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Abstract. Let A0 be a possibly unbounded positive operator on the Hilbert space H, which is

boundedly invertible. Let C0 be a bounded operator from D(A1/20 ) (with the norm ‖z‖2
1/2

= 〈A0z, z〉)
to another Hilbert space U . In Part I of this work we have proved that the system of equations

z̈(t) +A0z(t) +
1

2
C∗
0C0ż(t) = C∗

0u(t) ,

y(t) = − C0ż(t) + u(t)

determines a well-posed linear system Σ with input u and output y, input and output space U , and

state space X = D(A1/20 ) × H. Moreover, Σ is conservative, which means that a certain energy
balance equation is satisfied both by the trajectories of Σ and by those of its dual system. In this
paper we show that Σ is exactly controllable if and only if it is exactly observable, if and only if
it is exponentially stable. Moreover, if we denote by A the generator of the contraction semigroup
associated with Σ (which acts on X), then Σ is exponentially stable if and only if one of the entries
in the second column of (iωI − A)−1 is uniformly bounded as a function of ω ∈ R. We also show
that, under a mild assumption, Σ is approximately controllable if and only if it is approximately
observable, if and only if it is strongly stable, if and only if the dual system is strongly stable. We
prove many related results and we give examples based on wave and beam equations.
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1. Introduction and main results. This paper is a continuation of our paper
[35] in which we have investigated a class of conservative linear systems with a special
structure, which occur often in applications. These systems are described by a second
order differential equation (in a Hilbert space) and an output equation, and they
may have unbounded control and observation operators. The main aim of [35] was
to prove the wellposedness, conservativity, and other regularity properties of such
systems. Here we investigate conditions under which such systems are exponentially
stable or strongly stable. It turns out that these stability properties are equivalent to
certain controllability and observability properties as well as to certain estimates.

We recall the construction from the paper [35] in order to be able to state the
new results. Let H be a Hilbert space, and let A0 : D(A0)→H be a self-adjoint,
positive, and boundedly invertible operator. We introduce the scale of Hilbert spaces
Hα, α ∈ R, as follows: for every α ≥ 0, Hα = D(Aα

0 ), with the norm ‖z‖α = ‖Aα
0 z‖H .

The space H−α is defined by duality with respect to the pivot space H as follows:
H−α = H∗

α for α > 0. Equivalently, H−α is the completion of H with respect to the
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norm ‖z‖−α =
∥∥A−α

0 z
∥∥
H
. The operator A0 can be extended (or restricted) to each

Hα such that it becomes a bounded operator

A0 : Hα→Hα−1 ∀ α ∈ R .

Let C0 be a bounded linear operator from H 1
2
to U , where U is another Hilbert

space. We identify U with its dual, so that U = U∗. We denote B0 = C∗
0 so that

B0 ∈ L(U,H− 1
2
). The class of systems studied in [35] and also here is described by

d2

dt2
z(t) +A0z(t) +

1

2
B0

d

dt
C0z(t) = B0u(t) ,(1.1)

z(0) = z0 , ż(0) = w0 ,(1.2)

y(t) = − d

dt
C0z(t) + u(t) ,(1.3)

where t ∈ [0,∞) is the time. The equation (1.1) is understood as an equation in H− 1
2
,

i.e., all the terms are in H− 1
2
. Most of the linear equations modelling the damped

vibrations of elastic structures can be written in the form (1.1), where z stands for
the displacement field and the term B0

d
dtC0z(t), informally written as B0C0ż(t),

represents a viscous feedback damping. The signal u(t) is an external input with
values in U (often a displacement, a force, or a moment acting on the boundary), and
the signal y(t) is the output (measurement) with values in U as well. The state x(t)
of this system and its state space X are defined by

x(t) =

[
z(t)
ż(t)

]
, X = H 1

2
×H .

We will use some fairly standard notation for certain function spaces: we re-
fer to [35, section 1] for the meaning of Hp(0,∞;W ), Hp

loc(0,∞;W ) (with p ∈ N),
Cn(0,∞;W ), and BCn(0,∞;W ) (with n ∈ {0, 1, 2, . . .}). We write C instead of C0.

We assume that the reader understands the concepts of a well-posed linear system
and of a conservative linear system. These were explained in [35, sections 1, 3, 4] with
suitable references to the literature. We will often use results from [35], which we
refer to as “Part I.” In such cases, we put the prefix I in front of the number of the
item quoted. For example, Theorem I.1.4 refers to Theorem 1.4 in Part I, and (I.4.2)
refers to formula (4.2) in Part I. The first main result of [35] has been the following
(Theorem I.1.1).

Theorem 1.1. With the above assumptions, the equations (1.1)–(1.3) determine
a conservative linear system Σ in the following sense:

There exists a conservative linear system Σ whose input and output spaces are
both U and whose state space is X. If u ∈ L2([0,∞), U) is the input function, x0 =
[ z0w0
] ∈ X is the initial state, x = [ zw ] is the corresponding state trajectory, and y is

the corresponding output function, then
(1)

z ∈ BC(0,∞;H 1
2
) ∩BC1(0,∞;H) ∩H2

loc(0,∞;H− 1
2
) .

(2) The two components of x are related by w = ż.
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(3) C0z ∈ H1(0,∞;U) and the equations (1.1) (in H− 1
2
) and (1.3) (in U) hold

for almost every t ≥ 0 (hence, y ∈ L2([0,∞), U)).
If ż is a continuous function of t with values in H 1

2
(see Theorems I.1.2 and I.1.4

for sufficient conditions for this to be true), then (1.1) and (1.3) can be rewritten as

z̈(t) +A0z(t) +
1

2
B0C0ż(t) = B0u(t) ,(1.4)

y(t) = − C0ż(t) + u(t) .(1.5)

We introduce the space Z0 = H1 +A−1
0 B0U , which is a Hilbert space if we define on

it a suitable norm; see Theorem I.1.2. We can rewrite the equations (1.4), (1.5) as a
first order system as follows:{

ẋ(t) = Ax(t) +Bu(t) ,
y(t) = Cx(t) + u(t) ,

(1.6)

where

A =

[
0 I

−A0 − 1
2B0C0

]
, B =

[
0
B0

]
,(1.7)

D(A) =
{[

z
w

]
∈ H 1

2
×H 1

2

∣∣∣∣ A0z +
1

2
B0C0w ∈ H

}
,(1.8)

C : Z0 ×H 1
2
→ U , C = [0 − C0 ] .(1.9)

We denote by C the restriction of C to D(A). A is the generator of a strongly
continuous semigroup of contractions on X, denoted T = (Tt)t≥0. For the concepts of
semigroup generator, control operator, observation operator, and transfer function of
a well-posed linear system, we refer to Weiss [31, 32] or to section I.3. We denote by
Cω the open right half-plane in C where Re s > ω. We know from Proposition I.5.3
that for any s ∈ ρ(A) (in particular, for any s ∈ C0) the operator s

2I+A0+
s
2 B0C0 ∈

L(H 1
2
, H− 1

2
) has a bounded inverse denoted V (s):

V (s) =
(
s2I +A0 +

s

2
B0C0

)−1

∈ L(H− 1
2
, H 1

2
) .(1.10)

The following proposition is a restatement of a part of Theorem I.1.3.
Proposition 1.2. With the notation of Theorem 1.1 and (1.7)–(1.10), the semi-

group generator of Σ is A, its control operator is B, and its observation operator is
C. The transfer function of Σ is given for all s ∈ C0 by

G(s) = C(sI −A)−1B + I = I − C0sV (s)B0,

and we have ‖G(s)‖ ≤ 1 for all s ∈ C0.
Now we have all the necessary ingredients to state the new results of this pa-

per. The following theorems use various controllability, observability, and stability
concepts. The precise definition of these concepts is given in section 2.

Theorem 1.3. With the above notation, the following assertions are equivalent:
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(1) The pair (A,B) is exactly controllable (in some finite time).
(2) The pair (A,C) is exactly observable (in some finite time).
(3) The semigroup T is exponentially stable.
(4) The pair (A,B) is optimizable.
(5) The pair (A,C) is estimatable.

(6) We have sups∈C0
‖A 1

2
0 V (s)‖L(H) < ∞.

(7) We have sups∈C0
‖sV (s)‖L(H) < ∞.

(8) For a dense subset E of R, we have iE ⊂ ρ(A) and sup
ω∈E

‖A 1
2
0 V (iω)‖L(H) < ∞.

(9) For a dense subset E of R, we have iE ⊂ ρ(A) and sup
ω∈E

‖ωV (iω)‖L(H) < ∞.

A more precise statement concerning the equivalence of (1), (2), and (3), which
gives some information on the time of exact controllability and observability, and
which is valid for any conservative system, is Proposition 3.2. The equivalence of
(1)–(5) remains valid for every conservative system; see Proposition 3.3.

By a well-known theorem of Prüss and Falun, an operator semigroup T with
generator A is exponentially stable if and only if (sI −A)−1 is uniformly bounded on
C0. We refer to section 2 for precise references, further comments, and related results
(Propositions 2.4 and 2.5). In the specific case of the semigroup generated by A from
(1.7)–(1.8), the resolvent (sI−A)−1 can be written as a 2×2 matrix of operators; see
Proposition I.5.3 (or formula (4.1) later in this paper). Thus, to verify the exponential
stability of T, we would have to verify that the four entries of this 2 × 2 matrix are
all uniformly bounded on C0. However, conditions (6) and (7) in Theorem 1.3 tell us
that, in fact, we have to verify only one of the two entries in the second column of the
matrix of (sI −A)−1. Conditions (8) and (9) tell us that, in fact, it suffices to check
the boundedness of one of these entries on a dense subset of the imaginary axis, and
we can still conclude exponential stability.

The version of this theorem corresponding to bounded B and C, i.e., with C0 ∈
L(H,U), is in Liu [22, sections 2–3] but without conditions (4)–(7). Using the bound-
edness of C0 (and hence also of B0), Liu was able to give in [22, Theorem 3.4] also
other, Hautus-type conditions which are equivalent to the exponential stability of T.
For unbounded C0, we were only able to obtain a Hautus-type estimate as a necessary
condition for exponential stability; see Proposition 4.1.

We mention that semigroups of the type discussed in this paper do not necessarily
satisfy the spectrum determined growth condition. For a counterexample (a damped
wave equation on a compact manifold) see Lebeau [19].

In the proof of Theorem 1.3 (more precisely, to show that (6)=⇒(3)) we use
the following proposition, which is of independent interest. For bounded C0 this
proposition follows easily from [22, Theorem 3.4], but for unbounded C0 the proof is
more delicate (see section 4). Related results for a bounded (possibly not positive)
operator in place of C∗

0C0 were given in Liu, Liu, and Rao [23].
Proposition 1.4. With the above notation, suppose that C0 is bounded from

below in the sense that there exists a c > 0 such that ‖C0z‖U ≥ c‖z‖H for all z ∈ H 1
2
.

