
SciPost Phys. 7, 075 (2019)

How to GAN LHC events

Anja Butter, Tilman Plehn and Ramon Winterhalder⋆

Institut für Theoretische Physik, Universität Heidelberg, Germany

⋆ winterhalder@thphys.uni-heidelberg.de

Abstract

Event generation for the LHC can be supplemented by generative adversarial networks,

which generate physical events and avoid highly inefficient event unweighting. For top

pair production we show how such a network describes intermediate on-shell particles,

phase space boundaries, and tails of distributions. In particular, we introduce the maxi-

mum mean discrepancy to resolve sharp local features. It can be extended in a straight-

forward manner to include for instance off-shell contributions, higher orders, or approx-

imate detector effects.

Copyright A. Butter et al.

This work is licensed under the Creative Commons

Attribution 4.0 International License.

Published by the SciPost Foundation.

Received 23-07-2019

Accepted 13-11-2019

Published 04-12-2019
Check for

updates

doi:10.21468/SciPostPhys.7.6.075

Content

1 Introduction 1

2 Phase space generation 2

2.1 Standard Monte Carlos 3

2.2 Generative adversarial network 4

2.3 Loss functions for intermediate particles 6

3 Machine-learning top pairs 7

4 Outlook 13

References 14

1 Introduction

First-principle simulations are a key ingredient to the ongoing success of the LHC, and they

are crucial for further developing it into a precision experiment testing the structure of the

Standard Model and its quantum field theory underpinnings. Such simulations of the hard

scattering process, QCD activity, hadronization, and detector effects are universally based on

1

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075
mailto:winterhalder@thphys.uni-heidelberg.de
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.7.6.075&domain=pdf&date_stamp=2019-12-04
http://dx.doi.org/10.21468/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

Monte Carlo methods. These methods come with structural challenges, for example related to

an efficient coverage of the high-dimensional phase space, event unweighting, or complex and

hence slow detector simulations. Some of these problems might be alleviated when we add a

new direction, like machine learning techniques, to our tool box. While we should not expect

them to magically solve all problems, we have seen that modern machine learning can trigger

significant progress in LHC physics. The reason for our optimism related to event generation

are generative adversarial networks or GANs [1], which have shown impressive performance

in tasks like the generation of images, videos or music.

From the experimental side the detector simulation is the most time-consuming aspect of

LHC simulations, and promising attempts exist for describing the behavior of the calorimeter

with the help of generative networks [2–7]. On the theory side, we know that the parton

shower can be described by a neural network [8–11]. It has been shown that neural networks

can help with phase space integration [12,13] and with LHC event simulations [14–16]. One

open question is why the GAN setup of Ref. [14] does not properly work and is replaced by a

variational autoencoder with a density information buffer. Another challenge is how to replace

the ad-hoc Z-constraint in the loss function of Ref. [15] by a generalizable approach to on-shell

resonances. This problem of intermediate resonances is altogether avoided in Ref. [16]. It

remains to be shown how GANs can actually describe realistic multi-particle matrix elements

over a high-dimensional phase space in a flexible and generalizable manner.

In this paper we show how we can efficiently GAN∗ the simulation of the 2 → 6 particle

production process

pp→ t t̄ → (bqq̄′) (b̄q̄q′), (1)

describing all intermediate on-shell states with Breit-Wigner propagators and typical width-

to-mass ratios of few per-cent. We will focus on a reliable coverage of the full phase space,

from simple momentum distributions to resonance peaks, strongly suppressed tails, and phase

space boundaries.

Given this new piece of the event simulation puzzle through fast neural networks it should

in principle be possible to add parton showers, possibly including hadronization, and detector

effects to a full machine learning description of LHC events. Including higher-order correc-

tions is obviously possible and should lead to ever higher gains in computing time, assuming

higher-orders are included in the training data. The interesting question then becomes where

established methods might benefit from the fast and efficient machine learning input. Alter-

natively, we can replace the Monte Carlo event input and instead generate reconstructed LHC

events and use them to enhance analyses or to study features of the hard process. Obviously,

the GAN approach also allows us to combine information from actual data with first-principles

simulations in a completely flexible manner.

Our paper consists of two parts. In Sec. 2 we start by reviewing some of the features

of phase space sampling with Monte Carlo methods and introducing GANs serving the same

purpose. We then add the MMD and describe how its been used to describe intermediate

resonances. In Sec. 3 we apply the combined GAN-MMD network to top pair production

with subsequent decays and show that it describes the full phase space behavior, including

intermediate on-shell particles.

∗From ‘to GAN’, in close analogy to the verbs taylor, google, and sommerfeld.

2

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

2 Phase space generation

As a benchmark model throughout this paper we rely on top pair production with an interme-

diate decay of two W -bosons

pp→ t t̄ → (bW−) (b̄W+)→ (b f1 f̄ ′1) (b̄ f2 f̄ ′2) , (2)

illustrated in Fig. 1. If we assume that the masses of all final-state particles are known, as

this can be extracted from the measurement, this leaves us with 18 degrees of freedom, which

energy-momentum conservation reduces to a 14-dimensional phase space. In addition, our

LHC simulation has to account for the 2-dimensional integration over the parton momentum

fractions.

