
Proceedings of the 3rd Workshop on e-Commerce and NLP (ECNLP 3), pages 7–18

Online, July 10, 2020. c©2020 Association for Computational Linguistics

7

How to Grow a (Product) Tree

Personalized Category Suggestions for eCommerce Type-Ahead

Jacopo Tagliabue

Coveo Labs, New York, USA

jtagliabue@coveo.com

Bingqing Yu

Coveo, Montreal, CA

cyu2@coveo.com

Marie Beaulieu

Coveo, Quebec, CA

mabeaulieu@coveo.com

Abstract

In an attempt to balance precision and recall

in the search page, leading digital shops have

been effectively nudging users into select cate-

gory facets as early as in the type-ahead sug-

gestions. In this work, we present Session-

Path, a novel neural network model that im-

proves facet suggestions on two counts: first,

the model is able to leverage session em-

beddings to provide scalable personalization;

second, SessionPath predicts facets by ex-

plicitly producing a probability distribution at

each node in the taxonomy path. We bench-

mark SessionPath on two partnering shops

against count-based and neural models, and

show how business requirements and model

behavior can be combined in a principled way.

1 Introduction

Modern eCommerce search engines need to work

on millions of products; in an effort to fight “zero

result” pages, digital shops often sacrifice precision

to increase recall1, relying on Learn2Rank (Liu,

2009) to show the most relevant results in the top

positions (Matveeva et al., 2006). While this strat-

egy is effective in web search, when users rarely

go after page one (Granka et al., 2004; Guan and

Cutrell, 2007), it is only partially successful in prod-

uct search: shoppers may spend time browsing sev-

eral pages in the result set and re-order products

based on custom criteria (Figure 1); analyzing in-

dustry data, up to 20% of clicked products occur

not on the first page, with re-ranking in approxi-

mately 10% of search sessions.

Leading eCommerce websites leverage machine

learning to suggest facets - i.e. product categories,

such as Video Games for “nintento switch” - during

1The “nintendo switch” query for a gaming console re-
turns 50k results on Amazon.com at the time of drafting this
footnote; 50k results are more products than the entire catalog
of a mid-size shop such as Shop 1 below.

Figure 1: Price re-ordering on Amazon.com, showing

degrading relevance in the result set when querying for

a console - “nintendo switch” - and then re-ranking

based on price.

type-ahead (Figure 2): narrowing down candidate

products explicitly by matching the selected cate-

gories, shops are able to present less noisy result

pages and increase the perceived relevance of their

search engine. In this work we present Session-

Path, a scalable and personalized model to solve

facet prediction for type-ahead suggestions: given

a shopping session and candidate queries in the

suggestion dropdown menu, the model is asked to

predict the best category facet to help users narrow

down search intent. A big advantage of Session-

Path is that it can complement any existing stack

by adding facet prediction to items as retrieved by

the type-ahead API.

We summarize the main contributions of this

work as follows:

• we devise, implement and benchmark sev-

eral models of incremental complexity (as

measured by features and engineering re-

quirements); starting from a non-personalized

count-based baseline, we arrive at Session-

Path, an encoder-decoder architecture that

explicitly models the real-time generation of

paths in the catalog taxonomy;

8

Figure 2: Facet suggestions during type-ahead: shop-

pers can be nudged to pick a facet before querying, to

help the search engine present more relevant results.

• we discuss the importance of false positives

and false negatives in the relevant business

context, and provide decision criteria to adjust

the precision/recall boundary after training.

By combining the predictions of the neural

network with a decision module, we show how

model behavior can be tuned in a principled

way by human decision makers, without inter-

fering with the underlying inference process

or introducing ad hoc manual rules.

To the best of our knowledge, SessionPath is the

first type-ahead model that allows dynamic facet

predictions: linguistic input and in-session intent

are combined to adjust the target taxonomy depth

(sport / basketball vs sport / basketball / lebron)

based on real-time shopper behavior and model

confidence. For this reason, we believe the methods

and results here presented will be of great interest

to any digital shop struggling to strike the right

balance between precision and recall in a catalog

with tens-of-thousands-to-millions of items.

2 Less (Choice) is More: Considerations

From Industry Use Cases

The problem of narrowing down the result set be-

fore re-ranking is a known concern for mid-to-big-

size shops: as shown in Figure 1-A, a common

solution is to invite shoppers to select a category

facet when still typing. Aside from UX consider-

ations, restricting the result set may be beneficial

for other reasons. On one hand, decision science

proved that providing shoppers with more alterna-

tives is actually less efficient (the so-called ”para-

dox of choice” (Scheibehenne et al., 2010; Iyengar

and Lepper, 2001)) - insofar as SessionPath helps

avoiding unnecessary “cognitive load”, it may be a

welcomed ally in fighting irrational decision mak-

ing; on the other, by restricting result set through

Figure 3: Shoppers in Session A and Session B have

different sport intent, as shown by the products visited.