Then T is exponentially stable.
A result similar to Theorem 1.3 holds also for strong stability, with an additional

assumption on the spectrum σ(A0).
Theorem 1.5. With the above notation, assume that σ(A0) is countable. (This

happens, e.g., if A−1
0 is compact.) Then the following assertions are equivalent:

(1) T is strongly stable.
(2) The pair (A,C) is exactly observable in infinite time.
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(3) The pair (A,C) is approximately observable in infinite time.

(4) T is weakly stable (equivalently, T
∗ is weakly stable).

(5) T
∗ is strongly stable.

(6) The pair (A,B) is exactly controllable in infinite time.

(7) The pair (A,B) is approximately controllable in infinite time.

(8) For any z ∈ H1, if z is an eigenvector of A0, then C0z �= 0.
Note that the statement “A−1

0 is compact” does not imply that (sI − A)−1 is

compact (to see this, take U = H and C0 = A
1/2
0 ). This theorem follows from a more

general result concerning all conservative systems; see Proposition 3.4 here. In the
proof, we also use the famous strong stability theorem of Arendt and Batty [2].

Systems with A and B as above have been studied in Guo and Luo [10, 11], estab-
lishing connections between the exponential stability of A and the exact controllability
of the undamped system z̈(t)+A0z(t) = B0u(t), under the additional hypothesis that
the undamped system is well-posed. (Unfortunately, the main result on diagonal sys-
tems in [10] (Theorem 4) is incorrectly formulated, and it is also incorrectly quoted
in [11].) In [11] the emphasis is on eigenvalues and eigenvectors of A, assuming that
the eigenvalues of A0 satisfy a gap condition and u(t) is scalar.

In section 2 we give the background needed here. Section 3 concerns the stability
properties of conservative systems so that the results there refer to a more general
context than the main results stated earlier. In section 4 we prove our main results,
while section 5 is devoted to two examples: a system involving the beam equation
and another one based on the wave equation.

2. Background on controllability, observability, optimizability, estimat-
ability, and stability. In this section we recall some controllability, observability,
and stability concepts, quoting the relevant literature. Throughout this section, U , X,
and Y are Hilbert spaces and A : D(A)→X is the generator of a strongly continuous
semigroup T = (Tt)t≥0 on X. The space X1 is D(A) with the norm ‖z‖1 = ‖(βI −
A)z‖, where β ∈ ρ(A) is fixed, while X−1 is the completion of X with respect to the
norm ‖z‖−1 = ‖(βI−A)−1z‖. We assume that the reader understands the concept of
an admissible (in particular, infinite-time admissible) control operator for T. This has
been presented in section I.2 with suitable references. If B ∈ L(U,X−1) is admissible,
then for every τ ≥ 0 we denote by Φτ the operator

Φτu =

∫ τ

0

Tt−σBu(σ)dσ(2.1)

as in (I.2.3). We have Φτ ∈ L(L2([0,∞), U), X). If B is admissible, then for every
x0 ∈ X and every u ∈ L2([0,∞), U), the function x(t) = Ttx0 + Φtu is called the
state trajectory corresponding to the initial state x0 and the input function u. We
have x ∈ H1

loc(0,∞;X) and ẋ(t) = Ax(t) +Bu(t) (equality in X−1) for almost every
t ≥ 0. If, moreover, B is infinite-time admissible, then we denote, as in (I.2.5),

Φ̃u = lim
τ →∞

∫ τ

0

TtBu(t)dt ,(2.2)

and we have Φ̃ ∈ L(L2([0,∞), U), X).
Similarly, we assume that the reader understands the concepts of an admissible

(in particular, infinite-time admissible) observation operator for T, also presented in
section I.2. If C ∈ L(X1, Y ) is admissible, then we denote by Ψ the unique continuous
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operator from X to L2
loc([0,∞), Y ) such that

(Ψx0)(t) = CTtx0 ∀ x0 ∈ D(A) .(2.3)

In particular, if C is infinite-time admissible, then Ψ ∈ L(X,L2([0,∞), Y )). Recall
that B is an (infinite-time) admissible control operator for T if and only if B∗ is an
(infinite-time) admissible observation operator for T

∗.
Definition 2.1. Let A be the generator of a strongly continuous semigroup T

on X, and let B ∈ L(U,X−1) be an admissible control operator for T.
The pair (A,B) is exactly controllable in time T > 0 if for every x0 ∈ X, there

exists a u ∈ L2([0, T ], U) such that ΦTu = x0.
(A,B) is exactly controllable if the above property holds for some T > 0.
(A,B) is exactly controllable in infinite time if B is infinite-time admissible and

the operator Φ̃ from (2.2) is onto.
(A,B) is approximately controllable in time T > 0 if RanΦT is dense in X.
(A,B) is approximately controllable in infinite time if ∪τ>0RanΦτ is dense in X.
(A,B) is optimizable if for any x0 ∈ X, there exists u ∈ L2([0,∞), U) such that

the state trajectory corresponding to x0 and u is in L2([0,∞), X).
Note that the exact (or approximate) controllability in infinite time of (A,B)

does not imply its exact (or approximate) controllability in time T for some T > 0.
Clearly, exact controllability implies optimizability and also approximate controlla-
bility in some finite time. Optimizability is one possible generalization of the concept
of stabilizability, as known from finite-dimensional control theory.

Remark 2.1. Let B ∈ L(U,X−1) be an infinite-time admissible control operator
for T. Then (A,B) is approximately controllable in infinite time if and only if the
range of Φ̃ from (2.2) is dense in X. The proof is easy.

Now we introduce the corresponding observability concepts via duality.
Definition 2.2. Suppose that C ∈ L(X1, Y ) is an admissible observation

operator for T. (Equivalently, C∗ is an admissible control operator for the adjoint
semigroup T

∗.) We say that (A,C) is exactly observable (in time T ) (in infinite
time) if (A∗, C∗) is exactly controllable (in time T ) (in infinite time). Similarly,
(A,C) is approximately observable (in time T ) (in infinite time) if (A∗, C∗) is ap-
proximately controllable (in time T ) (in infinite time). Finally, the pair (A,C) is
called estimatable if (A∗, C∗) is optimizable.

Let Ψ be the operator defined in (2.3), and for every τ ≥ 0 put Ψτ = PτΨ. Then
(A,C) is exactly observable in time T > 0 if and only if ΨT is bounded from below.
(A,C) is exactly observable in infinite time if and only if C is infinite-time admissible
and Ψ is bounded from below. (A,C) is approximately observable in time T (or in
infinite time) if and only if ΨTx0 = 0 (or Ψx0 = 0) implies x0 = 0.

Recall that the growth bound of a strongly continuous semigroup T is ω0(T) =
limt→∞ 1

t log ‖Tt‖ = inft>0
1
t log ‖Tt‖; see, for example, Pazy [24].

Definition 2.3. The semigroup T is exponentially stable if its growth bound is
negative: ω0(T) < 0. T is strongly stable if

lim
t→∞ ‖Ttx0‖ = 0 ∀ x0 ∈ X .

Finally, T is weakly stable if limt→∞〈Ttx0, y0〉 = 0 for all x0, y0 ∈ X.
Let T be a strongly continuous semigroup on X with generator A. A well-known

spectral mapping result of Prüss [25, p. 852] implies that if the function ‖(sI −A)−1‖
is bounded on C0, then T is exponentially stable. A little later and independently, this
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result was explicitly stated and proved by Falun [13]. A short proof was given in Weiss
[30, section 4]. Here we need a result which is closely related to the one just mentioned,
without being an obvious consequence of it. The result is very slightly more general
than another result of Falun; see [13, Theorem 3]. Moreover, the proposition below
gives an estimate for the growth bound ω0(T).

Proposition 2.4. Let T be a strongly continuous semigroup on X with generator
A. Assume that ω0(T) ≤ 0 and E is a dense subset of R such that iE ⊂ ρ(A) and

‖(iωI −A)−1‖ ≤ M ∀ ω ∈ E

for some M > 0. Then T is exponentially stable; more precisely, ω0(T) ≤ − 1
M .

Proof. By a result in Butzer and Berens [7, p. 31] all numbers s ∈ C with |Re s| <
1
M (this is a vertical strip) belong to ρ(A), and we have

‖(sI −A)−1‖ ≤ M

1− |Re s| ·M for |Re s| < 1

M
.(2.4)

On the other hand, we know from the Hille–Yosida theorem that ‖(sI − A)−1‖ is
bounded on any half-plane Cγ with γ > 0. This fact, combined with (2.4), shows that
‖(sI − A)−1‖ is bounded on any half-plane Cα with α > − 1

M . Now by yet another
result of Falun [13, Theorem 4] we conclude that ω0(T) ≤ − 1

M . (The last step is
equivalent to applying the Prüss–Huang result mentioned before the proposition for
the semigroups generated by A+ λI with λ < 1

M .)
Proposition 2.5. Suppose that X, T, A, U , and B are as in Definition 2.1.

Then the following three statements are equivalent:
(1) T is exponentially stable.
(2) (A,B) is optimizable, C0 ⊂ ρ(A), and for some M > 0∥∥(sI −A)−1B

∥∥
L(U,X)

≤ M ∀ s ∈ C0 .

(3) (A,B) is optimizable, ω0(T) ≤ 0, there exists a dense subset of R, denoted
E, such that iE ⊂ ρ(A), and for some M > 0∥∥(iωI −A)−1B

∥∥
L(U,X)

≤ M ∀ ω ∈ E .

Proof. The equivalence of (1) and (2) is exactly Proposition 5.1 in Weiss and
Rebarber [33]. It is easy to see that (1) implies (3) with E = R (by also using (2) and
limits as s→ iω). Now suppose that (3) holds (this implies C0 ⊂ ρ(A)). We argue
as in the proof of [33, Proposition 5.1], obtaining formula (5.1) from [33] valid for all
s ∈ C0. Taking limits, we see that this formula holds also with iω in place of s ∈ C0,
where ω ∈ E. Continuing to reason as in [33], we obtain that (iωI−A)−1 is uniformly
bounded as a function of ω ∈ E. Since ω0(T) ≤ 0, we can apply Proposition 2.4 to
conclude that T is exponentially stable.

Observability (or dually, controllability) and strong stability concepts are linked
to properties of Lyapunov equations, and we state in dual form the following result
from section 3 of Hansen and Weiss [12].