In this section we will briefly review how standard methods describe such a phase space,

including the sharp features of the intermediate on-shell top quarks and W -boson. The relevant

area in phase space is determined by the small physical particle widths and extends through

a linearly dropping Breit-Wigner distribution, where it eventually needs to include off-shell

effects. We will then show how a generative adversarial network can be constructed such that

it can efficiently handle these features as well.

2.1 Standard Monte Carlos

For the hard partonic process we denote the incoming parton momenta as pa,b and the outgo-

ing fermion momenta as p f . The partonic cross section and the 14-dimensional phase-space

integration for six external particles can be parametrized as

∫

dσ =

∫

dΦ2→6

|M(pa, pb; p1, . . . , p6)|
2

2ŝ
,

with dΦ2→6 = (2π)
4δ(4)(pa + pb − p1 − · · · − p6)

6
∏

f =1

d3p f

(2π)3
1

2p0
f

�

�

�

�

�

p0
f
=
Ç

~p 2
f
+m2

f

. (3)

To cope with the high dimensionality of the integral we adopt advanced Monte Carlo tech-

niques. The integral of a function f (x) over a volume V in Rd

I =

∫

V

dd x f (x) (4)

can be approximated with the help of N random numbers x i distributed according to a nor-

malized density function ρ(x)

∫

V

dd x ρ(x) = 1 , (5)

t

t

W

W

Figure 1: Sample Feynman diagram contributing to top pair production, with inter-

mediate on-shell particles labelled.

3

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

such that

I ≈ SN =
1

N

N
∑

i=1

f (x i)

ρ(x i)
. (6)

For sufficiently large N the variance of this integral scales like

σ2 ≈
1

N − 1

�

1

N

N
∑

i=1

f (x i)
2

ρ(x i)
2
− S2

N

�

, (7)

which means that it can be minimized by an appropriate choice of ρ(x). This requires ρ(x)

to be large in regions where the integrand is large, for instance

ρ(x) =
| f (x)|
∫

V
dd x f (x)

. (8)

This method of choosing an adequate density is called importance sampling. There are several

implementations available, one of the most frequently used is Vegas [17,18].

A major challenge in particle physics applications is that multi-particle amplitudes in the

presence of kinematic cuts typically have dramatic features. Our phase space sampling not

only has to identify the regions of phase space with the leading contribution to the integral,

but also map its features with high precision. For instance, the process illustrated in Fig. 1

includes narrow intermediate on-shell particles. Around a mass peak with Γ ≪ m they lead

to a sharp Breit-Wigner shape of the transition amplitude. A standard way of improving the

integration is to identify the invariant mass variable s where the resonance occurs and switch

variables to
∫

ds
F(s)

(s−m2)2 +m2Γ 2
=

1

mΓ

∫

dz F(s) with z = arctan
s−m2

mΓ
. (9)

This example illustrates how phase space mappings, given some knowledge of the structure of

the integrand, allow us to evaluate high-multiplicity scattering processes.

Finally, in LHC applications we are typically not interested in an integral like the one shown

in Eq.(3). Instead, we want to simulate phase space configurations or events with a proba-

bility distribution corresponding to a given hard process, shower configuration, or detector

smearing. This means we have to transfer the information included in the weights at a given

phase space point to a phase space density of events with uniform weight. The correspond-

ing unweighting procedure computes the ratio of a given event weight to the maximum event

weights, probes this ratio with a random number, and in turn decides if a phase space point

or event remains in the sample, now with weight one. This procedure is highly inefficient.

Summarizing, the challenge for a machine learning approach to phase space sampling is:

mimic importance sampling, guarantee a precise mapping of narrow patterns, and avoid the

limited unweighting efficiency.

2.2 Generative adversarial network

The defining structural elements of generative adversarial networks or GANs are two com-

peting neural networks, where the generator network G tries to mimic the data while the

discriminator network D is trained to distinguish between generated and real data. The two

networks play against each other, dynamically improving the generator by searching for pa-

rameter regions where the generator fails and adjusting its parameters there.

To start with, both networks are initialized with random values so that the generator net-

work induces a underlying random distribution PG(x) of an event or phase space configuration

4

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

0 = gen 0.2 0.4 0.6 0.8 1 = true
D(x)

0

1

2

3

4

5
L
D

true DS generated DS

0 = gen 0.2 0.4 0.6 0.8 1 = true
D(x)

0

1

2

3

4

5

L
G

improved standard

Figure 2: Discriminator and generator losses as a function of the value assigned by

the discriminator. The red line indicates batches from the true distribution, the blue

lines batches from a generated distribution. The arrows indicate the direction of the

training.

x , typically organized with the same dimensionality as the (phase) space we want to generate.

Now the discriminator network compares two distributions, the true distribution PT (x) and

the generated distribution PG(x). From each of the two distributions we provide batches of

phase space configurations {xT } and {xG} sampled from PT or PG , respectively. Here the sets

{xT,G} are batches of events sampled from the training or generated data.