By combining linguistic and behavioral in-session data,

SessionPath provides in real-time personalized facet

suggestions to the same “nike” query in the type-ahead.

facet selection, the model may reduce the long-tail

effect of many queries on product visibility: when

results are too many and items frequently changed,

standard Learn2Rank approaches tend to penalize

less popular items (Abdollahpouri et al., 2017; An-

derson, 2006), which end up buried among noisy

results far from the first few pages and never collect

enough relevance feedback to rise through the top.

In this work, we extend industry best practices of

facet suggestion in type-ahead by providing a solu-

tion that is dynamic in two ways: i) given the same

query, session context may be used to provide a

contextualized suggestion (Figure 3); ii) given two

queries, the model will decide in real-time how

deep in the taxonomy path the proposed sugges-

tion needs to be (Figure 4): for some queries, a

generic facet may be optimal (as we do not want to

narrow the result set too much), for others a more

specific suggestion may be more suitable. Given

the natural trade-off between precision and recall at

different depths, Section 7.2 is devoted to provide

a principled solution.

3 Related Work

Facet selection. Facet selection is linked to query

classification on the research side (Lin et al., 2018;

Skinner and Kallumadi, 2019) and query scoping

on the product side, i.e. pre-selecting, say, the facet

color with value black for a query such as “black

basketball shoes” (Liberman and Lempel, 2014;

Vandic et al., 2013). Scoping may result in an ag-

gressive restriction of the result set, lowering recall

excessively: in most cases, an acceptable shopping

experience would need to combine scoping with

query expansion (Diaz et al., 2016). SessionPath

is more flexible than query classification, by sup-

porting explicit path prediction and incorporating

in-session information; it is more gentle than scop-

9

ing (by nudging transparently the final user instead

of forcing a selection behind the scene); it is more

principled than expansion in balancing precision

and recall.

Deep Learning in IR. The development of deep

learning models for IR has been mostly restricted

to the retrieve-and-rerank paradigm (Mitra and

Craswell, 2017; Guo et al., 2016). Some recent

works have been focused specifically on ranking

suggestions for type-ahead: neural language mod-

els are proposed by Park and Chiba (2017); Wang

et al. (2018b); specifically in eCommerce, Kan-

nadasan and Aslanyan (2019) employs fastText to

represent queries in the ranking phase and Yu et al.

(2020) leverages deep image features for in-session

personalization. While this work employs deep

neural networks both for feature encoding and the

inference itself, the proposed methods are agnos-

tic on the underlying retrieval algorithm, as long

as platforms can enrich type-ahead response with

the predicted category. By providing a gentle en-

try point into existing workflows, a great product

strength of SessionPath is the possibility of deploy-

ing the new functionalities with minimal changes

to any architecture, neural or traditional (see also

Appendix A).

4 Problem Statement

Suggesting a category facet can be modelled with

the help of few formal definitions. A target shop

E has products p1, p2, ...pn ∈ P (e.g. nike air

max 97) and categories c1,1, c1,2, ...cn,m ∈ C,

where cn,m is the category n at depth m (e.g.

at m = 1, [soccer, volley, football, basketball],

at m = 2 [shoes, pants, t-shirts], etc.); a tax-

onomy tree Tm is an indexed mapping P 7→
Cm, assigning a category to products for each

depth m (e.g. air max 97 7→0 root,7→1 soc-

cer, 7→2 shoes, 7→3 messi etc.); root is the base

category in the taxonomy, and it is common to

all products (we will omit it for brevity in all our

examples). In what follows, we use path to de-

note a sequence of categories (hierarchically struc-

tured) in our target shop (e.g. root / soccer / shoes /

messi), and nodes to denote the categories in a path

(e.g. soccer is a node of soccer / shoes / messi).

Given a browsing session s containing products

px, py, ...pz , and a candidate type-ahead query q,

the model’s goal is to learn both the optimal depth

value m and, for each k ≤ m, a contextual function

f(q, s) 7→ Ck. As we shall see in the ensuing

Figure 4: Functional flow for SessionPath: the current

session and the candidate query “shoes” are embedded

and fed to the model; the distribution over possible cat-

egories at each step of the taxonomy is passed to a deci-

sion module, that either cuts the generation at that step

or includes the step in the final prediction. The deci-

sion process is repeated until either the module cuts or

a max-length path is generated.

section, SessionPath solution to this challenge is

two-fold: a model generating a path first, and a

decision module to pick the appropriate depth m
(Figure 4).