Proposition 2.6. Let A be the generator of the strongly continuous semigroup
T on X, and let C ∈ L(X1, Y ) be an admissible observation operator for T. Then the
following three statements are equivalent:

(a) There exist operators Π ∈ L(X), Π ≥ 0, which satisfy the following equation:

A∗Πz +ΠAz = − C∗Cz ∀ z ∈ D(A) .(2.5)
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(b) C is an infinite-time admissible observation operator for T.
(c) There exists an operator P ∈ L(X) such that for any z ∈ D(A)

Pz = lim
τ →∞

∫ τ

0

T
∗
tC

∗CTt z dt .(2.6)

Moreover, if C is infinite-time admissible, then the following statements hold:
(d) P from (2.6) is the smallest nonnegative solution of (2.5).
(e) If P is invertible, then T is strongly stable.
(f) If T is strongly stable, then P is the unique self-adjoint solution of (2.5).
(g) If T is uniformly bounded and P > 0, then T is weakly stable.
The operator P introduced above is called the observability Gramian of (A,C),

and (2.5) is called a Lyapunov equation. Note that, in terms of the operator Ψ from
(2.3), we have P = Ψ∗Ψ. The following is well known and easy to prove.

Proposition 2.7. Suppose that C is an infinite-time admissible observation
operator for the semigroup T generated by A. Then (A,C) is approximately observable
in infinite time if and only if P > 0 (where P is the observability Gramian of (A,C)).

The controllability Gramian of (A,B) is, by definition, the observability Gramian
of (A∗, B∗). Thus, the controllability Gramian of (A,B) is defined by

Rx = lim
τ →∞

∫ τ

0

TtBB
∗
T
∗
t xdt ∀ x ∈ D(A∗) ,(2.7)

we have R = Φ̃Φ̃∗, and the Lyapunov equation satisfied by R is

RA∗z +ARz = −BB∗z ∀ z ∈ D(A∗) .

The dual version of Proposition 2.6 is straightforward.
For more details on Gramians we refer to Hansen and Weiss [12], Jacob and

Partington [14], Russell and Weiss [28], and Grabowski [8]. For more details on exact
controllability in an operator-theoretic setting we also refer to Avdonin and Ivanov
[3], Jacob and Zwart [15], Rebarber and Weiss [27], Tucsnak and Weiss [29], and the
references therein. In the PDE setting, the relevant literature is overwhelming, and
we mention the books of Lions [20], Lagnese and Lions [17], Bensoussan et al. [6],
Komornik [16], and the paper of Bardos, Lebeau, and Rauch [5].

3. Conservative linear systems. Recall from section I.3 that for any well-
posed system Σ with input function u, state trajectory x, and output function y,[

x(τ)
Pτy

]
= Στ

[
x(0)
Pτu

]
,(3.1)

where Pτ denotes the truncation of a function to [0, τ ] and

Στ =

[
Tτ Φτ

Ψτ Fτ

]
.(3.2)

We denote the input, state, and output spaces of Σ by U , X, and Y , respectively.
Then the operators Στ appearing above are bounded from X × L2([0, τ ], U) to X ×
L2([0, τ ], Y ), which means that for some cτ ≥ 0

‖x(τ)‖2 +

∫ τ

0

‖y(t)‖2
dt ≤ c2τ

(
‖x(0)‖2 +

∫ τ

0

‖u(t)‖2
dt

)
.
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As explained in section I.1, the system Σ is conservative if the operators Στ are unitary
from X × L2([0, τ ], U) to X × L2([0, τ ], Y ). This implies that for any input function
u ∈ H1(0,∞;U) and any initial state x(0) = x0 ∈ X with Ax0 + Bu(0) ∈ X, the
function ‖x(t)‖2 is in C1[0,∞) and

d

dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2 ∀ t ≥ 0;(3.3)

see Proposition I.4.3. Conversely, if (3.3) holds for both the system Σ and for its dual
system Σd, then Σ is conservative; see Corollary I.4.4.

Proposition 3.1. Let Σ be a conservative linear system with input space U ,
state space X, output space Y , semigroup T, control operator B, observation operator
C, and transfer function G. Then the following statements are true:

(1) T is a semigroup of contractions.
(2) B is infinite-time admissible.
(3) C is infinite-time admissible.
(4) ‖G(s)‖ ≤ 1 for all s ∈ C0.
Indeed, the above proposition is an immediate consequence of Proposition I.4.5

(which concerns the larger class of dissipative linear systems). The following propo-
sition is probably well known (especially the equivalence of (2) and (3)), but we are
not aware of a reference which states the equivalence of all three conditions.

Proposition 3.2. With the notation of Proposition 3.1 and denoting the gener-
ator of T by A for each τ > 0, the following statements are equivalent:

(1) The pair (A,B) is exactly controllable in time τ .
(2) The pair (A,C) is exactly observable in time τ .
(3) ‖Tτ‖ < 1 (in particular, T is exponentially stable).
Proof. (3) =⇒ (2) With the notation from (3.2), it is clear that for all x0 ∈ X

‖Tτ x0‖2 + ‖Ψτ x0‖2 = ‖x0‖2 ∀ τ ≥ 0 .(3.4)

If (3) holds, then ‖Tτ‖2 = 1 − ε2 with ε > 0. Now (3.4) implies that ‖Ψτ x0‖2 ≥
ε2‖x0‖2, so that Σ is exactly observable in time τ .

(2) =⇒ (3) If (2) holds, then there exists ε > 0 such that ‖Ψτx0‖ ≥ ε‖x0‖ for all
x0 ∈ X. Now (3.4) implies that ‖Tτ x0‖2 ≤ (1− ε2)‖x0‖2; hence ‖Tτ‖ < 1.

(3) ⇐⇒ (1) (3) is equivalent to the fact that ‖T∗
τ‖ < 1. (1) is equivalent to

the fact that (A∗, B∗) is exactly observable in time τ . Since the dual system Σd is
conservative, according to Proposition I.4.2 and the equivalence of (2) and (3) proved
earlier, we get that (1) is equivalent to (3).

The equivalence of (1)–(5) in Theorem 1.3 is an immediate consequence of Theo-
rem 1.1, Proposition 1.2, and the following simple result about conservative systems.

Proposition 3.3. With the notation of Proposition 3.2, the following five state-
ments are equivalent:

(1) The pair (A,B) is exactly controllable.
(2) The pair (A,C) is exactly observable.
(3) T is exponentially stable.
(4) The pair (A,B) is optimizable.
(5) The pair (A,C) is estimatable.
Proof. The equivalence of (1)–(3) follows from the previous proposition. It is well

known and easy to see that (1) implies (4) and (2) implies (5) (for any well-posed
system). Suppose that (5) holds. We know from Proposition 3.1 that C is infinite-
time admissible. Now it follows from [33, Proposition 5.5] that (3) holds. The proof
of (4)=⇒(3) is similar, by using the dual version of [33, Proposition 5.5].
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Another result linking strong stability, observability, and controllability of con-
servative systems is the following. It is related to Proposition 6 in [34].

Proposition 3.4. Let Σ, T, A, B, and C be as in Proposition 3.2. Assume that
the intersection σ(A) ∩ iR is countable. (This happens, for example, if (βI −A)−1 is
compact for some β ∈ ρ(A).) Then the following seven assertions are equivalent:

(1) T is strongly stable.

(2) The pair (A,C) is exactly observable in infinite time.

(3) The pair (A,C) is approximately observable in infinite time.

(4) T is weakly stable (equivalently, T
∗ is weakly stable).

(5) T
∗ is strongly stable.

(6) The pair (A,B) is exactly controllable in infinite time.

(7) The pair (A,B) is approximately controllable in infinite time.

Proof. (1) =⇒ (2) If T is strongly stable, then we see from (3.4) that
limτ →∞ ‖Ψτ x0‖ = ‖x0‖. This implies that Ψ is an isometry from X to L2([0,∞), Y ).

(2) =⇒ (3) This implication is obvious.

(3) =⇒ (4) The fact that Σ is conservative implies that C is infinite-time admissi-
ble. According to Proposition 2.7, (3) means that P > 0, where P is the observability
Gramian. By the last part of Proposition 2.6, T is weakly stable.

(4) =⇒ (1) Since T is weakly stable, A has no eigenvalues on iR. Together with
the assumption that σ(A) ∩ iR is countable, this means that the conditions of the
famous stability theorem of Arendt and Batty [2] are satisfied. According to this
theorem, T is strongly stable.

(4)⇐⇒ (5)⇐⇒ (6)⇐⇒ (7) This is similar to the equivalence of (1)–(4) but with
the dual system Σd in place of Σ. (Recall that Σd is also conservative.)

4. Proof of the main results. In this section we prove Theorems 1.3, 1.4,
1.5 as well as other related results. We use the assumptions and the notation from
section 1: The conservative linear system Σ is the one constructed in Theorem 1.1
from the operators A0 ∈ L(H1, H) and C0 ∈ L(H 1

2
, U). The spaces Hα with α ∈ R

are constructed from the fractional powers of A0. The notation ‖z‖α means the norm
of z in Hα; in particular, ‖z‖0 is the norm of z in H. We put B0 = C∗

0 . The operators
A and B are defined in (1.7), (1.8) and C is defined in (1.9). C is the restriction of C
to D(A). The semigroup of contractions generated by A on X = H 1

2
×H is denoted by

T, and the transfer function of Σ is denoted byG. Recall also the L(H− 1
2
, H 1

2
)-valued

function V (s) from (1.10) and the space Z0 defined after (1.5).

Proposition 4.1. With the above notation, if T is exponentially stable, then
denoting M = supω∈R ‖(iωI −A)−1‖L(X) we have for every z ∈ H 1

2

‖(ω2I −A0)z‖− 1
2
+

ω

2
‖B0C0z‖− 1

2
≥ 1

M
‖z‖0 ∀ ω ∈ [0,∞) .

Proof. We know from Proposition I.5.3 that on H 1
2
×H− 1

2
(in particular, on X)

we have for all s ∈ ρ(A) with s �= 0

(sI −A)−1 =

[
1
s [I − V (s)A0] V (s)

−V (s)A0 sV (s)

]
.(4.1)

For s = 0 the formula remains valid if we replace the left upper block in the matrix
with 1

2A
−1
0 B0C0; see (I.5.4). Since T is exponentially stable, any point iω (with
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ω ∈ R) is in ρ(A) and (iωI − A)−1 is uniformly bounded. Looking at the left lower
block of (iωI −A)−1, we have

sup
ω∈R

‖V (iω)A 1
2
0 ‖L(H) = sup

ω∈R

‖V (iω)A0‖L(H 1
2
,H) ≤ sup

ω∈R

‖(iωI −A)−1‖L(X) = M .

The last estimate means that for any g ∈ H and any ω ∈ R,

‖V (iω)A 1
2
0 g‖0 ≤ M‖g‖0 .

If we choose g = A
− 1

2
0

(−ω2I +A0 +
iω
2 B0C0

)
z with z ∈ H 1

2
fixed, then we get that

for all ω ∈ R

M

∥∥∥∥A− 1
2

0

(
−ω2I +A0 +

iω

2
B0C0

)
z

∥∥∥∥
0

≥ ‖z‖0 .

