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How to Explain Ubiquity of Constant Elasticity
of Substitution (CES) Production and Utility
Functions Without Explicitly Postulating CES

Olga Kosheleva, Vladik Kreinovich, and Thongchai Dumrongpokaphan

Abstract In many situations, the dependence of the production or utility on the
corresponding factors is described by the CES (Constant Elasticity of Substitution)
functions. These functions are usually explained by postulating two requirements:
an economically reasonable postulate of homogeneity (that the formulas should not
change if we change a measuring unit) and a less convincing CSE requirement. In
this paper, we show that the CES requirement can be replaced by a more convincing
requirement – that the combined effect of all the factors should not depend on the
order in which we combine these factors.

1 Formulation of the Problem

CES production functions and CES utility function are ubiquitous. Most ob-
served data about production y is well described by the CES production function

y =

(
n

∑
i=1

ai · xr
i

)1/r

, (1)

where xi are the numerical measures of the factors that influence production, such
as amount of capital, amount of labor, etc.; see, e.g., [5, 16, 17, 23].
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A similar formula (1) describes how the person’s utility y depends on different
factors xi such as amounts of different types of consumer goods, utilities of other
people, etc.; see, e.g., [6, 11, 12, 28].

How this ubiquity is explained now. The current explanation for the empirical
success of CES function is based on the following two requirements.

The first requirement is that the corresponding function y = f (x1, . . . ,xn) is ho-
mogeneous, i.e., that:

f (λ · x1, . . . ,λ · xn) = λ · f (x1, . . . ,xn). (2)

This requirement makes perfect economic sense: e.g., we can describe different fac-
tors by using different monetary units, and the results should not change if we re-
place the original unit by a one which is λ times smaller. After this replacement,
the numerical value of each factor changes from xi to λ · xi and y is replace by λ · y.
The value f (λ · x1, . . . ,λ · xn) that we obtain by using the new units should thus be
exactly λ times larger than the value f (x1, . . . ,xn) obtained in the original units –
and this is exactly the requirement (2).

The second requirement is that the corresponding function f (x1, . . . ,xn) should
provide constant elasticity of substitution (CES). The requirement is easier to ex-
plain for the case of two factors n = 2. In this case, this requirement deals with
“substitution” situations in which we change x1 and then change the original value
x2 to the new value x2(x1) so that the overall production or utility remain the same.

The corresponding substitution rate can then be calculated as s def
=

dx2

dx1
. The sub-

stitution function x2(x1) is explicitly defined by the equation f (x1,x2(x1)) = const.
By using the formula for the derivative of the implicit function, we can conclude
that the substitution rate has the form

s =−
f,1(x1,x2)

f,2(x1,x2)
,

where we denoted

f,1(x1,x2)
def
=

∂ f
∂x1

(x1,x2) and f,2(x1,x2)
def
=

∂ f
∂x2

(x1,x2).

The requirement is that for each percent of the change in ratio
x2

x1
, we get the same

constant number of percents change in s:

ds

d
(

x2

x1

) = const.
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This explanation needs strengthening. While homogeneity is a reasonable re-
quirement, the above CES condition sounds somewhat too mathematical to be fully
convincing for economists.

To explain the ubiquity of CSE production and utility functions, it is therefore
desirable to come up with additional – hopefully, more convincing – arguments in
favor of these functions. This is what we intend to do in this paper.

2 Main Idea Behind a New Explanation

Main idea. In our explanation, we will use the fact that in most practical situations,
we combine several factors. We can combine these factors in different order:

• For example, we can first combine the effects of capital and labor into a single
characteristic that describes the joint even of both factors, and then combine it
with other factors.

• Alternatively, we can first combine capital with other factors, and only then com-
bine the resulting combined factor with labor, etc.

The result should not depend on the order in which we perform these combinations.

What we do in this paper. In this paper, we show that this idea implies the CES
functions. Thus, we indeed get a new explanation for the ubiquity of CES production
and utility functions.

3 Derivation of the CES Functions from the Above Idea

Towards formalizing our idea. Let us denote a function that combines factors i
and j into a single quantity xi j by fi, j(xi,x j). Similarly, let us denote a function that
combines the values xi j and xkℓ into a single quantity xi jkℓ by fi j,kℓ(xi j,xkℓ). In these
terms, the requirement that the resulting values do not depend on the order implies,
e.g., that we always have

f12,34( f1,2(x1,x2), f3,4(x3,x4)) = f13,24( f1,3(x1,x3), f2,4(x2,x4)). (3)

Additional requirement. In both production and utility situations, for each i and
j, the combination function fi, j(xi,x j) is an increasing function of both variables
xi and x j. It is reasonable to require that it is continuous, and then when one of
the factors tends to infinity, the result also tends to infinity. Under these reasonable
assumptions, the combination functions tends out to be invertible in the following
sense:
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Definition 1. A function f : A×B →C is called invertible if the following two con-
ditions are satisfied:

• for every a ∈ A and for every c ∈C, there exists a unique value b ∈ B for which
c = f (a,b);

• for every b ∈ B and for every c ∈C, there exists a unique value a ∈ A for which
f (a,b) = c.