The discriminator output D(x) ∈ (0,1) is trained to give D = 1 for each point in a true

batch and D = 0 for the each point in the generated and hence not true batch. We can enhance

the sensitivity for D→ 0 by evaluating the variable − log D(x) ∈ (∞, 0) instead of D(x) in the

expectation value

− log D(x)
�

x
= −

1

Nx

∑

x∈batch

log D(x) , (10)

where Nx is the batch size. For a correctly labelled true sample this expectation value gives

zero. The loss function is defined such that it becomes minimal when the discriminator cor-

rectly predicts the true and generated batches

LD =

− log D(x)
�

x∼PT
+

− log(1− D(x))
�

x∼PG
. (11)

The symbol x ∼ P indicates phase space configurations sampled from P. In the GAN ap-

plication this discriminator network gets successively re-trained for a fixed truth PT (x) but

evolving PG(x), as illustrated in the left panel of Fig. 2. We can compute the discriminator

loss in the limit where the generator has produced a perfect image of the true distribution. In

this case the discriminator network will give D = 0.5 for each point x and the result becomes

LD = −2 log 0.5≈ 1.4.

The generator network starts from random noise and transforms it into a distribution

PG(x). For this it relies on the function D(x), which encodes the truth information. Following

Eq.(11) this means we can maximize its second term in the training of the generator network.

It turns out that it is numerically more efficient to instead minimize the generator loss

LG =

− log D(x)
�

x∼PG
. (12)

5

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

In the right panel of Fig. 2 we see how this assignment leads to larger gradients away from

the true configurations.

The key to the GAN training is the alternating training of the generator and discriminator

networks with their respective loss functions given in Eq.(11) and Eq.(12). Here, the balance

between generator and discriminator is crucial. On the one hand, the generator can only be

as good as the discriminator which defines the level of similarity between true and generated

data. On the other hand, a perfect discriminator leads to a vanishing loss function, which

reduces the gradient and slows down the training. This interplay of the two networks often

leads to stability issues in the training [19]. A common way to stabilize networks are noise-

induced regularization methods, or equivalently including a penalty on the gradient for the

discriminator variable D(x) [20]. Specifically, we apply the gradient to the monotonous logit

function

φ(x) = log
D(x)

1− D(x)
⇒

∂ φ

∂ x
=

1

D(x)

1

1− D(x)

∂ D

∂ x
, (13)

enhancing its sensitivity in the regions D→ 0 or D→ 1. The penalty applies to regions where

the discriminator loss leads to a wrong prediction, D ≈ 0 for a true batch or D ≈ 1 away

from the truth. This means we add a term to the discriminator loss and obtain the regularized

Jensen-Shannon GAN objective [20]:

LD→ LD +λD

(1− D(x))2 |∇φ|2
�

x∼PT
+λD

D(x)2 |∇φ|2
�

x∼PG
, (14)

with a properly chosen variable λD. The pre-factors (1− D)2 and D2 indeed ensure that for a

properly trained discriminator this additional contribution vanishes. Another method to avoid

instabilities in the training of the GAN is to use the Wasserstein distance [21,22] but our tests

have shown that Eq.(14) works better in our case.

As a side remark, another common type of neural network used for generative problems

are variational autoencoders (VAE). They perform a dimensional reduction of the input data

— often an image — to create a latent representation. The autoencoder is trained to minimize

the difference between input and inferred image, where a variational autoencoder requires the

components of the latent representation to follow a Gaussian. If we then insert Gaussian ran-

dom numbers for the latent representation, the decoder generates new images with the same

characteristics as the training data. While VAEs can be used to generate new data samples,

a key component is the latent modelling and the marginalization of unnecessary variables,

which is not a problem in generating LHC events.

2.3 Loss functions for intermediate particles

A particular challenge for our phase space GAN will be the reconstruction of the W and top

masses from the final-state momenta. For instance, for the top mass the discriminator and

generator have to probe a 9-dimensional part of the phase space, where each direction covers

several 100 GeV to reproduce a top mass peak with a width of Γt = 1.5 GeV. Following the dis-

cussion of the Monte Carlo methods in Sec. 2.1 the question is how we can build an analogue

to the phase space mappings for Monte Carlos. Assuming that we know which external mo-

menta can form a resonance we explicitly construct the corresponding invariant masses and

give them to the neural network to streamline the comparison between true and generated

data. We emphasize that this is significantly less information than we use in Eq.(9), because

the network still has to learn the intermediate particle mass, width, and shape of the resonance

curve.

A suitable tool to focus on a low-dimensional part of the full phase space is the maximum

mean discrepancy (MMD) [23]. The MMD is a kernel-based method to compare two samples

6

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

Generator{r}, {m} {xG} {xT } MC Data

DiscriminatorMMD2

LG LD

Figure 3: Schematic diagram for our GAN. The input {r} and {m} describe a batch of

random numbers and the masses of the external particles, and {x} denotes a batch

of phase space points sampled either from the generator or the true data. The blue

(red) and arrows indicate which connections are used in the training of the generator

(discriminator).