From here, using the triangle inequality, we get the estimate in the proposition.

Proof of Proposition 1.4. Recall that the inner product on X is defined by〈[
z1
w1

]
,

[
z2
w2

]〉
X

= 〈A 1
2
0 z1, A

1
2
0 z2〉H + 〈w1, w2〉H .

In what follows, we drop the subscript H when writing the inner product on H (but
we use subscripts for other spaces). We define a new inner product on X by〈[

z1
w1

]
,

[
z2
w2

]〉
new

= 〈A 1
2
0 z1, A

1
2
0 z2〉+ δ〈w1, z2〉+ δ〈z1, w2〉+ 〈w1, w2〉

=

〈[
I δA−1

0

δI I

] [
z1
w1

]
,

[
z2
w2

]〉
X

,

where δ > 0 is such that δ‖A− 1
2

0 ‖ < 1. (Later we shall impose further restrictions on
δ.) The 2 × 2 matrix J appearing above defines a self-adjoint and positive bounded
operator on X. Indeed, J ≥ 0 follows from the Cauchy–Schwarz inequality:〈[

I δA−1
0

δI I

] [
z
w

]
,

[
z
w

]〉
X

≥ ‖A 1
2
0 z‖2 − 2δ‖z‖ · ‖w‖+ ‖w‖2

≥ ‖A 1
2
0 z‖2 − 2δ‖A− 1

2
0 ‖ · ‖A 1

2
0 z‖ · ‖w‖+ ‖w‖2

≥ ‖A 1
2
0 z‖2 − 2‖A 1

2
0 z‖ · ‖w‖+ ‖w‖2

=
(
‖A 1

2
0 z‖ − ‖w‖

)2

≥ 0.

It is easy to check that J is boundedly invertible, hence J > 0, which shows that
our definition of a new inner product is correct, and the new norm on X defined by
‖x‖new =

√〈x, x〉new is equivalent to the original norm. Thus, it will suffice to prove
that T is exponentially stable with respect to the new norm.

We shall estimate 〈Ax, x〉new, where x = [
z
w ] ∈ D(A). We have

Re 〈Ax, x〉new = Re 〈(J − I)Ax, x〉X +Re 〈Ax, x〉X .
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We know from (I.5.3) that Re 〈Ax, x〉X = − 1
2‖C0w‖2

U . Computing the product (J −
I)A, we get that

Re 〈Ax, x〉new = − δ
∥∥∥A 1

2
0 z

∥∥∥2

− δ

2
Re 〈C0w,C0z〉U + δ‖w‖2 − 1

2
‖C0w‖2

U .

Now remember that C0 is bounded from below, so that ‖w‖ ≤ 1
c‖C0w‖U . Therefore,

the above estimate and the Cauchy–Schwarz inequality imply

Re 〈Ax, x〉new ≤ − δ
∥∥∥A 1

2
0 z

∥∥∥2

+
δ

2
‖C0w‖U · ‖C0z‖U −

(
1

2
− δ

c2

)
‖C0w‖2

U .

Let k > 0 be such that ‖C0z‖U ≤ k‖A 1
2
0 z‖ for all z ∈ H 1

2
. Then

Re 〈Ax, x〉new ≤ − δ
∥∥∥A 1

2
0 z

∥∥∥2

+
δk

2
‖C0w‖U · ‖A 1

2
0 z‖ −

(
1

2
− δ

c2

)
‖C0w‖2

U .

The right-hand side above is a quadratic form in the two numbers ‖A 1
2
0 z‖ and

‖C0w‖U . The matrix of this quadratic form is

Q = −
[

δ − δk
4

− δk
4

1
2 − δ

c2

]
.

This Q will be negative definite if

1

2
− δ

c2
> 0 and 16

(
1

2
− δ

c2

)
> δk2 .

Both of these conditions can be satisfied if we choose δ sufficiently small. Suppose
that δ has been correctly chosen so that Q ≤ −γI for some γ > 0. Then we obtain

Re 〈Ax, x〉new ≤ −γ
(∥∥∥A 1

2
0 z

∥∥∥2

+ ‖C0w‖2
U

)
≤ −γ

(∥∥∥A 1
2
0 z

∥∥∥2

+ c2‖w‖2

)
≤ − γmin(1, c2)‖x‖2

X .

Recall that the two norms on X are equivalent so that ‖x‖X ≥ m‖x‖new for some
m > 0. Denoting η = γmin(1, c2)m2 (so that η > 0), we obtain

Re 〈Ax, x〉new ≤ − η‖x‖2
new

so that A+ηI is dissipative with respect to the new inner product. Hence, the growth
bound of T (which does not depend on the norm) is ω0(T) ≤ −η.

Lemma 4.2. If we define Bb = [
0
I ] ∈ L(H,X), then (A,Bb) is optimizable.

Proof. Consider a new conservative linear system Σ̃ obtained from the same
operator A0 on the same Hilbert space H but with a larger input space Ũ and with
C0 replaced by C̃0, which are defined as follows:

Ũ = U ×H , C̃0 =

[
C0

I

]
.
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Thus, following the standard construction from section 1, B0 will be replaced by
B̃0 = C̃∗

0 = [B0 I ]. According to (1.7), the semigroup T̃ of Σ̃ is generated by

Ã =

[
0 I

−A0 − 1
2B0C0 − 1

2I

]
,

with D(Ã) = D(A) as defined in (1.8). It is clear that C̃0 is bounded from below, so
that T̃ is exponentially stable according to Proposition 1.4.

Now consider the system Σb with input space H, state space X, and output space
H described by {

ẋ(t) = Ax(t) +Bbu(t) ,
y(t) = B∗

bx(t) .

Clearly Σb is well-posed, since Bb is bounded. The static output feedback u = − 1
2y

applied to this system leads to a closed-loop system whose semigroup generator is
A − 1

2B
∗
bBb = Ã, which (as we already know) is exponentially stable. In particular,

it follows that for any initial state x0 ∈ X, the functions u and x defined by u(t) =
− 1

2B
∗
b T̃tx0 and x(t) = T̃tx0 are both in L

2. Thus, (A,Bb) is optimizable.
Proof of Theorem 1.3. According to Theorem 1.1 and Proposition 1.2, Σ is a

conservative linear system with semigroup generator A, control operator B, and ob-
servation operator C. Now the equivalence of (1)–(5) in Theorem 1.3 follows from
Proposition 3.3. It is also easy to see that (3) implies (6), (7), (8), and (9). Indeed,
if T is exponentially stable, then (sI − A)−1 exists and is uniformly bounded on Cα

for some α < 0; see the proof of Proposition 2.4. Looking at the right column of
(sI −A)−1 in (4.1), we obtain that (6)–(9) all hold.

We prove the equivalence of (6) and (7). Suppose that (7) is false; i.e., there
is a sequence (sn) in C0 such that ‖snV (sn)‖→∞. Since T is uniformly bounded,
‖(sI − A)−1‖ is bounded on any right half-plane Cγ with γ > 0. Since sV (s) is one
of the entries of (sI − A)−1, it follows that for large n the sequence (sn) must be
outside Cγ . Since this is true for each γ > 0, we must have Re sn→ 0. Since 0 ∈ ρ(A),
‖sV (s)‖ is bounded on a neighborhood of 0. Thus, without loss of generality we may
assume that |Im sn| ≥ ε > 0.

By the uniform boundedness theorem, there exists a vector x ∈ H such that

λn = ‖snV (sn)x‖ →∞ .

Denote zn =
1
λn
V (sn)x; then clearly zn ∈ H 1

2
, ‖snzn‖ = 1 (hence ‖zn‖ is bounded),

and

1

λn
x = s2nzn +A0zn +

sn
2
B0C0zn→ 0 in H .

Taking inner products with zn, we obtain

1

λn
〈x, zn〉 = s2n‖zn‖2 +

∥∥∥A 1
2
0 zn

∥∥∥2

+
sn
2
‖C0zn‖2 → 0 .(4.2)

Looking here only at the imaginary parts and dividing by Im sn, we obtain

2(Re sn)‖zn‖2 +
1

2
‖C0zn‖2 → 0;(4.3)
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in particular, ‖C0zn‖→ 0. Now we look at the real parts of the terms in (4.2):

−|sn|2‖zn‖2 + 2(Re sn)
2‖zn‖2 +

∥∥∥A 1
2
0 zn

∥∥∥2

+
Re sn
2

‖C0zn‖2 → 0 .(4.4)

Recalling that Re sn→ 0 and ‖snzn‖ = 1, we conclude that limn→∞ ‖A 1
2
0 zn‖ = 1.

Thus, limn→∞ 1
λn

‖A 1
2
0 V (sn)x‖ = 1 so that ‖A

1
2
0 V (sn)‖→∞. We have obtained that

assertion (6) is false, so (6) implies (7). The proof of the fact that (7) implies (6) is
similar with the following modifications: x and λn are now chosen such that λn =

‖A 1
2
0 V (sn)x‖→∞. We take again zn = 1

λn
V (sn)x, and now ‖A 1

2
0 zn‖ = 1 (instead of

‖snzn‖ = 1). Now the reasoning up to (4.4) remains the same, and from (4.4) we
conclude that limn→∞ ‖snzn‖ = 1, which implies that ‖snV (sn)‖→∞.

To prove the equivalence of (8) and (9), we argue similarly as in the proof of the
equivalence of (6) and (7), but now Re sn = 0. This makes the proof simpler, since
now we do not need (4.3) and in (4.4) two terms disappear.

We prove that (6) implies (3). If (6) (and hence also (7)) holds, then we see
from (4.1) that (sI − A)−1Bb is uniformly bounded on C0, where Bb is the operator
from Lemma 4.2. Since, by the same lemma, (A,Bb) is optimizable, we can apply
Proposition 2.5 (the equivalence of points (1) and (2) in that proposition) to conclude
that T is exponentially stable, i.e., (3) holds.

Finally, we prove that (8) implies (3). If (8) (and hence also (9)) holds, then
we see from (4.1) that (iωI − A)−1Bb is uniformly bounded for ω ∈ E, where Bb is
the operator from Lemma 4.2. Since (A,Bb) is optimizable, and since T is uniformly
bounded, the conditions in point (3) of Proposition 2.5 are satisfied. According to
Proposition 2.5, T is exponentially stable.

In order to prove Theorem 1.5, we have to prove several preliminary results. We
denote by σp(A) the set of eigenvalues (the point spectrum) of A.

