so 30

that what goes into the statistical test is one data point per participant per condition. In
practice, we usually collect multiple data points from each participant for each condition
and do not need to take the average as described here; but we can disregard this detail
for now. For further discussion of how to analyze such repeated measures data without
having to average the data, see Bates, Maechler, et al. (2015); Winter (2019). 35

Given these data, we first compute a vector that contains each participant’s difference
score 𝑑, and then compute the mean difference between the two conditions, 𝑑.

The standard procedure is to compute the observed mean difference in reading time:
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𝑑 =

∑︀𝑛
𝑖=1 𝑑𝑖
𝑛

We also compute the sample standard deviation 𝑠 of the differences scores 𝑑𝑖:

𝑠 =

√︂∑︀𝑛
𝑖=1(𝑑𝑖 − 𝑑)2

𝑛− 1

Then, we compute the estimate of the standard error from the estimated standard
deviation 𝑠 and the sample size 𝑛:

̂︁𝑆𝐸 =
𝑠√
𝑛

The standard error gives us an estimate of the standard deviation of the sampling
distribution of the difference of sample means under (hypothetical) repeated sampling: if5

(counterfactually) we were to run the experiment repeatedly with new participants from
the same population, for large enough sample sizes, the distribution of sample means
we would obtain would have a Normal distribution with estimated standard deviation of̂︁𝑆𝐸 = 𝑠/

√
𝑛; see Draper and Smith (1998) for further details.

In null hypothesis significance testing (NHST), we are interested in quantifying how10

much some statistic computed from our data deviates from outcomes expected under
the null hypothesis. That is, in our case, assuming there is no difference between these
conditions, we want to quantify the extent to which the difference we found is at odds
with the null-hypothesized value of 0. To this end, we compute a statistic called the
t-statistic, which tells us how many standard error units the sample mean is away from15

the hypothesized mean 𝛿 = 0.

𝑡 · ̂︁𝑆𝐸 = 𝑑− 𝛿
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Figure 1: An illustration of the two-sided t-test. If the observed t-value (the black dot) falls in
either of the rejection regions in the tails, then the null hypothesis is rejected.

As shown in Figure 1, if the absolute value of the t-statistic is “large enough”, i.e.,
if the sample mean of the differences is far enough away in standard error units in either
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direction from the hypothesized difference of means, the convention is to reject the
null hypothesis. Glossing over some details and simplifying slightly, “large enough” is
considered to be an absolute value (in standard error units) equal to or larger than 2. This
is a simplification because what constitutes a large enough t-value depends on the sample
size; but this simplification is good enough if we have 20 or more participants, which is 5

usually the case at least in psycholinguistics. Usually, a so-called p-value is computed
alongside the t-value; the p-value gives us the probability of observing the absolute
t-value we obtained, or some value more extreme, assuming that the null hypothesis is
true. The p-value cannot represent the probability that the null hypothesis is true—we
have already assumed that it is true when we compute the p-value. 10

Once we reject the null hypothesis, the convention is to treat this rejection as
evidence for the specific research hypothesis we had. In our case, the research hypothesis
is that 𝛿 has a negative sign, so if we can reject the null hypothesis, we conclude that
we have evidence for this claim. This is technically not correct, because all we have
evidence against is the null hypothesis. In other words, the NHST approach doesn’t tell 15

us how well our research hypothesis fits with the data; it only tells us how improbable
the test statistic (the t-value or the like) is assuming that the null hypothesis is true.

The so-called confidence intervals are usually reported alongside the statistical
test. For example, it is common to report a 95% confidence interval around the sample
mean: 𝑑 ± 2 × 𝑆𝐸. The confidence interval has a rather convoluted meaning that is 20

prone to misinterpretation (Hoekstra et al. 2014). If a p-value is not provided, the
confidence interval is often used as a proxy for the null hypothesis test: if 0 is not in the
interval, then the null hypothesis is rejected. Used in this way, the confidence interval
just becomes another equivalent way to conduct null hypothesis tests, raising the same
problems that arise with the t-value based decision criterion. As we show in this paper, 25

the confidence interval can be used to quantify uncertainty about the effect of interest,
without making binary decisions like “accepting” or “rejecting” the null hypothesis. For
a related discussion, see Cumming (2014); Gelman and Greenland (2019).

1.2 Some problems with significance testing

In null hypothesis significance testing, we erroneously go from (i) data, (ii) some 30

assumed statistical model and the assumptions associated with the model, and (iii) a
theoretical prediction, to a decisive claim about the phenomenon we are interested in
studying (in the above example, for the agreement attraction effect). There are at least
two important problems with this approach to data analysis:
– Low-power studies, when filtered by statistical significance, will lead to mis- 35

estimation. If the probability of obtaining a difference in means that represents
the true effect (statistical power) is low, then one of two things can happen. If we run
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the study multiple times (i.e., under repeated sampling), either we will obtain null
results repeatedly, or we will occasionally get significant or even highly significant
effects that are overestimates of the quantity of interest (in our case, the difference
in means). The null results will be inconclusive, even if we obtain them repeatedly.
What is worse, any significant effects we find, no matter how low the p-value, will5

be overestimates or Type M(agnitude) errors (Gelman and Carlin 2014); they could
even have the wrong sign (Type S error). We show below that, at least in one subset
of phenomena studied in psycholinguistics, statistical power is often surprisingly
low. Thus, low power has two consequences: when researchers repeatedly obtain a
non-significant effect, they will often incorrectly conclude that there is evidence for10

no effect. For an example of such an invalid conclusion, see Phillips et al. (2011).
When a significant effect is obtained, this outcome will be based on a mis-estimation
of the true value of the parameter of interest. Mis-estimation might not seem like
such a bad thing if the estimated effect is in the “right” direction; but it has the bad
consequence that future research will end up overestimating power, perpetuating15

invalid inferences.
– Significant effects will often be non-replicable. When power is low, any significant

effect that is found in a particular experiment will tend not to replicate. In other
words, in larger-sample direct replication attempts, the effect size will tend to be
smaller and a statistically significant effect will tend to be found to be non-significant.20