drawn from different distributions. Using one batch of true data points and one batch of

generated data points, it computes a distance between the distributions as

MMD2(PT , PG) =

k(x , x ′)
�

x ,x ′∼PT
+

k(y, y ′)
�

y,y ′∼PG
− 2

k(x , y)
�

x∼PT ,y∼PG
, (15)

where k(x , y) can be any positive definite kernel function. Obviously, two identical distri-

butions lead to MMD(P, P) = 0 in the limit of high statistics. Inversely, if MMD(PT , PG) = 0

for randomly sampled batches the two distributions have to be identical PT (x) = PG(x). The

shape of the kernels determines how local the comparison between the two distributions is

evaluated. Two examples are Gaussian or Breit-Wigner kernels

kGauss(x , y) = exp−
(x − y)2

2σ2
or kBW(x , y) =

σ2

(x − y)2 +σ2
, (16)

where the hyperparameter σ determines the resolution. For an optimal performance it should

be of the same order of magnitude as the width of the feature we are trying to learn. If the

resonance and the kernel width become too narrow, we can improve convergence by including

several kernels with increasing widths to the loss function. The shape of the kernel has nothing

to do with the shape of the distributions we are comparing. Instead, the choice between the

exponentially suppressed Gaussian and the quadratically suppressed Breit-Wigner determines

how well the MMD accounts for the tails around the main feature. As a machine learning

version of phase space mapping we add this MMD to the generator loss

LG → LG +λG MMD2 , (17)

with another properly chosen variable λG .

Similar efforts in using the MMD to generate events have already been done in [24–26]

and has also been extended to a adversarial MMD version or MMD-GAN [27–29], in which

the MMD kernel is learned by another network.

In Fig. 3 we show the whole setup of our network. It works on batches of simulated

parton-level events, or unweighted event configurations {x}. The input for the generator are

batches of random numbers {r} and the masses {m} of the final state particles. Because of the

random input a properly trained GAN will generate statistically independent events reflecting

the learned patterns of the training data. For both the generator and the discriminator we use a

7

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

Table 1: Details for our GAN setup.

Parameter Value

Input dimension G 18+ 6

Layers 10

Units per layer 512

Trainable weights G 2382866

Trainable weights D 2377217

λD 10−3

λG 1

Batch size 1024

Epochs 1000

Iterations per epoch 1000

Training time 26h

Size of trainings data 106

10-layer MLP with 512 units each, the remaining network parameters are given in Tab. 1. The

main structural feature of the competing networks is that the output of the discriminator, D, is

computed from the combination of true and generated events and is needed by the generator

network. The generator network combines the information from the discriminator and the

MMD in its loss function, Eq.(17). The learning is done when the distribution of generated

unweighted events {xG} and true Monte-Carlo events {xT } are essentially identical. We again

emphasize that this construction does not involve weighted events.

3 Machine-learning top pairs

A sample Feynman diagram for our benchmark process

pp→ t t̄ → (bqq̄′) (b̄q̄q′), (18)

is shown in Fig. 1. For our analysis we generate 1 million samples of the full 2→ 6 events as

training data sample with MG5aMCNLO [30]. The intermediate tops and W -bosons allow us to

reduce the number of Feynman diagrams by neglecting proper off-shell contributions and only

including the approximate Breit-Wigner propagators. Our results can be directly extended to

a proper off-shell description [31–33], which only changes the details of the subtle balance

in probing small but sharp on-shell contributions and wide but flat off-shell contributions.

Similarly, we do not employ any detector simulation, because this would just wash out the

intermediate resonances and diminish our achievement unnecessarily.

Because we do not explicitly exploit momentum conservation our final state momenta

are described by 24 degrees of freedom. Assuming full momentum conservation would for

instance make it harder to include approximate detector effects. These 24 degrees of freedom

can be reduced to 18 when we require the final-state particles to be on-shell. While it might

be possible for a network to learn the on-shell conditions for external particles, we have found

that learning constants like external masses is problematic for the GAN setup. Instead, we use

on-shell relations for all final-state momenta in the generator network.

Combining the GAN with the MMD loss function of Eq.(17) requires us to organize the

generator input in terms of momenta of final-state particles. With the help of a second input

to the generator, namely a 6-dimensional vector of constant final-state masses, we enhance the

8

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 σ

d
σ

d
E

b

[G
eV

−
1
]

×10−3

True

GAN

0 100 200 300 400 500 600 700
Eb [GeV]

0.8
1.0
1.2

G
A
N

T
r
u
e

1.0

2.0

3.0

4.0

5.0

1 σ

d
σ

d
E

t

[G
eV

−
1
]

×10−3

True

GAN

200 300 400 500 600 700
Et [GeV]

0.8
1.0
1.2

G
A
N

T
r
u
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 σ

d
σ

d
p
T
,b
[G
eV

−
1
]

×10−2

True

GAN

pT,b [GeV]
0.8
1.0
1.2

G
A
N

T
ru
e

0 50 100 150 200 250
pT,b [GeV]

0.1

1.0

1
p
N

t
a
il

20%

0.0

2.0

4.0

6.0

1 σ

d
σ

d
p
T
,t
[G
eV

−
1
]

×10−3

True

GAN

pT,t [GeV]
0.8
1.0
1.2

G
A
N

T
ru
e

0 50 100 150 200 250 300 350 400
pT,t [GeV]

0.1

1.0

1
p
N

t
a
il

20%

Figure 4: Energy (top) and transverse momentum (bottom) distributions of the final-

state b-quark (left) and the decaying top quark (right) for MC truth (blue) and the

GAN (red). The lower panels give the bin-wise ratio of MC truth to GAN distribution.

For the pT distributions we show the relative statistic uncertainty on the cumulative

number of events in the tail of the distribution for our training batch size.