Lemma 4.3. If λ ∈ σp(A) and x ∈ D(A) is a corresponding eigenvector (i.e.,
(λI −A)x = 0 and x �= 0), then x is of the form

x =

[
z
λz

]
, z ∈ Z0 ,(4.5)

where Z0 = H1 +A−1
0 B0U and(

λ2I +A0 +
λ

2
B0C0

)
z = 0 .(4.6)

If λ �∈ R, then this implies

‖C0z‖2 = 4|Reλ| · ‖z‖2 , 〈A0z, z〉 = |λ|2 · ‖z‖2 .(4.7)

Proof. The formulas (4.5) and (4.6) are an immediate consequence of D(A) ⊂
Z0 × H 1

2
(which follows from (1.8)) and of (λI − A)x = 0. If we take the scalar

product of the sides of (4.6) with z and use the extension of the scalar product to the
duality pairing between H− 1

2
and H 1

2
, we obtain〈(

λ2I +A0

)
z, z

〉
+
λ

2
‖C0z‖2 = 0 .

Since T is a contraction semigroup, λ must be in the closed left half-plane. Denoting
λ = −σ + iω with σ ≥ 0 and ω ∈ R, this means〈(

(σ2 − ω2)I +A0

)
z, z

〉− 2iσω‖z‖2 +
−σ + iω

2
‖C0z‖2 = 0 .(4.8)
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Looking at the imaginary part of this, we see that ω �= 0 implies

−2σ‖z‖2 +
1

2
‖C0z‖2 = 0 ,

which is the same as the first equality in (4.7). Now we look at the real part of (4.8),
using the expression for ‖C0z‖2 that we have just found, obtaining (after a short
computation) the second equality in (4.7).

Lemma 4.4. Suppose that ω ∈ R is such that iω ∈ σp(A). Then also −iω ∈ σp(A)
and ω2 ∈ σp(A0). In this case, z from (4.5) is an eigenvector of A0 corresponding to
the eigenvalue ω2 (in particular, z ∈ Hα for all α > 0) and we have C0z = 0.

Proof. Suppose that iω ∈ σp(A), and let z ∈ Z0 be the first component of a
corresponding eigenvector as in (4.5). We know from (I.5.4) that 0 ∈ ρ(A) so that
ω �= 0. According to the first part of (4.7) we have C0z = 0. Now (4.6) (with λ = iω)
shows that z is an eigenvector of A0 corresponding to the eigenvalue ω

2. It is now
easy to see that the vector with components z and −iωz is also an eigenvector of A
corresponding to the eigenvalue −iω.

We denote by σa(A) the set of those λ ∈ σ(A) for which λ is not an eigenvalue
of A, but λI −A is not bounded from below. In other words, λ ∈ σa(A) if λ �∈ σp(A)
and there exists a sequence (xn) in D(A) with

‖xn‖X = 1 and lim
n→∞ ‖(λI −A)xn‖X = 0 .(4.9)

Lemma 4.5. If ω ∈ R is such that iω ∈ σ(A), then

iω ∈ σp(A) ∪ σa(A) .

Proof. Suppose that iω ∈ σ(A). We prove that iω ∈ σp(A) ∪ σa(A) by showing
that the contrary statement leads to a contradiction. Indeed, the contrary statement
means that iωI − A is bounded from below. In this case, the range of iωI − A is
not dense in X (because if it were dense, then it were all of X, and hence iωI − A
would have a bounded inverse). Let N be the orthogonal complement of the range
of iωI − A; then it is easy to see that N is invariant under T

∗: T
∗
tN ⊂ N for all

t ≥ 0. Considering the restriction of T
∗ to N , we see that D(A∗) ∩N must be dense

in N , so that, in particular, there exist elements q ∈ D(A∗) ∩ N with q �= 0. From
the definition of N we now see that for such q we have (−iωI − A∗)q = 0 so that
−iω ∈ σp(A

∗). Introduce the isomorphism J ∈ L(X) defined by the matrix

J =

[
I 0
0 −I

]
.

We have J−1 = J and A∗ = JAJ ; see the fourth step in the proof of Theorems
I.1.1 and I.1.3 (in section I.6). Thus, A and A∗ have the same eigenvalues so that
−iω ∈ σp(A). According to Lemma 4.4, we obtain that iω ∈ σp(A), which contradicts
our “contrary statement” at the beginning of this proof.

Lemma 4.6. If ω ∈ R is such that iω ∈ σa(A), then also −iω ∈ σa(A) and,
moreover, ω2 ∈ σp(A0) ∪ σa(A0).

Proof. Assume that iω ∈ σa(A) so that for some sequence (xn) in D(A) we have
(4.9) (with λ = iω). Denoting xn = [

zn
wn
] and (iωI − A)xn = [

νn
εn
] so that νn→ 0 (in

H 1
2
) and εn→ 0 (in H), we have[

iωI −I
A0 iωI + 1

2B0C0

] [
zn
wn

]
=

[
νn
εn

]
.
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From the first row we have wn = iωzn − νn. Substituting this into the equation
representing the second row, we get

A0zn − ω2zn − iωνn +
iω

2
B0C0zn − 1

2
B0C0νn = εn .(4.10)

The two sides of this equation are in H, but some terms are in H− 1
2
. Taking the

scalar product with zn and using the duality pairing between H− 1
2
and H 1

2
, we get

〈(
A0 − ω2I

)
zn, zn

〉− iω〈νn, zn〉+ iω

2
‖C0zn‖2 − 1

2
〈C0νn, C0zn〉 = 〈εn, zn〉 ,

which shows that

lim
n→∞

[〈(
A0 − ω2I

)
zn, zn

〉
+
iω

2
‖C0zn‖2

]
= 0 .

Remember that A is invertible (see (I.5.4)) so that ω �= 0. Taking the imaginary part
of the last limit, we conclude that limn→∞ C0zn = 0. Now going back to (4.10), we
conclude that

lim
n→∞

∥∥(ω2I −A0

)
zn
∥∥
− 1

2

= 0 .(4.11)

Now recall from (4.9) that

‖xn‖2
X = ‖zn‖2

1
2
+ ‖wn‖2

0 = 1 .

Since wn = iωzn−νn with limn→∞ ‖νn‖ 1
2
= 0, we have limn→∞

(‖wn‖2
0 − ω2‖zn‖2

0

)
= 0 so that limn→∞(‖zn‖2

1
2

+ ω2‖zn‖2
0) = 1. Since ‖zn‖0 ≤ ‖A− 1

2
0 ‖ · ‖zn‖ 1

2
and

‖A− 1
2

0 ‖2 = ‖A−1
0 ‖, we obtain lim infn→∞

(
1 + ω2‖A−1

0 ‖) · ‖zn‖2
1
2

≥ 1 so that the

sequence (‖zn‖ 1
2
) is eventually bounded from below:

‖zn‖ 1
2
≥ m > 0 for n ≥ n0 .

We have for n ≥ n0

m ≤ ‖zn‖ 1
2
= ‖A0zn‖− 1

2
= ‖(ω2I −A0)zn − ω2zn‖− 1

2

≤ ‖(ω2I −A0)zn‖− 1
2
+ ω2‖zn‖− 1

2
.

Now (4.11) implies that the sequence (‖zn‖− 1
2
) is eventually bounded from below.

This together with (4.11) implies that ω2I − A0 is not bounded from below as an
(unbounded) operator on H− 1

2
(with domain H 1

2
). Since ω2I −A0 as an operator on

H− 1
2
is isomorphic to ω2I −A0 as an operator on H (with domain H1), we conclude

that the latter is also not bounded from below. Thus, ω2 ∈ σp(A0) ∪ σa(A0).

It remains to prove that −iω ∈ σa(A). Define

ξn =

[
zn

−wn

]
∈ H 1

2
×H 1

2
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so that ‖ξn‖X = ‖xn‖X = 1. We will use the extension of A which maps X into X−1.
In particular, this extension maps H 1

2
×H 1

2
⊂ X into H 1

2
×H− 1

2
⊂ X−1, as it is easy

to see (see Proposition I.5.2 for the inclusion H 1
2
×H− 1

2
⊂ X−1). We have

(−iωI −A)ξn =

[−iωI −I
A0 −iωI + 1

2B0C0

] [
zn

−wn

]
=

[−νn
ϕn

]
,

where ϕn ∈ H− 1
2
is given by a formula similar to (4.10):

ϕn = (A0 − ω2I)zn − iωνn − iω

2
B0C0zn +

1

2
B0C0νn .

Remember that νn→ 0 (in H 1
2
) and C0zn→ 0 (in U). Using also (4.11), we

conclude from the above formula that ϕn→ 0 (in H− 1
2
). From here we see that

lim
n→∞(−iωI −A)ξn = 0 in H 1

2
×H− 1

2
.

Since the sequence (ξn) is bounded from below in H 1
2
×H 1

2
, it follows that (−iωI−A)

is not bounded from below (as an operator from H 1
2
×H 1

2
to H 1

2
×H− 1

2
). According

to point (1) of Proposition I.5.3, it follows that −iω ∈ σ(A). Now we can apply
Lemma 4.5 to conclude that −iω ∈ σp(A) ∪ σa(A). If we would have −iω ∈ σp(A),
then it would follow from Lemma 4.4 that also iω ∈ σp(A), which would contradict
our assumption that iω ∈ σa(A). Thus, we must have −iω ∈ σa(A).

Proof of Theorem 1.5. According to Lemmas 4.4, 4.5, and 4.6, if ω ∈ R is such
that iω ∈ σ(A), then ω2 ∈ σ(A0). Thus, if σ(A0) is countable, as assumed in the
theorem, then also σ(A)∩ iR must be countable, as required in Proposition 3.4. Now
the equivalence of points (1)–(7) in the theorem follows from Proposition 3.4.

It remains to prove the equivalence between point (8) and the other points. Sup-
pose that (8) holds. We claim that A has no eigenvalues on the imaginary axis. Indeed,
if ω ∈ R were such that iω ∈ σp(A), then according to Lemma 4.4 ω

2 ∈ σp(A0) and for
a corresponding eigenvector z ∈ H1 we would have C0z = 0, which would contradict
(8). Now we can apply the main theorem of Arendt and Batty [2]: our earlier claim
together with the fact that σ(A) ∩ iR is countable implies that T is strongly stable.
Thus, point (1) of the theorem holds and with it all the others.

Conversely, suppose that point (8) is false, i.e., there exists an ω ∈ R such that
ω2 ∈ σp(A0), and for a corresponding eigenvector z ∈ H1 we have C0z = 0. Let x be
defined by (4.5) with λ = iω. Then it is easy to verify that x ∈ D(A) and Ax = iωx,
whence Ttx = eiωtx. This shows that T is not strongly stable, so in this case the
points (1)–(7) are all false.

5. Examples. The aim of this section is to apply the general stability results
derived earlier to some models based on PDEs. We will consider an Euler–Bernoulli
beam with an exponentially stabilizing feedback acting in one point followed by an
n-dimensional wave equation with boundary control and a nonlocal feedback term
entering a Dirichlet boundary condition.