Recent papers from psycholinguistics discuss this point in detail (Jäger et al. 2020;
Nicenboim et al. 2020; Vasishth et al. 2018). Here, studies that originally showed
a significant or near-significant effect were not replicable: the effect sizes in the
replication attempts were smaller, and the original significant (or near-significant)
effect did not come out significant. This inability to replicate an effect can be due to25

low power of the original experimental design, but even if power is high, especially
in experiments involving human participants, effects can vary from study to study.

Psychologists (Cohen 1962, 1988) have long pointed out the importance of ensuring high
statistical power for making discovery claims, but until recently these recommendations
have largely been ignored in linguistics, psychology, and psycholinguistics; some recent30

papers that take power into account are Brehm and Goldrick (2017); Stack et al. (2018);
Zormpa et al. (2019). In response to the replication crisis that (partly) resulted from
underpowered studies (Open Science Collaboration 2015), several remedies have been
suggested, such as reducing the probability of committing a Type I error to 0.005

(Benjamin et al. 2018), or abolishing statistical significance testing entirely (McShane35

et al. 2019). But in any experimentally oriented research program, there is no substitute
for an adequately powered study, and direct replications, if one’s aim is to establish
whether one’s results are robust. As discussed later in this paper, when high-powered
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studies are simply impossible to carry out, other approaches, such as evidence synthesis,
are needed.
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Figure 2: Power estimates for different numbers of participants (30, 40, 50, 60), assuming
a standard deviation (of the residual) of 150, 200, 250, 300 (a typical range in reading stud-
ies), and an effect size ranging from 10-50 ms. For a justification of these estimates for the
sample size, standard deviation, and effect sizes, see Jäger et al. (2017).

Figure 2 shows power estimates based on the meta-analysis in Jäger et al. (2017)
for reading studies on agreement attraction and closely related topics; for typical effect
sizes (10− 50 ms), and commonly seen standard deviations (150− 300 ms) in reading 5

studies (self-paced reading and total reading time in eyetracking), and routinely used
participant sample sizes (30 − 60), estimates of power are generally well below 80%.
These estimates of power should give us pause.

When planning an experiment or research program, it is important to develop a good
understanding of what the prospective power is; i.e., what the probability is of detecting, 10

in a future study, an effect with a particular magnitude. If power is low, frequentist
null hypothesis significance testing in an individual study will never yield meaningful
results because, as discussed above, every possible outcome under repeated sampling



8 Vasishth and Gelman

will be misleading: there will be a high proportion of inconclusive null results, and any
significant effects will be due to mis-estimations of the true effect (Gelman and Carlin
2014). The frequentist method would of course furnish accurate inferences in the long
run if there were no publication bias (if studies’ results were published regardless of
statistical significance), and meta-analyses were being carried out to synthesize evidence,5

as is routinely done in medicine (Higgins and Green 2008). One important pre-requisite
for carrying out such meta-analyses is transparent data and code release along with the
published paper, as recommended by Simmons et al. (2011), among others. Fortunately,
modern open access journals in psycholinguistics, such as Glossa: Psycholinguistics,
now have an Open Data Policy, which requires data and code release. This policy10

decision is likely to have a positive impact on psycholinguistics, because it will allow
for better-quality systematic reviews and evidence synthesis.

As long as one does not filter results by their statistical significance, the NHST
paradigm works as you would expect: If power is low, most results will be regarded as
uninformative, and the few significant results will be overestimates. But once you filter15

results by their statistical significance and power is low, all remaining results will be
overestimates and the literature will be entirely misleading. Figure 3 illustrates this. Here,
we assume that the true effect in a reading time experiment is 20 ms, and that standard
deviation is 150. A paired t-test with 25 subjects will have approximate power 10%, and
with 443 subjects, power will be approximately 80%. Statistical power is a continuum20

ranging from whatever the probability of committing a Type I error is (usually 5%) to
100%. By taking 10% and 80% power as representative low and high-power situations
here, our aim is to show two edge cases.

Figure 3 shows that under low power, all outcomes are bad: there will be many
uninformative null results, and any significant results will be based on mis-estimation of25

the true effect. Under high power, we get a high proportion of significant results, and,
importantly, in each the estimated effect is close to the true value.

One important point to take away from this discussion is that the frequentist method
can work well, but only under specific conditions; at the very least, power must be
high. When power is low, relying on statistical significance or non-significance is not30

meaningful. When power is high, it can be useful to use statistical significance as one
source of information (Wasserstein and Lazar 2016). But there are other sources of
information that should not be ignored. We discuss this point next.
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Figure 3: A simulation showing the effect of low vs. high power on estimates of an effect,
under repeated sampling (50 samples). Here, we assume that the data are generated from
a normal distribution with mean 20 ms and standard deviation 150. The true mean is shown
in each plot as a solid horizontal line. When power is low, every outcome is bad in a different
way: either we get a lot of null results, or we get a significant outcome that results from a
mis-estimate (a Type M or Type S error). By contrast, when power is high, significant results
are meaningful: they are close to the true value.