18-dimensional input to six 4-vectors. This way we describe all final-state particles, denoted

as {xG} in Fig. 3, through an array

x = {p1, p2, p3, p4, p5, p6} , (19)

where we fix the order of the particles within the events. This format corresponds to the

generated unweighted truth events {xT } from standard LHC event simulators. In particular,

we choose the momenta such that

pW− = p1 + p2 , pW+ = p4 + p5 , p t̄ = p1 + p2 + p3 , pt = p4 + p5 + p6 . (20)

For the on-shell states we extract the resonances from the full phase space and use those to

calculate the MMD between the true and the generated mass distributions. This additional

loss is crucial to enhance the sensitivity in certain phase space regions allowing the GAN to

learn even sharp feature structures.

Flat distributions

To begin with, relatively flat distributions like energies, transverse momenta, or angular cor-

relations should not be hard to GAN [14–16]. As examples, we show transverse momentum

9

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

and energy distributions of the final-state b-quarks and the intermediate top quarks in Fig. 4.

The GAN reproduces the true distributions nicely even for the top quark, where the generator

needs to correlate the four-vectors of three final-state particles.

To better judge the quality of the generator output we show the ratio of the true and

generated distributions in the lower panels of each plot, for instance E
(G)

b
/E
(T)

b
where E

(G,T)

b
is

computed from the generated and true events, respectively. The bin-wise difference of the two

distributions increases to around 20% only in the high-pT range where the GAN suffers from

low statistics in the training sample. To understand this effect we also quantify the impact

of the training statistics per batch for the two pT -distributions. In the set of third panels we

show the relative statistical uncertainty on the number of events Ntail(pT) in the tail above

the quoted pT value. The relative statistical uncertainty on this number of events is generally

given by 1/
p

Ntail. For the pT,b-distribution the GAN starts deviating at the 10% level around

150 GeV. Above this value we expect around 25 events per batch, leading to a relative statistical

uncertainty of 20%. The top kinematics is harder to reconstruct, leading to a stronger impact

from low statistics. Indeed, we find that the generated distribution deviates by 10% around

pT,t ¦ 250 GeV where the relative statistic uncertainty reaches 15%.

We emphasize that this limitation through training statistics is expected and can be easily

corrected for instance by slicing the parameter in pT and train the different phase space regions

separately. Alternatively, we can train the GAN on events with a simple re-weighting, for

example in pT , but at the expense of requiring a final unweighting step.

Phase space coverage

To illustrate that the GAN populates the full phase space we can for instance look at the az-

imuthal coordinates of two final-state jets in Fig. 5. Indeed, the generated events follow the

expected flat distribution and correctly match the true events.

Furthermore, we can use these otherwise not very interesting angular correlations to illus-

trate how the GAN interpolates and generates events beyond the statistics of the training data.

In Fig. 6 we show the 2-dimensional correlation between the azimuthal jet angles φ j1
and φ j2

.

The upper-left panel includes 1 million training events, while the following three panels show

an increasing number of GANed events, starting from 1 million events up to 50 million events.

As expected, the GAN generates statistically independent events beyond the sample size of the

training data and of course covers the entire phase space.

Resonance poles

From Ref. [12] we know that exactly mapping on-shell poles and tails of distributions is a

challenge even for simple decay processes. Similar problems can be expected to arise for phase

space boundaries, when they are not directly encoded as boundaries of the random number

input to the generator. Specifically for our t t̄ process, Ref. [14] finds that their GAN setup does

not reproduce the phase space structure. The crucial task of this paper is to show how well our

network reproduces the resonance structures of the intermediate narrow resonances. In Fig. 7

we show the effect of the additional MMD loss on learning the invariant mass distributions

of the intermediate W and top states. Without the MMD, the GAN barely learns the correct

mass value, in complete agreement with the findings of Ref. [15]. Adding the MMD loss with

default kernel widths of the Standard Model decay widths drastically improves the results,

and the mass distribution almost perfectly matches the true distribution in the W -case. For

the top mass and width the results are slightly worse, because its invariant mass needs to

be reconstructed from three external particles and thus requires the generator to correlate

more variables. This gets particularly tricky in our scenario, where the W -peak reconstruction

directly affects the top peak. We can further improve the results by choosing a bigger batch

10

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 σ
d
σ

d
φ
j 1

×10
−1

True

GAN

−3 −2 −1 0 1 2 3

φj1

0.8
1.0
1.2

G
A
N

T
r
u
e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 σ
d
σ

d
φ
j 2

×10
−1

True

GAN

−3 −2 −1 0 1 2 3

φj2

0.8
1.0
1.2

G
A
N

T
r
u
e

Figure 5: φ distributions of j1 and j2. The lower panels give the bin-wise ratio of MC

truth to GAN distribution.

−3 −2 −1 0 1 2 3

φj1

−3

−2

−1

0

1

2

3

φ
j 2

1M true events

1.0

2.0

3.0

4.0

5.0

×10
1

−3 −2 −1 0 1 2 3

φj1

−3

−2

−1

0

1

2

3

φ
j 2

1M generated events

1.0

2.0

3.0

4.0

5.0

×10
1

−3 −2 −1 0 1 2 3

φj1

−3

−2

−1

0

1

2

3

φ
j 2

10M generated events

1.5

2.0

2.5

3.0

3.5

×10
2

−3 −2 −1 0 1 2 3

φj1

−3

−2

−1

0

1

2

3

φ
j 2

50M generated events

0.8

1.0

1.2

1.4

1.6

1.8
×10

3

Figure 6: Correlation between φ j1
and φ j2

for 1 million true events (upper left) and

for 1 million, 10 million, and 50 million GAN events.

size as this naturally enhances the power of the MMD loss. However, bigger batch sizes leads

to longer training times and bigger memory consumption. In order to keep the training time

on responsible level, we limited our batch size to 1024 events per batch. As already pointed

out, the results are not perfect in this scenario, especially for the top invariant mass, however,

we can clearly see the advantages of adding the MMD loss.