Comment. In mathematics, functions invertible in the sense of Definition 1 are called
generalized quasigroups; see, e.g., [4].

Let us now formalize the above requirement.

Definition 2. Let Xi, Xi j, and X be sets, where i = 1,2,3,4. We say that invertible
operations fi, j : Xi ×X j → Xi j and fi j,kℓ : Xi j ×Xkℓ → X (for different i, j, k, and ℓ)
satisfy the generalized associativity requirement if for all xi ∈ Xi, we have

f12,34( f1,2(x1,x2), f3,4(x3,x4)) = f13,24( f1,3(x1,x3), f2,4(x2,x4)). (3)

Comment. In mathematical terms, this requirement is known as generalized medial-
ity [4].

Groups and Abelian groups: reminder. To describe operations that satisfy the
generalized associativity requirement, we need to recall that a set G with an asso-
ciative operation g(a,b) and a unit element e (for which g(a,e) = g(e,a) = a) is
called a group if every element is invertible, i.e., if for every a, there exists an a′ for
which g(a,a′) = e. A group in which the operation g(a,b) is commutative is known
as Abelian.

Proposition. [2, 3, 4, 25, 26, 27] For every set of invertible operations that satisfy
the generalized associativity requirement, there exists an Abelian group G and 1-1
mappings ri : Xi → G, ri j : Xi j → G and rX : X → G for which, for all xi ∈ Xi and
xi j ∈ Xi j, we have

fi j(xi,x j) = r−1
i j (g(ri(xi),r j(x j))) and

fi j,kl(xi j,xkℓ) = r−1
X (g(ri j(xi j),rkℓ(xkℓ))).

Discussion. All continuous 1-D Abelian groups with order-preserving operations
are isomorphic to the additive group of real numbers, with g(a,b) = a+b. Thus, we
can conclude that all combining operations have the form

fi j(xi,x j) = r−1
i j (ri(xi)+ r j(x j)), (4)

i.e., equivalently, fi j(xi,x j) = y means that

ri j(y) = ri(xi)+ r j(x j). (5)
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Let us use homogeneity: result. We will now prove that homogeneity leads exactly
to the desired CES combinations. This will give us the desired new explanation of
the ubiquity of the CES operations.

Homogeneity leads to CES operations: proof. Homogeneity means that if the
relation (5) holds for some values xi, x j, and y, then, for every λ , a similar relation
holds for re-scaled values λ · xi, λ · x j, and λ · y, i.e.:

ri j(λ · y) = ri(λ · xi)+ r j(λ · x j).

To utilize this requirement, let us use the idea of substitution: for each possible value
x′i = xi +∆xi, let us find the corresponding value x′j = x j +∆x j for which the right-
hand side of the formula (5) remains the same – and thus, the combined value y
remains the same:

ri(x′1)+ r j(x′j) = ri(xi +∆xi)+ r j(x j +∆x j) = ri(xi)+ r j(x j). (6)

In general, the substitute value x′j is a function of x′i: x′j = x′j(x
′
i). When ∆xi =

0, i.e., when x′i = xi, we clearly have x′j = x j, so ∆x j = 0. For small ∆xi, we get

y′j = y j + k ·∆xi +o(∆xi), where k def
=

dx′j
dx′i

, so ∆x j = k ·∆xi +o(∆xi) for some real

number k.
Here, ri(xi +∆xi) = ri(xi)+ r′i(xi) ·∆xi +o(∆xi), where, as usual, f ′ denotes the

derivative. Similarly,

r j(x j +∆x j) = r j(x j + k ·∆xi +o(∆xi)) = r j(x j)+ k · r′j(x j) ·∆xi +o(∆xi).

Thus, the condition (6) takes the form

ri(xi)+ r j(x j)+(r′i(xi)+ k · r′j(x j)) ·∆xi +o(∆xi) = ri(xi)+ r j(x j).

Subtracting the right-hand side from the both sides, dividing both sides of the re-
sulting equation by ∆xi, and tending ∆xi to 0, we conclude that

r′i(xi)+ k · r′j(x j) = 0,

i.e., that

k =− r′i(xi)

r′j(x j)
. (7)

Homogeneity means, in particular, that if now apply the combination function ri j
to the values

λ · x′i = λ · xi +λ ·∆xi

and
λ · x′j = λ · x j +λ · k ·∆xi +o(∆xi),
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then we should get the value λ · y. So:

ri(λ · xi +λ ·∆xi)+ r j(λ · x j +λ · k ·∆xi +o(∆xi)) = ri(λ · xi)+ r j(λ · x j). (8)

For small ∆xi, we have

ri(λ · xi +λ ·∆xi) = r(λ · xi)+λ ·∆xi · r′i(λ · xi)+o(∆xi),

where f ′ denote a derivative, and similarly,

r j(λ · x j +λ · k ·∆xi +o(∆x1)) = r(λ · x2)+λ · k ·∆xi · r′j(λ · x j)+o(∆xi).

Substituting these expressions into the formula (8), we conclude that

ri(λ · xi)+λ ·∆xi · r′(λ · xi)+ r j(λ · x j)+λ · k · r′j(λ · x j) ·∆xi +o(∆xi) =

ri(λ · xi)+ r j(λ · x j).