2 Accepting and quantifying uncertainty

So far, we have discussed some problems in the ways that the results of statistical tests
are commonly misinterpreted. What are some alternative ways to proceed? We present
some possibilities.

The most difficult idea to digest in data analysis—and one that is rarely taught in 5

linguistics and psychology—is that conclusions based on data are almost always uncer-
tain, and this is regardless of whether the outcome of the statistical test is statistically
significant or not. This uncertainty can and must be communicated when addressing
questions of scientific interest. The perspective we take is that the focus in data analysis
should be on estimation rather than (or only on) establishing statistical significance or 10

the like (Cumming 2014; Thompson 2002; Wasserstein and Lazar 2016).
One suggestion in the statistics literature is to “accept uncertainty and embrace

variation” (Gelman 2018). But what does embracing variation mean in practice? By revis-
iting several published data-sets that investigate agreement attraction (the phenomenon
discussed above), we illustrate how the results from data analyses can be presented in 15

such a way that the focus is on estimation and uncertainty quantification, rather than on
drawing overly confident (and often invalid) conclusions. We present some alternative
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ways in which uncertainty can be given the importance it deserves when summarizing
the results of a (psycho)linguistic analysis.

2.1 A case study: Agreement attraction effects

Consider again the agreement attraction effect discussed in the introduction. What do
the data tell us about this effect? To illustrate different possible approaches, we will use5

10 published studies’ data; the data are available online as part of a larger meta-analysis,
reported in Jäger et al. (2017). Approach 1 is the standard one, which we have criticized
above. Approaches 2 − 4 are alternatives one can adopt; they are not intended to be
mutually exclusive. One can use all of them together, depending on the situation.

2.1.1 Approach 1: Standard significance-testing10

Suppose that we were to carry out a standard frequentist linear mixed model analysis
(Bates, Maechler, et al. 2015) of each of the 10 data-sets on agreement attraction. The
t-values from such an analysis are shown in Table 1. Here, we could have carried
out paired t-tests; but because all the data are available publicly, we were able to fit
varying intercepts and varying slopes by participant and by item, without any correlation15

parameters (Barr et al. 2013; Bates, Kliegl, et al. 2015).

Table 1: t-values from 10 published studies on the agreement attraction effect.

1 2 3 4 5 6 7 8 9 10
−2.56 −2.25 −1.67 −1.83 −1.40 −2.22 −1.33 −0.22 −2.81 −1.74

What stands out in Table 1 is that although a few studies manage to cross the
significance threshold of an absolute t-value of 2, the results do not look too convincing
if we compare the number of significant effects (four) to the number of null results
(six). One can think of these studies as replication attempts. In summary, under the20

conventional 𝛼 of 0.05, we obtain four significant and six non-significant results (a 40%
replication rate). This should count as the beginning of a full-blown replication crisis
in psycholinguistics, much like the famous psychology replication attempt in which
only about a third to half (depending on the replication criterion) of the studies could
be replicated (Open Science Collaboration 2015). As discussed above, this approach25

is fairly meaningless, for the reasons explained above. We turn next to some more
meaningful approaches.
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2.1.2 Approach 2: Display the estimates with uncertainty intervals

There is a better way to summarize these results than in terms of significant vs. non-
significant results. Figure 4 shows the estimated means and 95% confidence intervals in
log milliseconds of the agreement attraction effect in the 10 studies.

Using confidence intervals to summarize the results leads to two observations: First, 5

the mean effect across the studies is consistently negative. Looking for such consistency
across multiple studies is referred to by Gelman and Hill (2007) as the “secret weapon”;
we will presently show (Approach 3) how to formalize this suggestion. The second
important observation is the noisiness of the estimates. For example, on the log scale,
the largest estimate (study 1) has an effect (back transformed to milliseconds) of −75 10

ms, and a 95% confidence interval spanning [−133,−16] ms. Such a large confidence
interval suggests that under repeated sampling, the sample mean will be highly variable.
Indeed, a larger-sample replication attempt of study 1 (181 participants as opposed to 40
participants in the original study) shows a much narrower interval and a smaller mean
effect estimate: −22 [−46, 3] ms (Jäger et al. 2020). The difference between Approach 15

1 and 2 is that in t- or (equivalently) p-value based reasoning, we only focused on
how many effects were significant; there was no discussion about the estimate of the
magnitude of the effect and the uncertainty of the estimated difference in means. In
Approach 2, the noisiness of the estimate is of central importance.

Even though the sample sizes in the 10 studies, given the experiment design and 20

research question, are too small to give us sufficiently high power (Figure 2), by looking
at the estimates and their 95% confidence intervals from the 10 studies side by side, we
could still conclude that the data are at least consistent with the theoretical prediction
that the effect should be negative in sign, with the qualification that the true value of the
effect is likely to be much smaller, and therefore strong conclusions should not be drawn 25

from these data. The true effect is likely to be smaller because papers are generally
published selectively based on significance, and if the studies reported are underpowered,
Type M error becomes an issue.