5 Baseline and Personalized Models

We approach the challenge incrementally, by first

developing a count-based model (CM) that learns

a mapping from queries to all paths (i.e. sport and

sport / soccer are treated purely as “labels”, so they

are two completely unrelated target classes for the

model); CM will both serve as a baseline for more

sophisticated methods and as a fast reference imple-

mentation not requiring any deep learning infras-

tructure. We improve on CM with SessionPath,

a model based on deep neural networks. From a

product perspective, it is important to remember

(Figure 4) that a decision module is called after a

path prediction is made: we discuss how to tune

this crucial part after establishing the general per-

formance of the proposed models.

5.1 A Baseline Model

The intuition behind the count-based model is that

we may gain insights on relevant paths linked to

a query from the clicks on search results. There-

fore, we can build a simple count-based model by

creating a map from each query in the search logs

to their frequently associated paths. To build this

map, we first retrieve all products clicked after each

query, along with their path; for a given query, we

can then calculate the percentage of occurrence

of each path in the clicked products. Since the

10

model is not hierarchical, it is important to note

that sport and sport / basketball will be treated as

completely disjoint target classes for the prediction.

To avoid noisy results, we empirically determined

a frequency threshold for paths to be counted as rel-

evant to a certain query (80%); at prediction time,

given a query in the training set, we retrieve all

the paths associated with it and return the one with

longest depth; for unseen queries, no prediction is

made.

5.2 Modelling Session Context and

Taxonomy Paths

The main conceptual improvements over CM are

three:

• SessionPath produces predictions also for

queries not in the training set;

• SessionPath introduces personalization, by

combining the linguistic information con-

tained in the query with in-session shopping

intent;

• SessionPath is trained to produce the most

accurate path by explicitly making a new pre-

diction at each node, not predicting paths in a

one-out-of-many scenario; in other words, Ses-

sionPath knows that sport and sport / basket-

ball are related, and that the second path is

generated from the first when a given distribu-

tion over sport activities is present.

To represent the current session in a dense archi-

tecture, we first train a skip-gram prod2vec model

over user data for the entire website, mapping

product to 50-dimensional vectors (Mikolov et al.,

2013a; Grbovic et al., 2015). At training and serv-

ing time SessionPath retrieves the embeddings of

the products in the target session, and use average

pooling to calculate the context vector from the

sequence of embeddings, as shown by Covington

et al. (2016); Yu et al. (2020). To represent the

candidate query, an encoding of linguistic behavior

that generalizes to unseen queries is needed. We

tested different strategies:

• word2vec: we train a skip-gram model

from Mikolov et al. (2013b) over product

short descriptions from the catalog. Since

most search queries are less than three words

long, we opted for a simple and fast average

pooling of the embeddings in the tokenized

query;

• character-based language model: inspired by

Skinner (2018), we train a char-based lan-

guage model (single LSTM layer with hid-

den dimension 50) on search logs and product

descriptions from the target shop; a standard

LSTM approach was found ineffective in pre-

liminary tests, so we opted instead for using

the “Balanced pooling” strategy from Skinner

and Kallumadi (2019), where the dense repre-

sentation for the query is obtained by taking

the last network state and then concatenating

it together with average-pooling (Wang et al.,

2018a), max-pooling, and min-pooling;

• pre-trained language model: we map the

query to a 768-size vector using BERT (De-

vlin et al., 2019) (as pre-trained for the target

language by Magnini et al. (2006));

• Search2Prod2Vec + unigrams: we propose a

“small-data” variation to Search2Vec by Gr-

bovic et al. (2016), where queries (on a web

search engine) are embedded through events

happening before and after the search event.

Adapting the intuition to product search, we

propose to represent queries through the em-

beddings of products clicked in the search

result page; in particular, each query q is

the weighted average of the corresponding

prod2vec embeddings; it can be argued that

the clicking event is analogous to a “pointing”

signal (Tagliabue and Cohn-Gordon, 2019),

when the meaning of a word (“shoes”) is

understood as a function from the string to

a set of objects falling under that concept

(e.g. Chierchia and McConnell-Ginet (2000)).

In the spirit of compositional semantics (Ba-

roni et al., 2014), we generalize this represen-

tation to unseen queries by building a unigram-

based language model, so that “nike shoes”

gets its meaning from the composition (aver-

age pooling) of the meaning of nike and shoes.

