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HOW TO EXPLAIN THE EMPIRICAL SUCCESS OF

GENERALIZED TRIGONOMETRIC FUNCTIONS IN

PROCESSING DISCONTINUOUS SIGNALS

Fourier series and their limitations: a brief reminder. One of the
discoveries of Isaac Newton was that if we place a prism in the path
of (white) solar light, this light will decompose into lights of di�erent
colors. From the mathematical viewpoint, a monochromatic light is a
sinusoid, i.e., the dependence x(t) of its intensity x on time t has the
form x(t) = A · sin(ω · t + φ) for some constants A, ω, and φ. The
intensity of original white light is equal to the sum of these components,

i.e., to x(t) =
n∑

i=1

Ai · sin(ωi · t+ φi).

Newton showed that any light can be decomposed in this way, i.e.,
in e�ect, that any signal x(t) can be represented as a linear combination
of sinusoids corresponding to di�erent frequencies ω.

This idea was explored in the early 19 century by Jean-Baptiste
Joseph Fourier, who showed that this representation helps in solving
many physics-related di�erential equations. Computational methods
based on such a representation are known as Fourier techniques. At
present, these techniques are ubiquitous in science and engineering; see,
e.g., [5].

However, the Fourier techniques have their limitations: while they
works well for smooth signals, they do not work as well for discontinuous
signals that describe abrupt transitions � such as phase transitions,
earthquakes, etc. Speci�cally, if we represent a discontinuous signal as a
sum of sinusoids, we get large oscillations near the discontinuity; this is
known as the Gibbs phenomenon.

It is possible to avoid these oscillations if, instead of representing
a signal as a linear combination of sinusoids, we represent it as a linear
combination of discontinuous functions � e..g., Haar wavelets [4] � but the
resulting representation is not very computationally e�cient for smooth
signals.
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It is therefore desirable to come up with a representation which would
be e�cient both for smooth and for discontinuous signals.

Generalized trigonometric functions. A successful semi-heuristic
approach to solving the above problem is the use of generalized

trigonometric functions instead of the sinusoids. Speci�cally, a sinusoid
can be de�ned as a function which is inverse to the integral∫

dt√
1− t2

=

∫
dt

(1− t2)1/2
,

expanded by periodicity to the entire real line. A generalized
trigonometric function can be de�ned as a periodic extension of an
inverse function to a more general integral∫

dt

(1− tp)1/q

for general values p and q. The derivative of this generalized function
is no longer everywhere continuous � and the farther p and q from the
value 2, the larger this discontinuity.

Empirically, these functions � for appropriate p and q � are good
approximations both for smooth and for discontinuous signals; see,
e.g., [2, 3].

Challenge. The empirical success is here, but so far, there have been
no convincing theoretical explanation for this success. In principle, we
can think of many generalizations of trigonometric functions, and it is
not clear whey namely this generalization is empirically successful.

This absence of theoretical explanation prevents the wider use of this
technique: the users are reluctant to use it, since they are not sure that
the empirical success so far is not an artifact.

Our objective. In this paper, we provide a physics-motivated
theoretical explanation for the empirical success of the generalized
trigonometric functions.

Physical meaning of sinusoids: reminder. Sinusoidal signals are
frequently observed in nature, because they correspond to simple
oscillations. Namely, they correspond to situations in which the potential

energy Epot is equal to Epot =
1

2
·c·x2 for some constant c. In Newtonian

mechanics, the kinetic energy is equal to Ekin =
1

2
·m · (ẋ)2. Thus, the
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overall energy E = Epot + Ekin is equal to

E =
1

2
· c · x2 +

1

2
·m · (ẋ)2.

Sinusoidal oscillations correspond to the idealized case when we can
ignore the friction and when, therefore, the energy is preserved:

1

2
· c · x2 +

1

2
·m · (ẋ)2 = E0 = const.

Thus, once we know the coordinate x, we can determine ẋ as

(ẋ)2 =
2E0 − c · x2

m
,

so

ẋ =
dx

dt
=

√
2E0 − c · x2

√
m

.

This equation can be simpli�ed if we separate the variables, i.e., if we
move all the terms related to x to the left-hand side and all the terms
related to t to the right-hand side. This can be done if we divide both
sides of the above formula by the right-hand side and then multiply both
sides by dt:

√
m · dx√

2E0 − c · x2
= dt.

In appropriately selected units of time and x, we have

dt =
dx√
1− x2

,

thus, the dependence t(x) of t on x has the form

t =

∫
dx√
1− x2

.

The desired dependence x(t) of x on t is the inverse function � which, as
we have mentioned, is exactly the sinusoid.

Discussion. The formula for the potential energy Epot =
1

2
· c · x2 is

scale-invariant in the sense that:

• if we change the measuring unit for x to a one which is λ times
smaller and thus, change all the numerical values from x to x′ =
λ · x,
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• then, by appropriately re-scaling the unit for measuring energy,
i.e., by taking E′ = λ2 ·E, we will have the exact same dependence

between E′ and x′ in the new units: E′ =
1

2
· c · (x′)2.

Similarly, the dependence Ekin =
1

2
· c · (ẋ)2 is also scale-invariant.

Our idea. Scale-invariance � i.e., the fact that the physical laws do
not depend on the choice of measuring units � is an important physical
principle. However, scale-invariance does not necessarily mean that the
potential energy should be proportional to the square of x: e.g., the
dependence Epot = x3 is also scale-invariant.

Let us therefore consider a general case in which both components
Epot(x) and Ekin(ẋ) of the overall energy E = Epot(x) + Ekin(ẋ) are
scale-invariant.

Our idea leads exactly to generalized trigonometric functions.

Scale-invariance of the dependence Epot(x) means that for every
parameter λ describing re-scaling of the coordinate x, there exists an
appropriate re-scaling µ(λ) of energy that preserves this dependence, i.e.,
for which E = Epot(x) implies that E′ = Epot(x

′), where E′ = µ(λ) · E
and x′ = λ · x. Substituting the expressions for E′ and x′ into the above
formula, we get µ(λ) · E = Epot(λ · x). Since E = Epot(x), we thus get
µ(λ) · Epot(x) = Epot(λ · x).

It is known (see, e.g., [1]) that all continuous (or even integrable)
solutions of this functional equation have the form Epot(x) = c · xp for
some constants c and p. Similarly, scale-invariance of the expression for
kinetic energy implies that Ekin(ẋ) = m · (ẋ)q for some constants m
and q.

Thus, the overall energy E = Ekin+Epot takes the form E = c ·xp+
m · (ẋ)q. In the no-friction approximation, energy is preserved, so the
left-hand side is a constant. By selecting appropriate units for energy,
we can make this constant equal to 1. Then, by selecting appropriate
units for x and for time (hence for ẋ), we can get a simpli�ed expression
1 = xp + (ẋ)q. In this case, (ẋ)q = 1− xp, hence

ẋ =
dx

dt
= (1− xp)1/q,

so

dt =
dx

(1− xp)1/q
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and

t(x) =

∫
dx

(1− xp)1/q
.

The desired dependence x(t) is the inverse function to this integral t(x)
� and is, thus, exactly the above-described generalized trigonometric
function.

Conclusion. We have shown that a seemingly arbitrary generalization
of sinusoids can be naturally derived from a physically meaningful
model � and the only functions obtained from this model are indeed
the generalized trigonometric functions. This derivation provides a
theoretical explanation of the empirical success of these functions
� while there are many mathematically possible generalizations of
sinusoids, these functions are the only one which are consistent with
the corresponding physical model.
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