2.1.3 Approach 3: Conduct a meta-analysis

The graphically based reasoning we did above was an informal meta-analysis. It is 30

possible to synthesize the information from the 10 studies formally. We can carry out a
so-called random-effects meta-analysis (Gelman et al. 2014; Normand 1999; Sutton and
Abrams 2001; Van Houwelingen et al. 2002). Such a meta-analysis produces an estimate
of the effect given all the estimates from the studies, weighting (or partially pooling)
each study’s estimate by its uncertainty (standard error). The larger the standard error in 35

a particular study, the less influence the study has on the meta-analysis mean.
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Formally, a random-effects meta-analysis is simply a linear mixed model (Bates,
Maechler, et al. 2015) with varying intercepts. We assume that the true unknown effect
we are interested in (here, the agreement attraction effect) is the parameter 𝜃. Given
estimates 𝑑 of the effect, along with their standard errors SE, from 𝑖 = 1, . . . , 𝑛 studies,
assume that the observed estimates 𝑑 are generated as follows:5

𝑑𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃𝑖, 𝑆𝐸𝑖)

𝜃𝑖 refers to each individual study’s true (unknown effect); this will differ from
study to study due to differences in design, labs, protocols, etc., across the research
groups conducting these studies. We further assume that the true effect 𝜃 generates these
individual studies’ true estimates, with some variability, represented by the standard
deviation 𝜏 :10

𝜃𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃, 𝜏)

For further details, and examples of meta-analyses in psycholinguistics, see Bürki
et al. (2020); Jäger et al. (2017); Mahowald et al. (2016); Nicenboim et al. (2018, 2020).

Figure 4 shows the meta-analysis confidence interval (black horizontal lines). These
are actually not frequentist confidence intervals, but so-called Bayesian 95% credible
intervals. They represent the range over which one can be 95% certain that the values15

of the effect lie, given the data and model. The 95% credible interval is going to be
influenced by the data (if the data are biased, the interval will be too), and the model (if
the model is incorrect, then this can affect the interval). So, being 95% certain about the
range of plausible values of the effect doesn’t necessarily entail that the interval reflects
the true values of the effect. Nicenboim et al. (2018) is a tutorial article that explains20

how to carry out such analyses, using an example from linguistics.
Thus, if data from multiple (low-powered) experiments exist, we can synthesize

what we can learn from these via a meta-analysis. This is one way to realize the
recommendation to “accept uncertainty and embrace variation” (Gelman 2018): focus
on and interpret the uncertainty of the estimate from the accumulated evidence before25

drawing any firm conclusions about the effect. The meta-analysis estimates in Figure 4
show that the mean agreement attraction effect on the millisecond scale is −35, with
95% credible interval [−49,−21] ms. This estimate is consistent with the theoretical
claim of a speedup. Whether this amounts to a discovery claim, i.e., whether there is
evidence in favor of an effect, requires much more investigation, using formal hypothesis30

testing tools such as Bayes factors (Kruschke 2014; Schad et al. 2021; Wagenmakers
et al. 2018).

Once we have such a theoretically predicted range of effects, we can use it to
interpret future data. We turn to this approach next.
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Figure 4: The mean agreement attraction effect and 95% confidence intervals from the fre-
quentist analyses of 10 reading studies. The horizontal black lines show the 95% Bayesian
credible interval of the meta-analysis estimate, computed by synthesizing the evidence from
the 10 studies.

2.1.4 Approach 4: Use a region of practical equivalence

Sometimes, quantitative predictions for an effect are available. These could be the
meta-analysis estimates available from existing work, or they could be derived from a
computational model. Figure 5 shows the estimates from a larger meta-analysis than
the one done above (Jäger et al. 2017), as well as the predicted range of effects from 5

the computational model for agreement attraction mentioned earlier (Jäger et al. 2020;
Vasishth 2020). In Figure 5, the meta-analysis range is shown as black vertical lines
and the model predictions and the estimates from the individual studies are shown as
probability distributions.

Given the model’s predicted range of values for the agreement attraction effect, we 10

can see that the meta-analysis estimate, and estimates from the 10 studies are consistent
with the predicted range. The meta-analysis credible interval overlaps almost exactly
with the model’s predictions. From this, we would conclude that the evidence from
published studies on agreement attraction is at least consistent with model predictions.
A future study could use the model’s predictions as well as the meta-analysis estimates 15

to interpret their data in the context of the theory’s predictions.
Comparing the estimates derived from individual studies to a predicted range of

effects is not a new idea (Freedman et al. 1984; Spiegelhalter et al. 1994). In recent years,
this idea has been re-introduced into psychology by Kruschke (2014) as the region of
practical equivalence (ROPE) approach. The essential idea behind interpreting data using 20

a ROPE is summarized in Figure 6. Assume that we have a model prediction spanning
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Figure 5: Ridgeplots showing the distributions of the effect of interest from 10 published
reading experiments (eyetracking and self-paced reading) on agreement attraction; the stud-
ies are ordered by the magnitude of the mean effect. Also shown is the model’s probability
distribution of the predicted effect, computed using a large-sample (n=181) data-set investi-
gating agreement attraction (Engelmann et al. 2020; Jäger et al. 2020; Vasishth 2020); the
model’s prediction is labeled “model” in the figure. For reference, we also show the estimate
of the agreement attraction effect in the large-sample study (this is labeled “repl (n=181)”);
this study was a replication attempt of study 1. The black vertical lines mark the 95% credible
interval of a meta-analysis estimate computed using all published reading studies that were
available in 2016 that investigated agreement attraction (Jäger et al. 2017).
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[−36,−9] ms; this is in fact the model prediction reported in Jäger et al. (2020). Then, if
we aim to run our experiment until we have the same width as the predicted range (here,
−9− (−36) = 27 ms), then there are five possible intervals that can be observed. These
uncertainty intervals are not frequentist confidence intervals, but Bayesian 95% credible
intervals; they demarcate plausible ranges of values for the effect, given the model and 5

data.
The observed uncertainty interval can be:

A. entirely to the right of the predicted interval.
B. entirely to the left of the predicted interval.
C. to the right of the predicted interval but overlapping with it. 10

D. to the left of the predicted interval but overlapping with it.
E. within the predicted range (this is the case in Figure 5).