To generate a path explicitly, we opted for an

encoder-decoder architecture. The encoder em-

ploys the wide-and-deep approach popularized by

Cheng et al. (2016), and concatenates textual and

non-textual feature to obtain a wide representation

of the current context, which is passed through a

dense layer to represent the final encoded state. The

decoder is a word-based language model (Zoph and

Le, 2016) which produces a sequence of nodes (e.g.

11

Shop Queries (with context) Products

Shop 1 270K (185K) 29.699

Shop 2 270K (227K) 93.967

Table 1: Descriptive statistics for the dataset.

sport, basketball, etc.) conditioned on the repre-

sentation created by the encoder; more specifically,

the architecture of the decoder consists of a sin-

gle LSTM with 128 cells, a fully-connected layer

and a final layer with softmax output activation.

The output dimension corresponds to the total num-

ber of distinct nodes found in all the paths of the

training data, including two additional tokens to

encode the start-of-sequence and end-of-sequence.

For training, the decoder uses the encoded infor-

mation to fill its initial cell states; at each timestep,

we use teacher forcing to pass the target charac-

ter, offset by one position, as the next input char-

acter to the decoder (Williams and Zipser, 1989).

Empirically, we found that robust parameters for

the deep learning methods are a learning rate of

0.001, time decay of 0.00001, early stopping with

patience = 20, and mini-batch of size 128; fur-

thermore, the Adam optimizer with cross-entropy

loss is used for all networks, with training up to

300 epochs. Once trained, the model can gener-

ate a path given an encoded session representation

and a start-of-sequence token: after the first step,

the decoder uses autoregression sequence gener-

ation (Bahdanau et al., 2015) to predict the next

output token.

6 Dataset

We leverage behavioral and search data from two

partnering shops in Company’s network: Shop 1

and Shop 2 have uniform data ingestion, making it

easy to compare how well models generalize; they

are mid-size shops, with annual revenues between

20 and 100 million dollars. Shop 1 and Shop 2

differ however in many respects: they are in differ-

ent verticals (apparel vs home improvement), they

have a different catalog structure (603 paths orga-

nized in 2-to-4 levels for each product vs 985 paths

in 3 levels for all products), and different traffic

(top 200k vs top 15k in the Alexa Ranking). De-

scriptive statistics for the training dataset can be

found in Table 1: data is sampled for both shops

from June-August in 2019; for testing purposes, a

completely disjoint dataset is created using events

from the month of September.

Model D=1 D=2 D=last

CM 0.63 0.53 0.22

MLP+BERT 0.72 0.59 0.33

SP+BERT 0.77 0.64 0.40

SP+LSTM 0.79 0.68 0.43

SP+W2V 0.82 0.71 0.46

SP+SV 0.87 0.79(0.01) 0.55

CM 0.41 0.34 0.24

MLP+BERT 0.61 0.50 0.39

SP+BERT 0.66 0.55 0.45

SP+LSTM 0.67 0.57 0.46

SP+W2V 0.69 0.59 0.47

SP+SV 0.80 0.71 0.59

Table 2: Accuracy scores for depth = 1, depth = 2,

depth = last, divided by Shop 1 (top) and Shop 2

(bottom). We report the mean over 5 runs, with SD if

SD ≥ 0.01.

7 Experiments

We perform offline experiments using search logs

for Shop 1 and Shop 2: for each search event in

the dataset, we use products seen before the query

(if any) to build a session vector as explained in

Section 5.2; the path of the products clicked after

the query is used as the target variable for the model

under examination.

7.1 Making predictions

We benchmark CM and SessionPath from Sec-

tion 5, plus a multi-layer perceptron (MLP) to in-

vestigate the performance of an intermediate model:

while not as straightforward as CM, MLP is con-

siderably easier to train and serve than Session-

Path and it may therefore be a compelling archi-

tectural choice for many shops (see Appendix A

for practical engineering details); MLP concate-

nates the session vector with the BERT encoding

of the candidate query, and produces a distribution

over all possible full-length paths (one-out-of-many

classification, where the target class comprises all

the paths at the maximum depth for the catalog at

hand). Table 2 shows accuracy scores for three dif-

ferent depth levels in the predicted path: SP+BERT

is SessionPath using BERT to encode linguistic

behavior, SP+W2V is using word2vec, SP+SV is

using Search2Prod2Vec and SP+LSTM is using

the language model. Every SessionPath variant

outperforms the count-based and neural baselines,

with Search2Prod2Vec providing up to 150% in-

crease over CM and 67% over MLP. CM score is

12

penalized not only by the inability to generalize to

unseen queries: even when considering previously

seen queries in the test set, SP+SV’s accuracy is

significantly higher (0.58 vs 0.27 at D = last),
showing that neural methods are more effective

in capturing the underlying dynamics. Linguis-

tic representations learned directly over the tar-

get shop outperform bigger models pre-trained

on generic text sources, highlighting some differ-

ences between general-purpose embeddings and

shop-specific ones, and suggesting that off-the-

shelf NLP models may not be readily applied to

short, keyword-based queries. While fairly accu-

rate, SP+W2V is much slower to train compared

to SP+SV and harder to scale across clients, as it

relies on having enough content in the catalog to

train models that successfully deal with shop lingo.