Subtracting the right-hand side from the left-hand side, dividing the result by ∆xi
and tending ∆xi to 0, we conclude that

r′(λ · xi)+ k · r′j(λ · x j) = 0,

i.e., in view of the formula (7), that

r′(λ · xi)−
r′i(xi)

r′j(x j)
· r′j(λ · x j) = 0.

Moving the second term to the right-hand side and dividing both sides by r′i(xi), we
conclude that

r′i(λ · xi)

r′i(xi)
=

r′j(λ · x j)

r′j(x j)
.

The right-hand side of this formula does not depend on xi at all, thus, the left-hand
side also does not depend on xi, it only depends on λ :

r′i(λ · xi)

r′i(xi)
= c(λ )

for some function c(λ ). Thus, the derivative Ri(xi)
def
= r′i(xi) satisfies the functional

equation
Ri(λ · xi) = Ri(xi) · c(λ )

for all λ and xi.
It is know that every continuous solution to this equation has the form r′i(xi) =

Ri(xi) = Ai · xαi
i for some Ai and αi; see, e.g., [4]. For differentiable functions, this

can be easily proven if we differentiate both sides of this equation by c and take

c = 1. Then, we get xi ·
dRi

dci
= c ·Ri. Separating variables, we get
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dRi

Ri
= c · dxi

xi
.

Integration leads to ln(Ri) = c · ln(xi)+C1 and thus, to the desired formula.
Integrating the above expression for r′i(xi), we get ri(xi) = ai · xβi

i +Ci and sim-

ilarly, r j(x j) = a j · x
β j
j +C j. One can easily check that homogeneity implies that

βi = β j and Ci +C j = 0, so the sum ri(xi)+ r j(x j) takes the form ai · xr
i +a j · xr

j.
By considering a similar substitution between xi and y (in which x j remains in-

tact), we conclude that ri j(y) = const · yr, so we indeed get the desired formula
ri j(xi,x j) = (ai · xr

i + a j · xr
j)

1/r. By using similar formulas to combine xi j with xk,
etc., we get the desired CES combination function.

4 Possible Application to Copulas

What is a copula: a brief reminder. Specifically, a 1-D probability distribution of
a random variable X can be described by its cumulative distribution function (cdf)
FX (x)

def
= Prob(X ≤ x). A 2-D distribution of a random vector (X ,Y ) can be similarly

described by its 2-D cdf FXY (x,y) = Prob(X ≤ x&Y ≤ y).
It turns out that we can always describe F(x,y) as

FXY (x,y) =CXY (FX (x),FY (y))

for an appropriate function CXY : [0,1× [0,1]→ [0,1] known as a copula; see, e.g.,
[20, 22].

For a joint distribution of several random variables X , Y , . . . , Z, we can similarly
write

FXY ...Z(x,y, . . . ,z)
def
= Prob(X ≤ x&Y ≤ y& . . . &Z ≤ z) =

CXY ...Z(FX (x),FY (y), . . . ,FZ(z))

for an appropriate multi-D copula CXY ...Z .

Vine copulas. When we have many (n ≫ 1) random variables, then to exactly de-
scribe their joint distribution, we need to describe a general function of n variables.
Even if we use two values for each variable, we get 2n combinations, which for large
n can be astronomically large. Thus, a reasonable idea is to approximate the multi-D
distribution.

A reasonable way to approximate is to use 2-D copulas. For example, to describe
a joint distribution of three variables X , Y , and Z, we first describe the joint distri-
bution of X and Y as FXY (x,y) = CXY (FX (x),FY (y)), and then use an appropriate
copula CXY,Z to combine it with FZ(z):

FXY Z(x,y,z)≈CXY,Z(FXY (x,y),FZ(z)) =CXY,Z(CXY (FX (x),FY (y),FZ(z)).
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Such an approximation, when copulas are applied to one another like a vine, are
known as vine copulas; see, e.g., [1, 7, 8, 10, 13, 14, 15, 18, 19, 21, 24].

Natural analogue of associativity. It is reasonable to require that the result of the
vine copula approximation should not depend on the order in which we combine the
variables. In particular, for four random variables X , Y , Z, and T , we should get the
same result in the following two situations:

• if we first combine X with Y , Z and T , and then combine the two results; or
• if we first combine X with Z, Y with T , and then combine the two results.

Thus, we require that for all possible real numbers x, y, z, and t, we get

CXY,ZT (CXY (FX (x),FY (y)),CZT (FZ(z),FT (t))) =

CXZ,Y T (CXZ(FX (x),FZ(z)),CY T (FY (y),FT (t))).

If we denote a = FX (x), b = FY (y), c = FZ(z), and d = FT (t), we conclude that for
every a, b, c, and d, we have

CXY,ZT (CXY (a,b),CZT (c,d)) =CXZ,Y T (CXZ(a,c),CY T (b,d)).

This is exactly the generalized associativity requirement. Thus, if we extend copu-
las to invertible operations, then we can conclude that copulas can be re-scaled to
associative operations – in the sense of the above Proposition.
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