Only situation E shows a convincing consistency with the quantitative prediction. A and
B are inconsistent with the model prediction; and C and D are also consistent with the
quantitative prediction, but unlike E are inconclusive. If, for some reason, one cannot 15

reach the desired precision (width of 27 ms), there is a sixth possibility: the observed
interval may overlap with the predicted range but may be much wider than it (here, the
width of the predicted range is 27 ms). That would be an uninformative, low-precision
study.

A
B
C
D
E

-36 ms -9 ms

Figure 6: The five possible outcomes when using the null region or “region of practical equiv-
alence” method for decision-making (Kruschke, 2015). Outcomes A and B are inconsistent
with the quantitative predictions of the theory; C and D are inconclusive; and E is consistent
with the quantitative theoretical prediction.

In contrast to the region of practical equivalence approach described above, what 20

linguists usually predict is the sign of an effect, but they do not attend to the magnitude
or the uncertainty. But a prediction like “the effect will be negative in sign” is not partic-
ularly useful because this implies that an effect with mean −500 ms that is statistically
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Figure 7: A schematic summary of the Roberts and Pashler (2000) discussion regarding
what constitutes a good fit of a model to data. If a model predicts a positive correlation
between two variables 𝑥 and 𝑦, the strong support for the model can only be argued for
if both the data and the model predictions are highly constrained: the model must make
precise predictions, and the data must have low uncertainty associated with it. The figure
source: 10.6084/m9.figshare.14241869.

significant would validate the prediction just as well as a significant −10 ms effect. As
discussed above, under low power, statistically significant large effects are very unlikely
to be an accurate estimate due to Type M error (Gelman and Carlin 2014).

The region of practical equivalence approach is also relevant to more general issues
relating to model/theory evaluation. As Roberts and Pashler (2000) have pointed out5

in their classic article, a vague theoretical prediction (e.g., “the effect is predicted to
have a negative sign”) and/or a very uncertain estimate from the data (an effect with a
very wide 95% confidence interval) both lead to very weak support for the theoretical
prediction. In psychology and linguistics, the Roberts and Pashler (2000) discussion on
what constitutes a persuasive evaluation of a model has not yet received the attention it10

deserves. The essential idea in their paper is summarized in Figure 7. A vague theory
will allow a broad range of predictions, and a data-set which has a lot of uncertainty
associated with the estimate will be uninformative when testing a prediction. In order to
argue that the data are consistent with a theory, it is necessary to have both a constrained
quantitative prediction, and a high-precision estimate of the effect.15

In summary, with the region of practical equivalence approach, the focus is on
graphically visualizing the uncertainty of the estimates from different experiments, with
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reference to a predicted range of effects. The Roberts and Pashler (2000) criteria for
deciding what constitutes a good fit is closely related to this approach, because they
also place the focus on the range of quantitative predictions made by the model, and the
uncertainty associated with the estimate of the effect in the data.

3 Planning future studies using available 5

information

One important point that we emphasized in the above discussion is the importance of
running an informative experiment (when feasible). This involves ensuring that there is
as little measurement error as possible (Loken and Gelman 2017), that the experiment
design is thought out well so as to have a good chance of detecting the effect (Gelman 10

and Carlin 2014), and that sample size (number of participants and items) is high enough
to have a reasonably good chance of detecting the effect of interest (Cohen 1988).

In practice, how can one plan a study such that one ends up with an informative
experiment? One approach, which focuses on achieving a tight enough confidence
interval to be informative for the research question at hand, is to define a ROPE based on 15

a meta-analysis, quantitative predictions from a model, or expert judgement (O’Hagan
et al. 2006). For an example using judgement about expected ranges of effect sizes
for deciding on a sample size, see Vasishth et al. (2018). Another possible approach
is Bayes factor design analysis (Schönbrodt and Wagenmakers 2018); for an example,
see Montero-Melis et al. (2019) (although the way that these authors compute Bayes 20

factors is not really appropriate; for further details, see Schad et al. (2021)). The adaptive
Bayesian methods developed for clinical trials (Berry et al. 2010; Spiegelhalter et al.
2004) also have a lot of potential applications in linguistics and psychology.

An alternative (purely frequentist) approach to ensuring that one has precise enough
estimates is to conduct a power analysis. One can use quantitative predictions based on a 25

meta-analytic estimate in the following way for planning a future study. As an example,
consider a study with two conditions. We want to plan a new, higher-powered study,
assuming that a meta-analysis estimate (along with its 95% confidence interval) reflects
the best guess we have of the effect. We proceed as follows (all the code for reproducing
these analyses is shown in the appendix): 30

1. Extract all the parameter estimates from the linear mixed model used to analyze
an existing study (or studies, if more than one is available). This includes all the
variance components estimated by the linear mixed model.

2. Using the above estimates, generate simulated data 100 times (or more) repeatedly
using the meta-analysis estimates. Using such a simulation, compute the proportion 35
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of times that the null hypothesis is rejected; this gives us the estimated range of
power for the meta analysis mean and 95% confidence interval.

3. Use the above simulation technique to work out the range of participants that would
be needed to achieve at least 80% power.