5.1. An Euler–Bernoulli beam with pointwise control. The physical sys-
tem that we have in mind consists of two rigidly joined beams with both velocity and
angular velocity damping at the joint. The other end of both beams is hinged. The
inputs are a force and a torque acting at the joint (in addition to the damping force
and torque), and the measurements depend linearly on the velocity and the angular
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velocity at the joint as well as on the inputs. The fact that we apply both a force and
a torque feedback at the joint prevents the well-known lack of robustness of stability
concerning the location of the joint: we obtain exponential stability for any location.
For the case when only force feedback or only torque feedback is applied, lack of
robustness of exponential stability was demonstrated in Rebarber [26]. (We refer to
[26] for earlier references on this subject.)

Our system consists of two homogeneous Euler–Bernoulli beams situated along
the intervals [0, ξ] and [ξ, π] with the joint at the point ξ ∈ (0, π). Denoting by [f ]ξ
the jump of the function f at x = ξ, we get the equations

∂2z

∂t2
+
∂4z

∂x4
= 0, x ∈ (0, π) \ {ξ} , [z]ξ = 0 ,

[
∂z

∂x

]
ξ

= 0 ,(5.1)

[
∂3z

∂x3

]
ξ

+
α2

2

∂z

∂t
(ξ, t) = αu1(t), −

[
∂2z

∂x2

]
ξ

+
β2

2

∂2z

∂x∂t
(ξ, t) = βu2(t),(5.2)

[
∂3z

∂x3

]
ξ

− α2

2

∂z

∂t
(ξ, t) = αy1(t), −

[
∂2z

∂x2

]
ξ

− β2

2

∂2z

∂x∂t
(ξ, t) = βy2(t) ,(5.3)

z(x, 0) = z0(x) ,
∂z

∂t
(x, 0) = w0(x) , x ∈ (0, π) \ {ξ} ,(5.4)

z(0, t) = z(π, t) = 0 ,
∂2z

∂x2
(0, t) =

∂2z

∂x2
(π, t) = 0 .(5.5)

Here, z stands for the transverse displacement of the beam and α, β > 0 are damping
coefficients. The external force is αu1 and the external torque is βu2, both acting at
ξ. The output signals are y1 and y2.

An equivalent formulation of (5.1)–(5.5) can be obtained by considering a single
homogeneous Euler–Bernoulli beam situated along the interval [0, π] with a force and
a torque acting at the point ξ ∈ (0, π). (The equivalence is proved in Proposition 5.2
below.) In this case the equations (5.1)–(5.2) are replaced by

∂2z

∂t2
+
∂4z

∂x4
+
α2

2

∂

∂t
(z(ξ, t)) δξ − β2

2

∂

∂t

(
∂z

∂x
(ξ, t)

)
dδξ
dx

= αu1(t)δξ − βu2(t)
dδξ
dx

.(5.6)

Here, δξ is the Dirac mass concentrated at ξ and (5.6) is understood as an equation
in D′(0, π) (distributions on (0, π)). The outputs are equivalently given by

y1(t) = − α
∂z

∂t
(ξ, t) + u1(t) , y2(t) = − β

∂2z

∂t∂x
(ξ, t) + u2(t) .(5.7)

The well-posedness of the system described by (5.4)–(5.7) can be obtained by
using Theorem 1.1 if we introduce the appropriate spaces and operators. We start by
defining H = L2[0, π] and the operator A0 : D(A0)→H by

D(A0) =

{
φ ∈ H4(0, π)

∣∣∣∣ φ(0) = φ(π) = 0,
d2φ

dx2
(0) =

d2φ

dx2
(π) = 0

}
,
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A0φ =
d4φ

dx4
∀ φ ∈ D(A0).

It is well known that A0 is self-adjoint, positive, and boundedly invertible. As in
section 1, we put H1 = D(A0) and we introduce the spaces Hα (α ∈ R) by considering
fractional powers of A0 and duality. A simple calculation shows that

H 1
2
= D(A 1

2
0 ) = H2(0, π) ∩H1

0(0, π)

with the norm

‖z‖2
1
2
=

∫ π

0

∣∣∣∣d2z

dx2
(x)

∣∣∣∣2 dx.
Proposition 5.1. The equations (5.4)–(5.7) determine a conservative linear

system Σ with input and output space C
2 and with state space X = H 1

2
× H. For

z0 ∈ H 1
2
, w0 ∈ H, and u1, u2 ∈ L2[0,∞) the equations (5.4)–(5.6) admit a unique

solution

z ∈ BC
(
0,∞;H 1

2

)
∩BC1 (0,∞;H) ∩H2

loc

(
0,∞;H− 1

2

)
.

Moreover, we have z(ξ, ·), ∂z∂x (ξ, ·) ∈ H1(0,∞).
Proof. We take U = C

2, and B0 ∈ L(U,H− 1
2
) is defined by

B0

[
v1

v2

]
= αv1δξ − βv2

dδξ
dx

∀
[
v1

v2

]
∈ C

2.

By the definition of B0, for each v1, v2 ∈ C, B0[
v1

v2
] is a bounded linear functional

acting on H 1
2
so that indeed B0 maps C

2 into H− 1
2
. The adjoint of B0 is

C0φ = B∗
0φ =

[
αφ(ξ)
β dφ

dx (ξ)

]
∀ φ ∈ H 1

2
.(5.8)

Now it is clear that the problem (5.4)–(5.7) can be written in the form (1.1)–(1.3).
Thus, this proposition follows from Theorem 1.1.

Note that since Σ is conservative, for every t ≥ 0 we have∥∥∥∥[ z(t)ż(t)

]∥∥∥∥2

X

−
∥∥∥∥[ z(0)ż(0)

]∥∥∥∥2

X

=

∫ t

0

[|u1(σ)|2 + |u2(σ)|2
]
dσ

−
∫ t

0

[|y1(σ)|2 + |y2(σ)|2
]
dσ .

The space Z0 defined after (1.5) (see also Theorem I.1.2) is now given by

Z0 =
{
z ∈ H 1

2

∣∣ z|(0,ξ) ∈ H4(0, ξ), z|(ξ,1) ∈ H4(ξ, 1)
}
.

The systems (5.1)–(5.5) and (5.4)–(5.7) are equivalent in the following sense.
Proposition 5.2. Consider the functions

z ∈ C (0,∞;Z0) ∩ C1
(
0,∞;H 1

2

)
∩ C2 (0,∞;H) , u, y ∈ C (0,∞;U) .

Then z, u, and y satisfy (5.1)–(5.5) if and only if they satisfy (5.4)–(5.7).
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Proof. We denote by z(iii) (respectively, by z(iv)) the third (respectively, the
fourth) derivative of z computed in D′ ((0, π) \ {ξ}). Roughly speaking, these deriva-
tives are calculated almost everywhere, ignoring the possible jumps at x = ξ. Hence

they are, in general, different from d3z
dx3 and

d4z
dx4 computed in the sense of distributions,

i.e., in D′(0, π). We define L0 ∈ L (
Z0, L

2[0, π]
)
and G0 ∈ L(Z0, U) by

L0z = z(iv) and G0z =

[
1

α

[
ziii

]
ξ

− 1

β

[
d2z

dx2

]
ξ

]T
(5.9)

(T stands for transpose). Simple calculations show that

L0 = A0 −B0G0, G0H1 = {0}, G0A
−1
0 B0 = I .(5.10)

By Theorem I.1.4 we obtain that the functions z, u, y satisfy (5.4)–(5.7) (which are
the same, in this example, as (1.1)–(1.3)) if and only if they satisfy

z̈(t) + L0z(t) = 0 , G0z(t) +
1

2
C0ż(t) = u(t), G0z(t)− 1

2
C0ż(t) = y(t)

(which are the same as (5.1)–(5.3) and (5.5)) as well as (5.4).
The main result of this section is the following.
Theorem 5.3. For all ξ ∈ (0, π), (5.4)–(5.7) define an exponentially stable well-

posed system with input and output space U = C
2 and state space X.

Proof. Let A : D(A)→X be defined as in (1.7), (1.8). If ψ = [ zw ] ∈ D(A), then
w ∈ H 1

2
and z is piecewise in H4 (on (0, ξ) and on (ξ, π)). Thus, D(A) is compactly

included in X so that A has a compact resolvent, hence σ(A) consists of eigenvalues of
A. We prove that σ(A) ∩ iR = ∅. Arguing by contradiction, suppose that iβ ∈ σ(A)
with β ∈ R. According to Lemma 4.4, if ψ is an eigenvector of A corresponding to
iβ, then ψ = [ z

iβz ], where (β
2I −A0)z = 0. This implies that

d4z

dx4
− β2z = 0, z(0) = z(π) = 0,

d2z

dx2
(0) =

d2z

dx2
(π) = 0.

It follows that z(x) = c sin (nx) for some c ∈ C and n ∈ N (with n4 = β2). Moreover,
by Lemma 4.4 we also have C0z = 0 which, by (5.8), yields that z(ξ) = 0,

dz
dx (ξ) = 0.

This implies that z = 0, which is a contradiction. Thus, σ(A) ∩ iR = ∅.
By the equivalence of (3) and (9) in Theorem 1.3, it suffices to show that

sup
ω∈R

‖ωV (iω)‖L(H) < ∞ .(5.11)

Suppose that this condition is false. By the uniform boundedness theorem, there
exist a sequence of real numbers (βn) with |βn|→∞ and h ∈ H such that λn =
‖βnV (iβn)h‖ →∞. Denoting zn = 1

λn
V (iβn)h and gn =

1
λn
h (so that gn→ 0 in H),

we have

‖βnzn‖H = 1 ∀ n ∈ N,(5.12)

−β2
nzn +A0zn +

iβn
2
B0C0zn = gn ∈ H .(5.13)

We show (in four steps) that (5.12) and (5.13) lead to a contradiction.
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First step. Taking the inner product in H of the sides of (5.13) with βnzn, taking
the imaginary parts, and using (5.12), we obtain that βnC0zn→ 0. According to (5.8)
this means

|βnzn(ξ)| → 0,

∣∣∣∣βn dzndx (ξ)
∣∣∣∣ → 0 .(5.14)

On the other hand, (5.13) implies that zn ∈ Z0 so that by (5.10) we have

A0zn = L0zn +B0G0zn .

Substituting this into (5.13) and using the fact that B0u ∈ H iff u = 0, we obtain

−β2
nzn + L0zn = gn and G0zn =

−iβn
2

C0zn .