To check the sensitivity of the kernel width on the results, we vary it by factors of {1/4,4}.

11

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0
mW− [GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 σ

d
σ

d
m

W
−

[G
eV

−
1
]

×10−1

True

Breit-Wigner

Gauss

No MMD

70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0
mW− [GeV]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 σ

d
σ

d
m

W
−

[G
eV

−
1
]

×10−1

True

ΓSM

1

4
ΓSM

4ΓSM

160 165 170 175 180 185
mt [GeV]

0.0

1.0

2.0

3.0

4.0

1 σ

d
σ

d
m

t

[G
eV

−
1
]

×10−1

True

Breit-Wigner

Gauss

No MMD

160 165 170 175 180 185
mt [GeV]

0.0

1.0

2.0

3.0

4.0

1 σ

d
σ

d
m

t

[G
eV

−
1
]

×10−1

True

ΓSM

1

4
ΓSM

4ΓSM

Figure 7: Comparison of different kernel functions (left) and varying widths (right)

and their impact on the invariant mass of W boson (top) and top quark (bottom).

As can be seen in the lower panels of both distributions, increasing the resolution of the kernel

or decreasing the kernel width hardly affects the network performance. On the other hand,

increasing the width decreases the resolution and leads to too broad mass peaks. Similarly, if

we switch from the default Breit-Wigner kernel to a Gaussian kernel with the same width we

find identical results. This means that the only thing we need to ensure is that the kernel can

resolve the widths of the analyzed features.

We emphasize again that we do not give the GAN the masses or even widths of the interme-

diate particles. This is different from Ref. [15], which tackles a similar problem for the Z → ℓℓ

resonance structure and uses an explicit mass-related term in the loss function. We only spec-

ify the two final-state momenta for which the invariant mass can lead to a sharp phase space

structure like a mass peak, define a kernel like those given in Eq.(16) with sufficient resolution

and let the GAN do the rest. This approach is even more hands-off than typical phase space

mappings employed by standard Monte Carlos.

Correlations

Now that we can individually GAN all relevant phase space structures in top pair production, it

remains to be shown that the network also covers all correlations. A simple test is 4-momentum

conservation, which is not guaranteed by the network setup. In Fig. 8, we show the sums of the

transverse components of the final-state particle momenta divided by the sum of their absolute

values. As we can see, momentum conservation at the GAN level is satisfied at the order of

2%.

12

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

-4% -2% 0 2% 4%∑
px/

∑
|px|

0.0

1.0

2.0

3.0

4.0

5.0

1 σ
d
σ

d
(∑

p x
/
∑

|p
x
|)

×101

GAN

-4% -2% 0 2% 4%∑
py/

∑
|py|

0.0

1.0

2.0

3.0

4.0

1 σ
d
σ

d
(∑

p y
/
∑

|p
y
|)

×101

GAN

Figure 8: Sum of all px (py) momenta divided by the sum of the absolute values in

the left (right) panel, testing how well the GAN learns momentum conservation.

Finally, in Fig. 9 we show 2-dimensional correlations between the transverse momenta

of the outgoing b-quark and the intermediate top for the true (left) and GAN events (right).

The phase space structure encoded in these two observables is clearly visible, and the GAN

reproduces the peak in the low-pT range, the plateau in the intermediate range, and the sharp

boundary from momentum conservation in the high-pT range. To allow for a quantitative

comparison of true and generated events we show the bin-wise asymmetry in the lower left

panel. Except for the phase space boundary the agreement is essentially perfect. The asymme-

try we observe along the edge is a result from very small statistics. For an arbitrarily chosen

pT value of 100 GeV the deviations occur for pT,b ∈ [130, 140] GeV. We compare this region of

statistical fluctuations in the asymmetry plot with a 1-dimensional slice of the correlation plot

(lower right) for pT,t = 100± 1 GeV. The 1-dimensional distributions shows that in this range

the normalized differential cross section has dropped below the visible range.

4 Outlook

We have shown that it is possible to GAN the full phase space structure of a realistic LHC

process, namely top pair production all the way down to the kinematics of the six top decay jets.

Trained on a simulated set of unweighted events this allows us to generate any number of new

events representing the same phase space information. With the help of an additional MMD

kernel we described on-shell resonances as well as tails of distributions. The only additional

input was the final-state momenta related to on-shell resonances, and the rough phase space

resolution of the on-shell pattern.

Our detailed comparison showed that relatively flat distributions can be reproduced at ar-

bitrary precision, limited only by the statistics of the training sample. The mass values defining

intermediate resonance poles were also easily extracted from the dynamic GAN setup. Learn-

ing the widths of the Breit-Wigner propagator requires an MMD kernel with sufficient reso-

lution and is in our case only limited by the training time. The main limitation of the GAN

approach is that statistical uncertainties in poorly populated tails of distributions in the train-

ing data appear as systematic uncertainties in the same phase space regions for the generated

high-statistics samples. We have studied this effect in detail.