When we carry out such a simulation-based computation using study 1’s data, what we5

find is that for the sample size of 40 participants and 48 items in study 1, our estimated
power ranges from 0.25 to 0.77. We can now easily compute the power for, e.g., 300
participants: for the mean estimate from the meta-analysis, the estimated power is 1,
with lower and upper bounds ranging from 0.77 to 1. The wide range of uncertainty
in the power calculation arises due to the uncertainty implied by the 95% confidence10

interval of the meta-analysis estimate.
We carried out the power analysis above “by hand”, i.e., by writing custom code that

generated simulated data. There are ready-made functions/packages available that can
automate the process to a large extent: see the packages simr (Green et al. 2021) and
designr (Rabe et al. 2021). Accessible tutorials for automating the simulation-based15

power computation process are also available (Brysbaert and Stevens 2018; DeBruine
and Barr 2020). For a Bayesian perspective on power analysis, see Kruschke and Liddell
(2018); Schad et al. (2021).

Our discussion here is heavily focused on statistical power. Of course, power is
not the only important issue in experimental science: other factors like measurement20

error and a strong theoretical foundation are also very important. But it is important to
understand that without adequate power, the significance testing paradigm breaks down.
This is why power calculations need to become an integral part of the data analysis
workflow.

4 Some potential objections25

We encounter various objections to the points we have raised in this paper. We discuss
some of these next.

4.1 Is there a danger of “uncertainty overshoot”?

“Uncertainty overshoot” could be a danger: we may become overly conservative when
drawing conclusions from data. In the practical running example in this paper, we have30

discussed the conditions under which strong support for a theory can be argued for:
both the theory and the data have to be sufficiently informative (Roberts and Pashler
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2000). In all other situations, uncertainty undershoot is not very likely; far more likely is
“certainty overshoot”. In practice, what we see in the literature are over-confident claims
that fail to be validated upon closer scrutiny.

4.2 Will over-cautious reporting make papers difficult to
publish? 5

Researchers sometimes object to proposals demanding weaker claims in published
articles with the argument that it would make papers more difficult to publish if one
does not make a decisive claim. We consider it a questionable research practice to make
a decisive claim when none is warranted statistically. Neveretheless, these concerns
do have some basis: sometimes journals, editors, and reviewers explicitly state that 10

they want certainty or “closure” in a paper, and that expressing uncertainty about the
conclusions does sometimes lead to rejection. However, our experience in recent years
has been that the situation is changing. Editors and reviewers have started to appreciate
open discussion of uncertainty, especially if one has done one’s best to get to the facts
(e.g., through many replication attempts, or large sample studies; usually both). Here are 15

some examples of papers that explicitly express uncertainty about the findings and were
nevertheless published in a major psycholinguistics journal:
– In Vasishth et al. (2018), one out of seven experiments showed an effect that was

consistent with a theoretical claim, but was nevertheless unexpected because no
other study had found such an effect in the language. In the conclusion, the authors 20

wrote:
One interesting suggestion from this 100-participant study is that the . . . effect that is predicted
by [the theoretical account under study] may have some weak support. Since this is, to our
knowledge, the first time that any evidence for [the theoretical claim] has been seen in German,
clearly further investigation is needed. 25

– In a single large-sample eyetracking study reported in Jäger et al. (2020), in total
reading times the authors found effect estimates consistent with a particular theory
of sentence processing. But in first-pass regressions, they also found effects not
consistent with this theory’s predictions. It is not clear which dependent measure
one should rely on. Accordingly, in the paper, the authors openly discuss the support 30

(or lack thereof) for the theoretical claim, conditional on the dependent measure
considered. The paper does not end with a clear conclusion.

Other researchers have also published papers in which power analyses were carried
out to understand the properties of the experiment design, and/or the results framed
appropriately without overly strong conclusions. Some examples are Montero-Melis 35

et al. (2017, 2019); Xie and Jaeger (2020); Xie et al. (2021).
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Despite all the positive developments exemplified above, papers (including those
from the first author’s lab) do continue to be rejected for not providing sufficiently
conclusive results. We hope that this situation will change some day. A major goal of
the present paper is to help towards normalizing openness in expressing our uncertainty
about our conclusions. The alternative to maintaining uncertainty about our conclusions5

is a proliferation of exaggerated conclusions that will probably not hold up to closer
scrutiny. This is in fact what has happened in social psychology and other areas: claims
have been published that are non-replicable. Linguistics can learn from these past
mistakes in other fields, and develop a culture of accepting and quantifying uncertainty
about the conclusions that can be drawn from a particular study.10

It is important to stress here that our point is not that researchers should only
publish high-powered studies. Often, it is impossible to run a sufficiently powered study;
examples are experiments involving field work in remote regions of the world, and studies
on aphasia. Science is an incremental process, and eventually enough information can
accumulate (e.g., through meta-analyses) about a research topic. As Simmons et al.15

(2011) and many others have pointed out, open availability of data, and reproducible
code and analyses, will be important drivers such an incremental evidence-accumulation
process.

Our goal in this paper is merely to stress the point that we should not present
underpowered studies as furnishing clear evidence for or against a theoretical claim,20

otherwise we risk flooding the field with non-replicable results.

4.3 Will increasing the number of replicates per subject
and keeping sample size small solve the power
problem?

Psychologists (Smith and Little 2018) have recommended so-called small-N studies25

as a response to the replication crisis: obtain many repeated measurements from each
participant, but use only a few participants. This approach can be effective in obtaining
accurate estimates in certain specific types of scientific inquiries; for example, Ebbing-
haus discovered several laws of memory with a single subject (himself), and in vision
science it is common to use only a few participants. Small-N studies only make sense30

when it is known that between-subject variability is low or the effect size is so large
that the effect is easy to detect. This situation only rarely arises in linguistics and psy-
cholinguistics. One extreme example where a small-N study would yield robust (i.e.,
replicable) results is asking subjects to rate the acceptability of strings like The boy saw
the girl and Boy the girl the saw. Most linguistic and psycholinguistic studies today35

investigate much more subtle questions with small effect sizes, and these can show
important between-subject variability. In such cases, if the goal is to generalize from a
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sample to a population, there is no way around properly powering the study if one wants
to obtain accurate estimates.