The above relations together with (5.8) and (5.9) imply that

−β2
nzn + z(iv)

n = gn → 0 in L2[0, π],(5.15)

z(iii)
n (ξ+)− z(iii)

n (ξ−) = − iβn
α2

2
zn(ξ),(5.16)

d2zn
dx2

(ξ+)− d2zn
dx2

(ξ−) = iβn
β2

2

dzn
dx
(ξ).(5.17)

Second step. Define fn ∈ H by fn(x) = xdzn
dx (x) for x ∈ [0, ξ] and fn(x) = 0 for

x > ξ. We take the inner product of the sides of (5.15) with fn to get∫ ξ

0

(
−β2

nzn(x) + z(iv)
n (x)

)
x
dz̄n
dx
(x)dx =

∫ ξ

0

xgn(x)
dz̄n
dx
(x)dx.(5.18)

By a straightforward calculation, the terms on the left-hand side become

Re

{∫ ξ

0

−β2
nzn(x)x

dz̄n
dx
(x)dx

}
= −1

2
ξ|βnzn(ξ)|2 + 1

2

∫ ξ

0

|βnzn(x)|2dx,

Re

{∫ ξ

0

z(iv)
n (x)x

dz̄n
dx
(x)dx

}
= Re

[(
ξz(iii)

n (ξ−)− d2zn
dx2

(ξ−)
)dz̄n
dx
(ξ)

]

− ξ

2

∣∣∣∣d2zn
dx2

(ξ−)
∣∣∣∣2 + 32

∫ ξ

0

∣∣∣∣d2zn
dx2

(x)

∣∣∣∣2 dx.
The two relations above and (5.18) yield

−1
2
ξ|βnzn(ξ)|2 + 1

2

∫ ξ

0

|βnzn(x)|2dx+Re
[(
ξz(iii)

n (ξ−)− d2zn
dx2

(ξ−)
)dz̄n
dx
(ξ)

]

−ξ

2

∣∣∣∣d2zn
dx2

(ξ−)
∣∣∣∣2 + 32

∫ ξ

0

∣∣∣∣d2zn
dx2

(x)

∣∣∣∣2 dx = Re

∫ ξ

0

xgn(x)
dz̄n
dx
(x)dx.
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Since gn converges to zero in L
2[0, ξ], we deduce that the right-hand side of the last

formula converges to zero. This implies that

−1
2
ξ|βnzn(ξ)|2 + 1

2

∫ ξ

0

|βnzn(x)|2dx+Re
[(
ξz(iii)

n (ξ−)− d2zn
dx2

(ξ−)
)dz̄n
dx
(ξ)

]

−ξ

2

∣∣∣∣d2zn
dx2

(ξ−)
∣∣∣∣2 + 32

∫ ξ

0

∣∣∣∣d2zn
dx2

(x)

∣∣∣∣2 dx→ 0 .(5.19)

On the other hand, from (5.15) and the fact that ‖βnzn‖H = 1 we deduce that

(z
(iv)
n /βn) is a bounded sequence in L

2[0, ξ]. This further implies the boundedness of

the sequences of complex numbers (z
(iii)
n (ξ−)/βn) and (d

2zn
dx2 (ξ

−)/βn). Then, by (5.14)
we obtain that

−1
2
ξ|βnzn(ξ)|2 +Re

[(
ξz(iii)

n (ξ−)− d2zn
dx2

(ξ−)
)dz̄n
dx
(ξ)

]
→ 0 .(5.20)

Relations (5.19) and (5.20) lead to

1

2

∫ ξ

0

|βnzn(x)|2 dx+ 3
2

∫ ξ

0

∣∣∣∣d2zn
dx2

∣∣∣∣2 dx− ξ

2

∣∣∣∣d2zn
dx2

(ξ−)
∣∣∣∣2 → 0 .

Similarly, we take the inner product of the sides of (5.15) with (x− π)dzndx truncated
to [ξ, π], and then we repeat the above argument. This gives

1

2

∫ π

ξ

|βnzn(x)|2 dx+ 3
2

∫ π

ξ

∣∣∣∣d2zn
dx2

∣∣∣∣2 dx− π − ξ

2

∣∣∣∣d2zn
dx2

(ξ+)

∣∣∣∣2 → 0.

If we add the last two formulas and we use (5.13), we obtain∫ π

0

|βnzn(x)|2 dx+ 3
∫ π

0

∣∣∣∣d2zn
dx2

(x)

∣∣∣∣2 dx(5.21)

− ξ

2

∣∣∣∣d2zn
dx2

(ξ−)
∣∣∣∣2 − π − ξ

2

∣∣∣∣d2zn
dx2

(ξ+)

∣∣∣∣2 → 0.

Third step. We show that both |d2zn
dx2 (ξ

−)| and |d2zn
dx2 (ξ

+)| converge to zero. We
use an idea of Liu; see, for instance, [1]: we take the inner product of the sides of
(5.15) with 1

φn
e−φn(ξ−x) truncated to [0, ξ], where φn =

√|βn|. Thus, we obtain

−
∫ ξ

0

φ3
nzn(x)e

−φn(ξ−x)dx+

∫ ξ

0

z
(iv)
n (x)

φn
e−φn(ξ−x)dx =

∫ ξ

0

gn(x)
e−φn(ξ−x)

φn
dx.

By using (5.12), (5.15) again and the fact that φne
−φn(ξ−x) is bounded in L1[0, π], we

obtain that

−
∫ ξ

0

φ3
nzn(x)e

−φn(ξ−x)dx+

∫ ξ

0

z
(iv)
n (x)

φn
e−φn(ξ−x)dx→ 0.(5.22)

Integrating by parts the second term above four times, we obtain∫ ξ

0

z
(iv)
n (x)

φn
e−φn(ξ−x)dx
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=

(
z
(iii)
n (x)

φn
− d2zn
dx2

(x) + φn
dzn
dx
(x)− φ2

nzn

)
e−φn(ξ−x)

∣∣∣∣∣
ξ

0

+

∫ ξ

0

φ3
nzne

−φn(ξ−x)dx.

By using (5.22) we obtain from here that(
z
(iii)
n (x)

φn
− d2zn
dx2

(x) + φn
dzn
dx
(x)− φ2

nzn

)
e−φn(ξ−x)

∣∣∣∣∣
ξ

0

→ 0 .(5.23)

Among the boundary terms in (5.23), those at x = 0 all converge to zero due to the

exponential decay of e−φnξ and to the boundedness of (z
(iv)
n /βn) in L

2[0, ξ]; the terms
containing zn(ξ),

dzn
dx (ξ) also converge to zero due to (5.14). Thus, (5.23) yields

z
(iii)
n

φn
(ξ−)− d2zn

dx2
(ξ−)→ 0.(5.24)

Similarly, we take the inner product of the sides of (5.15) with 1
φn
e−φn(x−ξ) in L2[ξ, π].

Repeating the above analysis, we obtain

z
(iii)
n

φn
(ξ+) +

d2zn
dx2

(ξ+)→ 0 .(5.25)

On the other hand, by using (5.14) and (5.16), we obtain

z(iii)
n (ξ+)− z(iii)

n (ξ−)→ 0 .(5.26)

Then the difference of (5.24) and (5.25) leads, by using (5.26), to

d2zn
dx2

(ξ+) +
d2zn
dx2

(ξ−)→ 0 .

Recall that, by (5.14) and (5.17), we have d2zn
dx2 (ξ

+)− d2zn
dx2 (ξ

−)→ 0. Therefore,

d2zn
dx2

(ξ−)→ 0,
d2zn
dx2

(ξ+)→ 0.(5.27)

Fourth step. Relations (5.21) and (5.27) imply that ‖βnzn‖H → 0, which clearly
contradicts (5.12). This contradiction shows that (5.11) holds.

Theorem 5.3 can be generalized for coupled beams described by a version of (5.6)
containing variable coefficients; see Ammari, Liu, and Tucsnak [1].

Theorem 5.3 together with Theorem 1.3 implies the following.
Proposition 5.4. The system from Theorem 5.3 is exactly controllable.

5.2. The wave equation with Dirichlet-type nonlocal boundary feed-
back. The physical system that we have in mind consists of a vibrating membrane
which is fixed on a part of the boundary, while on the other part of the boundary
the vibrations are damped by a feedback control acting on the Dirichlet boundary
condition. The input is the displacement field on the controlled part of the bound-
ary, and the measurement depends linearly on the velocity field as well as on the
input. A membrane could be modelled in a domain in R

2, but we consider a more
general wave equation on an n-dimensional (possibly unbounded) domain Ω. The
boundary Γ of Ω ⊂ R

n is assumed to be of class C2 and to have a decomposition
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as Γ = Γ0 ∪ Γ1, where Γ0,Γ1 are disjoint open parts of Γ with Γ1 �= ∅. We also
assume that the Poincaré inequality holds for all f ∈ H1

0(Ω), which is always true if
Ω is bounded, but it also holds for some unbounded domains (see section I.7). The
operator G : H−1(Ω)→ H1

0(Ω) is defined by

Gf = φ if and only if φ ∈ H1
0(Ω) and −∆φ = f.

Thus, in a certain sense, G = −∆−1. We denote by γ0 : H1(Ω)→H 1
2 (Γ) the Dirich-

let trace operator, which is onto, and by γ1 : H2(Ω)→H 1
2 (Γ) the outward normal

derivative operator. Using Green’s formula,

〈γ1f, γ0g〉L2 = 〈∆f, g〉L2 + 〈∇f,∇g〉L2(5.28)

for all f ∈ H2(Ω) and g ∈ H1(Ω), γ1 can be extended so that γ1f is defined as

a distribution in H− 1
2 (Γ) for every f ∈ H1(Ω) for which ∆f ∈ L2(Ω). Here, ∆f

denotes the Laplacian of f in the sense of distributions on Ω, i.e., in the space D′(Ω).
We consider the system described by the equations

z̈ = ∆z in Ω× (0,∞),(5.29)

z = 0 on Γ0 × (0,∞),(5.30)

z − 1

2
γ1(Gż) = u on Γ1 × (0,∞),(5.31)

z(x, 0) = z0(x), ż(x, 0) = w0(x) for x ∈ Ω .(5.32)

The input of this system is the function u in (5.31). The output associated with this
system is

y = z +
1

2
γ1(Gż) on Γ1 × (0,∞) .(5.33)

Some comments about the domain Ω follow: It is not really necessary to assume
that Γ is of class C2. What we really need is that G maps L2(Ω) onto H2(Ω)∩H1

0(Ω)

and that γ1 maps H2(Ω) ∩ H1
0(Ω) onto H 1

2 (Γ). These properties hold also for some
less regular domains, for example, for convex sets in R

2 (see Grisvard [9, Theorem
3.2.1.2, p. 147]) or for rectangular domains in R

n. We will need the following simple
result, a direct consequence of the Riesz representation theorem in L2(Ω).

Proposition 5.5. For every v ∈ L2(Γ) there exists a unique function Dv ∈
L2(Ω) such that∫

Ω

(Dv)(x)ψ(x)dx = −
∫

Γ

vγ1(Gψ)dΓ ∀ ψ ∈ L2(Ω).(5.34)

Moreover, the operator D defined above (called the Dirichlet map) is linear and
bounded from L2(Γ) into L2(Ω).