Because such a GAN does not require any event unweighting we expect it to be a useful

13

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

0 20 40 60 80 100 120 140
pT,b [GeV]

0

50

100

150

200

250
p
T
,t
[G
eV

]

0 20 40 60 80 100 120 140
pT,b [GeV]

0

50

100

150

200

250

p
T
,t
[G
eV

]

0 20 40 60 80 100 120 140
pT,b [GeV]

0

50

100

150

200

250

p
T
,t
[G
eV

]

0 20 40 60 80 100 120 140
pT,b [GeV]

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

1 σ
d
σ

d
p
T
,b
[G
eV

−
1
]

×10−2

slice at pT,t = 100 GeV True

GAN

0.0

0.5

1.0

1.5

2.0
×103

0.0

0.5

1.0

1.5

2.0

×103

-1.0

-0.5

0.0

0.5

1.0

Figure 9: Correlation between pT,t and pT,b for the true data (upper left), GAN data

(upper right) and the asymmetry between both (lower left). In addition, we show

pT,b sliced at pT,t = 100± 1 GeV (lower right).

and fast† addition to the LHC event generation tool box. In case we want to improve the

phase space coverage or include subtraction methods through a pre-defined event weight this

is obviously possible. The same setup will also allow us to generate events from an actual LHC

event sample or to combine actual data with Monte Carlo events for training, wherever such

a thing might come in handy for an analysis or a fundamental physics question.

Acknowledgments

We are very grateful to Gregor Kasieczka for his collaboration in the early phase of the project

and to Jonas Glombitza and Till Bungert for fruitful discussions. We would also like to thank

Steffen Schumann for very helpful physics discussions, asking all the right questions, and point-

ing out the similarity of on-shell peaks and phase space boundaries from a technical point

of view. RW acknowledges support by the IMPRS-PTFS. The research of AB was supported

by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant

396021762 — TRR 257 “Particle Physics Phenomenology after the Higgs Discovery”.

†Once trained, our GAN generates 1 million events in 1.6 minutes on a laptop.

14

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075

SciPost Phys. 7, 075 (2019)

References

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville

and Y. Bengio, Generative adversarial networks (2014), arXiv:1406.2661.

[2] M. Paganini, L. de Oliveira and B. Nachman, Accelerating science with generative adversar-

ial networks: An application to 3D particle showers in multilayer calorimeters, Phys. Rev.

Lett. 120, 042003 (2018), doi:10.1103/PhysRevLett.120.042003.

[3] M. Paganini, L. de Oliveira and B. Nachman, CaloGAN: Simulating 3D high energy particle

showers in multilayer electromagnetic calorimeters with generative adversarial networks,

Phys. Rev. D 97, 014021 (2018), doi:10.1103/PhysRevD.97.014021.

[4] P. Musella and F. Pandolfi, Fast and accurate simulation of particle detectors using genera-

tive adversarial networks, Comput. Softw. Big Sci. 2, 8 (2018), doi:10.1007/s41781-018-

0015-y.

[5] M. Erdmann, J. Glombitza and T. Quast, Precise simulation of electromagnetic calorimeter

showers using a Wasserstein generative adversarial network, Comput. Softw. Big. Sci. 3, 4

(2019), doi:10.1007/s41781-018-0019-7.

[6] ATLAS Collaboration, Deep generative models for fast shower simulation in ATLAS, Tech.

Rep. (2018), ATL-SOFT-PUB-2018-001.

[7] A. Ghosh [ATLAS Collaboration], Deep generative models for fast shower simulation in

ATLAS, Tech. Rep. (2019), ATL-SOFT-PUB-2019-007.

[8] E. Bothmann and L. Del Debbio, Reweighting a parton shower using a neural network: the

final-state case, J. High Energ. Phys. 01, 033 (2019), doi:10.1007/JHEP01(2019)033.

[9] L. de Oliveira, M. Paganini and B. Nachman, Learning particle physics by example:

Location-aware generative adversarial networks for physics synthesis, Comput. Softw. Big.

Sci. 1, 4 (2017), doi:10.1007/s41781-017-0004-6.

[10] J. W. Monk, Deep learning as a parton shower, J. High Energ. Phys. 12, 021 (2018),

doi:10.1007/JHEP12(2018)021.

[11] A. Andreassen, I. Feige, C. Frye and M. D. Schwartz, JUNIPR: a framework for

unsupervised machine learning in particle physics, Eur. Phys. J. C 79, 102 (2019),

doi:10.1140/epjc/s10052-019-6607-9.

[12] M. D. Klimek and M. Perelstein, Neural network-based approach to phase space integration

(2018), arXiv:1810.11509.

[13] J. Bendavid, Efficient Monte Carlo integration using boosted decision trees and generative

deep neural networks (2017), arXiv:1707.00028.

[14] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van Leeuwen, D.

Podareanu, R. Ruiz de Austri and R. Verheyen, Event generation and statistical sam-

pling for physics with deep generative models and a density information buffer (2019),

arXiv:1901.00875.

[15] B. Hashemi, N. Amin, K. Datta, D. Olivito and M. Pierini, LHC analysis-specific datasets

with Generative Adversarial Networks (2019), arXiv:1901.05282.