4.4 Can some effects already be detected with small
sample studies?

There is a commonly-encountered fallacy relating to sample sizes that Loken and Gelman 5

(2017) summarize as “that which does not kill statistical significance makes it stronger.”
Some researchers think that if one observes a significant effect with a small sample size,
that effect is all the more convincing. For example, Kuang et al. (2007) state (footnote
11): “. . . the fact that we get significant differences in spite of the relatively small samples
provides further support for our results.” 10
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Figure 8: The distribution of effect estimates that are statistically significant when the true
value of the effect in the Gibson and Wu (2013) data-set is 120 ms (shown by the vertical
line). The histogram shows that most of the estimates that are statistically significant under
repeated sampling using simulated data are overestimates, i.e., they are Type M errors.

Such misunderstandings can easily be dispelled through simulation-based investi-
gation of one’s experiment design. To take a concrete example, Gibson and Wu (2013)
obtained a significant effect in a two-condition repeated measures design with a sample
size of 37 participants and 15 items (originally there were 16 items, but one item was
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removed). One can adapt the simulation code shown in the appendix to establish that
the significant effect was likely a Type M error, arising from an underpowered study. In
the Gibson and Wu (2013) study, the estimate of the difference between the conditions
was approximately 120 ms (they analyzed the data on the raw ms scale; we follow
their approach here). Although this estimate is larger than the approximately 100 ms5

difference found in English relative clauses (Grodner and Gibson 2005), let’s assume
that the true difference between relative clause processing times in Chinese is in fact 120
ms. If we were to repeatedly sample data from such a design (the appendix shows how
this can be done), with sample size 40 subjects and 16 items, we would find that almost
all the statistically significant effects are driven by effect estimates larger than 120 ms.10

As shown in Figure 8, 89 percent of the significant effects are based on overestimates of
the effect (the significant estimates can be as much as 2.4 times larger than 120 ms). If
the true effect had been 60 ms, the probability of overestimating the effect size given a
significant result is 100 per cent, with the estimate being as much as 3.2 times larger than
60 ms. This kind of simulation is an easy way to establish that a significant effect based15

on a small sample size is not very convincing, because it is based on an overestimated
effect size.

In summary, the importance of power cannot be stressed enough. Power should be
seen as the ball in a ball game; it is only a very small part of the sport, because there
are many other important components. But the players would look pretty foolish if they20

arrive to play on the playing field without the ball. Of course, power is not the only thing
to consider in an experiment; no amount of power will help if the design is confounded
or introduces a bias in some way.

5 Concluding remarks

We have argued that statistical analyses in linguistics and related areas should follow the25

best practice recommendations of statisticians and psychologists: they should focus on
uncertainty quantification rather than just conducting null hypothesis significance testing
and drawing overly strong conclusions from data. We presented specific examples that
showed how this could be done in practice, and the advantages that come with using
such an approach as regards theory evaluation.30
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Appendix

A Generating simulated data to compute
power

Here we provide code for generating simulated data, and for computing power for a
two-condition experiment.5

A.1 Function for generating simulated data

First, we write a function for producing data from a Normal likelihood, assuming a
varying intercepts and varying slopes model, for participants and items. The underlying
model assumed is as follows.

Let 𝑗 index participant id, and let 𝑘 index item id. The variable cond is a sum-10

coded contrast (Schad et al. 2020), where +1/2 represents one condition a and −1/2

the other condition b. Thus, a negative sign on the 𝛽 coefficient would be consistent with
a theoretical prediction of a speedup in condition a vs. b.

𝑦𝑘𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝛼+ 𝑢0𝑗 + 𝑤0𝑘 + (𝛽 + 𝑢1𝑗 + 𝑤1𝑘)× 𝑐𝑜𝑛𝑑𝑘𝑗 , 𝜎)

with the following sources of variability:
– 𝑢0𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢0)15

– 𝑢1𝑗 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢1)

– 𝑤0𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑤0)

– 𝑤1𝑘 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑤1)

Here, we are assuming no correlation between the varying intercepts and slopes; if one
wants to assume such a correlation, one can easily modify the code. See Jäger et al.20

(2020); Vasishth et al. (2018) for example code.
Data from the above model can be generated using the following function:

library(MASS)

gen_fake_norm <- function(nitem=NULL,nsubj=NULL,

alpha=NULL,beta=NULL,25

sigma_u0=NULL,

sigma_u1=NULL,

sigma_w0=NULL,

sigma_w1=NULL,
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sigma_e=NULL){

## prepare data frame for two condition in a Latin square design:

g1<-data.frame(item=1:nitem,

cond=rep(c("a","b"),nitem/2))

g2<-data.frame(item=1:nitem, 5

cond=rep(c("b","a"),nitem/2))

## assemble data frame in long format:

gp1<-g1[rep(seq_len(nrow(g1)),

nsubj/2),] 10

gp2<-g2[rep(seq_len(nrow(g2)),

nsubj/2),]

fakedat<-rbind(gp1,gp2)

15

## add subjects:

fakedat$subj<-rep(1:nsubj,each=nitem)

fakedat<-fakedat[,c(3,1,2)]