Due to the Poincaré inequality, the norm on H1
0(Ω) can be defined as ‖f‖H1

0
=

‖∇f‖L2 . Then it is easy to see (using (5.28)) that the corresponding dual norm on
H−1(Ω) (with respect to the pivot space L2(Ω)) can be written as

‖g‖H−1 = sup
‖f‖H1

0
=1

〈g, f〉H−1,H1
0
= ‖∇(Gg)‖L2 .
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Define W =
{
f ∈ L2(Ω) | ∆f ∈ H−1(Ω)

}
. Since γ1 maps H2(Ω) ∩ H1

0(Ω) onto

H 1
2 (Γ) (see Lions and Magenes [21, Chapter 2, Theorem 5.4]), the Dirichlet trace

operator γ0 can be extended to an operator γ0 :W →H− 1
2 (Γ) by putting

〈γ0f, γ1(Gψ)〉H− 1
2 ,H 1

2
= − 〈∆f,Gψ〉H−1,H1

0
− 〈f, ψ〉L2 ∀ ψ ∈ L2(Ω).

The operators D and γ0 defined above are related as follows.
Proposition 5.6. If v ∈ L2(Γ), then ∆(Dv) = 0 in D′(Ω) (which implies that

Dv ∈ W ). Moreover, we have that γ0(Dv) = v.
Proof. The fact that ∆(Dv) = 0 (in the sense of distributions) follows directly

from (5.34) by taking ψ = ∆ϕ, where ϕ ∈ D(Ω) = C∞
0 (Ω). Now using the definition

of the extended γ0, we have that

〈γ0(Dv), γ1(Gψ)〉H− 1
2 ,H 1

2
= − 〈Dv, ψ〉L2 ∀ ψ ∈ L2(Ω).(5.35)

Since γ1(Gψ) in (5.35) can be any function in H 1
2 (Γ) and H 1

2 (Γ) is dense in L2(Ω),
equations (5.34) and (5.35) imply that γ0(Dv) = v.

To discuss the well-posedness and conservativity of the system (5.29)–(5.33) (using
Theorem 1.1), we have to introduce the appropriate spaces and operators. Denote

X = L2(Ω)×H−1(Ω) , U = L2(Γ1) .

We also define the Hilbert space

Z0 =
{
f ∈ W

∣∣ γ0f ∈ L2(Γ) and γ0f |Γ0
= 0

}
,(5.36)

with the norm ‖f‖Z0 given by

‖f‖2
Z0
= ‖f‖2

L2 + ‖∆f‖2
H−1 + ‖γ0f‖2

L2 .

The precise statement of the well-posedness and conservativity of the system described
by (5.29)–(5.33) is given in the following proposition.

Proposition 5.7. The equations (5.29)–(5.33) determine a conservative linear
system Σ with input and output space U and state space X. If z0 ∈ Z0, w0 ∈
L2(Ω), u ∈ H1(0,∞;U), and the compatibility condition

z0(x)− 1

2
γ1 (Gw0) (x) = u(x, 0) for x ∈ Γ1

holds, then (5.29)–(5.33) have a unique solution z, y satisfying

z ∈ BC (0,∞;Z0) ∩BC1
(
0,∞;L2(Ω)

) ∩BC2
(
0,∞;H−1(Ω)

)
,

y ∈ H1(0,∞;U) .
Proof. We define the following spaces and operators:
• The space H is defined by H = H−1(Ω) endowed with the norm

‖f‖H = ‖∇(Gf)‖L2(Ω) .

• The operator A0 : D(A0)→H is defined by

D(A0) = H1
0(Ω), A0φ = −∆φ ∀ φ ∈ D(A0).

It is well known that A0 is self-adjoint, positive, and boundedly invertible.
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• As in section 1, we put H1 = D(A0) and we introduce the spaces Hα (α ∈ R)
by considering powers of A0 and duality so that A0 : Hα→Hα−1. In order

to identify the space H 1
2
= D(A 1

2
0 ), we recall that H 1

2
is the completion of

D(A0) with respect to the norm

‖z‖ 1
2
=

∥∥∥A 1
2
0 z

∥∥∥
H
=

√
〈A0z, z〉H .

Since for any z ∈ D(A0) = H1
0(Ω), we have

〈A0z, z〉H = − 〈∇z,∇ (
∆−1z

)〉
L2(Ω)

= ‖z‖2
L2(Ω);

the space H 1
2
is given by H 1

2
= L2(Ω).

• Notice that H 3
2
= H2(Ω) ∩H1

0(Ω). We define the space

H̃−2(Ω) =
(H2(Ω) ∩H1

0(Ω)
)′
.

(This dual is computed with respect to the pivot space L2(Ω).) It can be

checked that G can be extended so that G : H̃−2(Ω)→L2(Ω) and the norm

on H̃−2(Ω) is

‖g‖H̃−2 = sup
‖∆f‖L2(Ω)=1

〈g, f〉 = ‖Gg‖L2 .

• By definition, the space H− 1
2
is the completion of H with respect to the

norm ‖z‖− 1
2
=

∥∥A− 1
2

0 z
∥∥
H
. Since G = A−1

0 on H, the last equality and the
definition of the norm on H imply that

‖z‖− 1
2
=

∥∥∥∇(
A

− 3
2

0 z
)∥∥∥

L2
.

The above relation and the obvious fact that ‖A 1
2
0 w‖L2 = ‖∇w‖L2 for any

w ∈ H1
0(Ω) imply that

‖z‖− 1
2
= ‖A−1

0 z‖L2 = ‖Gz‖L2 ∀ z ∈ H.

We have thus shown that H− 1
2
= H̃−2(Ω).

• We denote by P ∈ L (
L2(Γ), L2(Γ1)

)
the operator of truncation to Γ1. Then

P ∗ ∈ L (
L2(Γ1), L

2(Γ)
)
is the operator defined by extending the functions in

L2(Γ1) by zero outside Γ1. The operator B0 ∈ L(U,H− 1
2
) is defined by

B0v = A0DP
∗v,

where A0 is considered as an operator from H 1
2
to H− 1

2
and D : U →L2(Ω)

is the Dirichlet map defined in Proposition 5.5.
• Let φ ∈ H1

0(Ω) = H1 and v ∈ L2(Γ1). Then we have

〈B0v, φ〉H− 1
2
,H 1

2

= 〈DP ∗v, A0φ〉H = 〈DP ∗v, φ〉H 1
2

.

By using the fact that H 1
2
= L2(Ω), the density of H1

0(Ω) in L2(Ω), and

(5.34), it follows that for every φ ∈ L2(Ω) and for every v ∈ L2(Γ1)

〈B0v, φ〉H− 1
2
,H 1

2

= 〈DP ∗v, φ〉L2 = −
∫

Γ1

vγ1 (Gφ)dΓ .
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We conclude that the adjoint of B0 (using the pivot space H = H−1(Ω)) is
C0 ∈ L(H 1

2
, U) given by

C0φ = B∗
0φ = − Pγ1(Gφ) ∀ φ ∈ H 1

2
= L2(Ω) .

It is clear that the spaces U,H,Hα, X and the operators A0, C0, B0 fit into the
simple general framework of section 1. Thus, by Theorem 1.1, they determine via the
equations (1.1)–(1.3) a conservative linear system Σ. The state of this system is

ξ(t) =

[
z(t)
ż(t)

]
.

To show that Σ is described by (5.29)–(5.33), first we notice that the space Z0 =
H1 + A−1

0 B0U defined after (1.5) (see also Theorem I.1.2) is given in our case by
Z0 = H1 +DP ∗U . By using Lemma 5.6, it can be checked that this space coincides
with that defined by (5.36). We define the operator G0 ∈ L(Z0, U) by

G0f = Pγ0f ∀ f ∈ Z0.

Clearly, we have G0H1 = {0}, and by Lemma 5.6 we have in L(U)

G0A
−1
0 B0 = Pγ0A

−1
0 (A0DP

∗) = Pγ0DP
∗ = I .

Hence, all the assumptions in Theorem I.1.4 are satisfied. We define on Z0 the operator
L0 = A0 −B0G0 as in Theorem I.1.4, and it is easy see that L0z = −∆z.

If we write the system of equations (I.1.16) in our specific framework, we obtain
the system of equations (5.29)–(5.33). Hence, by Theorem I.1.4 the compatibility
condition in our proposition is equivalent to (I.1.9), and the equations (5.29)–(5.33)
are equivalent to (I.1.11) and (I.1.12). Now by Theorem I.1.2, the equations have a
solution z, y with the claimed smoothness properties.

This system has also been considered in Lasiecka and Triggiani [18, pp. 669–671]
but without considering outputs. They have proved the well-posedness of the mapping
from the input function to the state, and they have discussed the exponential stability
of the system for suitable Γ1.

Theorem 5.8. If Ω is bounded, then the system defined by (5.29)–(5.33) is
strongly stable, exactly controllable in infinite time, and exactly observable in infinite
time.

Proof. The fact that the equations (5.29)–(5.33) define a conservative linear sys-
tem with input space U , state space X, and output space Y has been said in Propo-
sition 5.7. The boundedness of Ω implies that the spectrum of A0 is countable. Thus,
according to assertion (8) of Theorem 1.5, in order to check the properties claimed in
the theorem it suffices to prove that for any φ ∈ H1 if φ is an eigenvector of A0, then
C0φ �= 0. Due to the particular form of A0 and C0, this means that we have to show
that if φ ∈ H1

0(Ω) is such that for some λ > 0

−∆φ = λφ in H−1(Ω),
∂

∂ν
(Gφ) = 0 on Γ1,(5.37)

then φ = 0. By denoting ψ = Gφ, we see that (5.37) is equivalent to

−∆ψ = λψ in H1
0(Ω),

∂ψ

∂ν
= 0 on Γ1.(5.38)
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By classical elliptic regularity results, (5.38) implies that ψ ∈ H2(Ω) (see, for
instance, Grisvard [9, Theorem 2.2.2.5]). This fact combined with (5.38) implies, by
a classical unique continuation argument (see, for instance, Komornik [16, Corollary
6.2]), that ψ = 0. Thus, (5.37) implies that φ = ∆ψ = 0 in H1

0(Ω).

The exponential stability of the system (5.29)–(5.32) was studied in Bardos et al.
[4]. By combining Proposition 5.7 and [4, Theorem 1], we obtain the following.

Theorem 5.9. Suppose that Ω is bounded and there exists a time T0 > 0 such
that every geometric ray in Ω×(0, T0) intersects Γ1×(0, T0) in a nondiffractive point.
Then the equations (5.29)–(5.33) define an exponentially stable, conservative system
with input space U , state space X, and output space Y . This system is also exactly
controllable and exactly observable in time T0.

The last sentence of the above theorem follows from the exponential stability
(stated in the first part of the theorem) using Theorem 1.3.
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