15

https://scipost.org
https://scipost.org/SciPostPhys.7.6.075
https://arxiv.org/abs/1406.2661
http://dx.doi.org/10.1103/PhysRevLett.120.042003
http://dx.doi.org/10.1103/PhysRevD.97.014021
http://dx.doi.org/10.1007/s41781-018-0015-y
http://dx.doi.org/10.1007/s41781-018-0015-y
http://dx.doi.org/10.1007/s41781-018-0019-7
http://cds.cern.ch/record/2630433
http://cds.cern.ch/record/2680531
http://dx.doi.org/10.1007/JHEP01(2019)033
http://dx.doi.org/10.1007/s41781-017-0004-6
http://dx.doi.org/10.1007/JHEP12(2018)021
http://dx.doi.org/10.1140/epjc/s10052-019-6607-9
https://arxiv.org/abs/1810.11509
https://arxiv.org/abs/1707.00028
https://arxiv.org/abs/1901.00875
https://arxiv.org/abs/1901.05282

REFERENCES REFERENCES

[16] R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat and S. Palazzo, DijetGAN: a

Generative-Adversarial Network approach for the simulation of QCD dijet events at the LHC,

J. High Energ. Phys. 08, 110 (2019), doi:10.1007/JHEP08(2019)110.

[17] G. P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comp. Phys.

27, 192 (1978), doi:10.1016/0021-9991(78)90004-9.

[18] G. P. Lepage, VEGAS - an adaptive multi-dimensional integration program, Cornell Preprint

CLNS-447 (1980).

[19] L. Mescheder, A. Geiger and S. Nowozin, Which training methods for GANs do actually

Converge? (2018), arXiv:1801.04406.

[20] K. Roth, A. Lucchi, S. Nowozin and T. Hofmann, Stabilizing training of generative adver-

sarial networks through regularization (2017), arXiv:1705.09367.

[21] M. Arjovsky, S. Chintala and L. Bottou, Wasserstein GAN (2017), arXiv:1701.07875.

[22] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and A. Courville, Improved training of

Wasserstein GANs (2017), arXiv:1704.00028.

[23] A. Gretton, K. Borgwardt, M. J. Rasch, B. Scholkopf and A. J. Smola, A kernel method for

the two-sample problem (2008), arXiv:0805.2368.

[24] Y. Li, K. Swersky and R. Zemel, Generative moment matching networks (2015),

arXiv:1502.02761.

[25] S. Ravuri, S. Mohamed, M. Rosca and O. Vinyals, Learning implicit generative models with

the method of learned moments (2018), arXiv:1806.11006.

[26] G. K. Dziugaite, D. M. Roy and Z. Ghahramani, Training generative neural networks via

Maximum Mean Discrepancy optimization (2015), arXiv:1505.03906.

[27] C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang and B. Póczos, MMD GAN: Towards deeper under-

standing of moment matching network (2017), arXiv:1705.08584.

[28] M. Bińkowski, D. J. Sutherland, M. Arbel and A. Gretton, Demystifying MMD GANs

(2018), arXiv:1801.01401.

[29] C.-L. Li, W.-C. Chang, Y. Mroueh, Y. Yang and B. Póczos, Implicit kernel learning (2019),

arXiv:1902.10214.

[30] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T.

Stelzer, P. Torrielli and M. Zaro, The automated computation of tree-level and next-to-

leading order differential cross sections, and their matching to parton shower simulations,

J. High Energ. Phys. 07, 079 (2014), doi:10.1007/JHEP07(2014)079.

[31] G. Bevilacqua, M. Czakon, A. van Hameren, C. G. Papadopoulos and M. Worek, Complete

off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading

order, J. High Energ. Phys. 02, 083 (2011), doi:10.1007/JHEP02(2011)083.

[32] G. Heinrich, A. Maier, R. Nisius, J. Schlenk and J. Winter, NLO QCD corrections to

W+W−bb production with leptonic decays in the light of top quark mass and asymmetry

measurements, J. High Energ. Phys. 06, 158 (2014), doi:10.1007/JHEP06(2014)158.

[33] A. Denner and M. Pellen, Off-shell production of top-antitop pairs in the lepton+jets channel

at NLO QCD, J. High Energ. Phys. 02, 013 (2018), doi:10.1007/JHEP02(2018)013.

16

http://dx.doi.org/10.1007/JHEP08(2019)110
http://dx.doi.org/10.1016/0021-9991(78)90004-9
http://cds.cern.ch/record/123074
http://cds.cern.ch/record/123074
https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1705.09367
https://arxiv.org/abs/1701.07875
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/0805.2368
https://arxiv.org/abs/1502.02761
https://arxiv.org/abs/1806.11006
https://arxiv.org/abs/1505.03906
https://arxiv.org/abs/1705.08584
https://arxiv.org/abs/1801.01401
https://arxiv.org/abs/1902.10214
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1007/JHEP02(2011)083
http://dx.doi.org/10.1007/JHEP06(2014)158
http://dx.doi.org/10.1007/JHEP02(2018)013

	Introduction
	Phase space generation
	Standard Monte Carlos
	Generative adversarial network
	Loss functions for intermediate particles

	Machine-learning top pairs
	Outlook
	References