## contrast coding:

fakedat$cond<-ifelse(fakedat$cond=="a",1/2,-1/2) 20

## subject random effects:

u0<-rnorm(n=length(unique(fakedat$subj)),

mean=0,sd=sigma_u0)

u1<-rnorm(n=length(unique(fakedat$subj)), 25

mean=0,sd=sigma_u1)

## item random effects

w0<-rnorm(n=length(unique(fakedat$item)),

mean=0,sd=sigma_w0)

w1<-rnorm(n=length(unique(fakedat$item)), 30

mean=0,sd=sigma_w1)

## generate data row by row:

N<-dim(fakedat)[1]

rt<-rep(NA,N) 35

for(i in 1:N){

rt[i] <- rnorm(1,alpha +

u0[fakedat[i,]$subj] +

w0[fakedat[i,]$item] +

(beta+u1[fakedat[i,]$subj]+ 40
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w1[fakedat[i,]$item])*fakedat$cond[i],

sigma_e)}

fakedat$rt<-rt

fakedat$subj<-factor(fakedat$subj)

fakedat$item<-factor(fakedat$item)5

fakedat

}

A.2 Extract parameter estimates from fitted model

Given a data-set dat containing a predictor cond with two levels, fit a so-called
maximal model (Barr et al. 2013), and then write a function to extract all parameter10

estimates from the model as a list.
An example data-set is the Gibson and Wu (2013) Chinese relative clause data,

which has 37 participants and two conditions, subject and object relatives. Originally,
there were 16 items, but one was removed by the authors, leaving 15 items. We analyze
the data on the log ms scale because the normality assumption of the residuals is violated15

with raw reading times.
First, we load and pre-process the data, and choose the relevant subset of the data

for analysis (this is the head-noun region in the sentence; see Gibson and Wu (2013) for
details).

## install from: https://github.com/vasishth/lingpsych20

library(lingpsych)

data("df_gibsonwu")

## sum-contrast coding of predictor:

gw$cond <- ifelse(

gw$type%in%c("subj-ext"),-1/2,1/2)25

## subset critical region

dat<-subset(gw,region=="headnoun")

Next, we fit a linear mixed model, with a full variance-covariance matrix. This
model is overparameterized: the correlation parameters are not estimable. The reason30

we include the correlations in the model even though they are not estimable is just for
convenience in extracting the variance components: the extract_parests_lmer
function below happens to assume a full variance-covariance matrix model. In our
simulations below, we will not attempt to estimate the correlation parameters when we
repeatedly generate simulated data.35
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m<-lmer(log(rt)~cond+(1+cond|subj)+(1+cond|item),dat,

control=lmerControl(calc.derivs=FALSE))

## function for extracting all parameter estimates:

extract_parests_lmer<-function( 5

mod=m){

alpha<-summary(mod)$coefficients[1,1]

beta<-summary(mod)$coefficients[2,1]

## extract standard deviation estimate:

sigma_e<-attr(VarCorr(mod),"sc") 10

## assemble variance covariance matrix for subjects and items:

subj_ranefsd<-attr(VarCorr(mod)$subj,"stddev")

sigma_u0<-subj_ranefsd[1]

sigma_u1<-subj_ranefsd[2]

item_ranefsd<-attr(VarCorr(mod)$item,"stddev") 15

sigma_w0<-item_ranefsd[1]

sigma_w1<-item_ranefsd[2]

## return list of params:

list(alpha=alpha,beta=beta,sigma_e=sigma_e,

sigma_u0=sigma_u0,sigma_u1=sigma_u1, 20

sigma_w0=sigma_w0,sigma_w1=sigma_w1)

}

The usage of this function will take as input the model that we want to extract the
parameters from:

parest<-extract_parests_lmer(mod=m) 25

A.3 Function for computing power

Next, we write a function, compute_power, that (i) takes the parameter estimate
values extracted above, (ii) generates simulated data using the gen_fake_norm func-
tion shown above, with 48 subjects and 40 items, (iii) fits a linear mixed model to the
simulated data, (iv) extracts the t-value of the effect from the model, and (v) computes 30

the proportion of absolute t-values that are larger than the critical value of 2. This is our
estimated power.

compute_power<-function(nsim=100,

alpha=parest$alpha,
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beta=parest$beta,

sigma_e=parest$sigma_e,

sigma_u0=parest$sigma_u0,

sigma_u1=parest$sigma_u1,

sigma_w0=parest$sigma_w0,5

sigma_w1=parest$sigma_w1,

nsubj=48,

nitem=40){

tvals<-c()

for(i in 1:nsim){10

fakedat<-gen_fake_norm(nitem=nitem,

nsubj=nsubj,

alpha=alpha,

beta=beta,

sigma_u0=sigma_u0,15

sigma_u1=sigma_u1,

sigma_w0=sigma_w0,

sigma_w1=sigma_w1,

sigma_e=sigma_e)

m<-lmer(rt~cond+(1+cond||subj)+(1+cond||item),20

fakedat,

control=lmerControl(calc.derivs=FALSE))

tvals[i]<-summary(m)$coefficients[2,3]

}

mean(abs(tvals)>2)25

}

The function can now be used as follows. Suppose we want to know what the power
is for an effect size of -0.02 (log ms scale) given our sum-contrast parameterization.

compute_power(beta=-0.02)

One can compute the power for different sample sizes (number of participants or30

items):

compute_power(nsubj=50,beta=-0.02)

compute_power(nitem=80,beta=-0.02)
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The code shown above can easily be extended for more complex models and for
different likelihoods. For examples, see Jäger et al. (2020); Vasishth et al. (2018). A
more sophisticated Bayesian approach is discussed in Schad et al. (2021).
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