On a final language-related note, it is worth stress-

ing that click-based embeddings built for SP+SV

show not just better performance over seen queries

(which is expected), but better generalization abil-

ity in the unseen part as well compared to BERT

embeddings (0.82 vs 0.70 at D = 1 for Shop 1,

0.76 vs 0.63 for Shop 2).

In the spirit of ablation studies, we re-

run SP+SV and SP+BERT without session vec-

tor. Interestingly enough, context seems to play

a slightly different role in the two shops and the

two models: SP+BERT is greatly helped by con-

textual information, especially for unseen queries

(0.28 vs 0.21 at D = last for Shop 1, 0.40 vs 0.15
for Shop 2), but the effect for SP+SV is smaller

(0.50 vs 0.42 for Shop 2); while models on Shop 2

show a bigger drop in performance when removing

session information, generally (and unsurprisingly)

session-aware models provide better generalization

on unseen queries across the board. By comparing

SessionPath with a simpler neural model (such

as MLP), it is clear that session plays a bigger

role in MLP, suggesting that SessionPath architec-

ture is able to better leverage linguistic information

across cases.

Finally, we investigate sample efficiency of cho-

sen methods by training on smaller fractions of

the original training dataset: Table 3 reports ac-

curacy of four methods when downsampling the

training set for Shop 1 to 1/10th and 1/4th of the

dataset size. CM’s inability to generalize cripples

its total score; MLP is confirmed to be simple yet

effective, performing significantly better than the

count-based baseline; SP+SV is confirmed to be

Model (D=last) 1/10 1/4

CM 0.18 0.20

MLP+BERT 0.28 0.30

SP+BERT 0.31 0.34

SP+SV 0.51 0.53

Table 3: Accuracy scores (D=last) when training on

portions of the original dataset for Shop 1.

the best performing model, and even with only

1/10th of samples outperforms all other models

from Table 2: by leveraging the bias encoded in

the hierarchical structure of the products, SP+SV

allows paths that share nodes (sport, sport / basket-

ball) to also share statistical evidence, resulting in

a very efficient learning.

Accuracy provides a strong argument on the effi-

cacy of the proposed models in industry, and it is

in fact widely employed in the relevant literature:

Vandic et al. (2013) employs click-based accuracy

for label prediction, while Molino et al. (2018)

(in a customer service use cases) uses accuracy at

different depths for sequential predictions that are

somewhat similar to SessionPath. However, accu-

racy by itself falls short to tell the whole story on

product decisions: working with Coveo’s clients, it

is clear that not all shops are born equal - some (e.g.

mono-brand fashion shops) strongly favor a smaller

and cleaner result page; others (e.g. marketplaces)

favor bigger, even if noisier, result sets. Section 7.2

presents our contribution in analyzing the business

context and proposes viable solutions.

7.2 Tuning the decision module

Consider the two possible decisions in the scenario

depicted in Figure 5: given “nike shoes” as query

and basketball shoes as session context, Session-

Path prediction is shoes / nike / basketball. Ac-

cording to scenario 1, a decision is made to cut the

path at shoes / nike: the resulting set of products

contain a mixed set of shoes from the target brand,

with no specific sport affinity; in scenario 2, the

decision module allows the prediction of a longer

path, shoes / nike / basketball: the result page is

smaller and only contains basketball shoes of the

target brand. Intuitively, a perfect model would

choose 2 only when it is “confident” of the underly-

ing intention, as expressed through the combination

of language and behavioral clues; when the model

is less confident, it should stick to 1 to avoid hiding

from the shopper’s possible interesting products.

13

Figure 5: Two scenarios for the decision module af-

ter SessionPath generates the shoes / nike / basketball

path, with input query “nike shoes” and Lebron James

basketball shoes in the session. In Scenario 1 (blue),

we cut the result set after the second node - shoes / nike

- resulting in a mix set of shoes; in Scenario 2 (red), we

use the full path - shoes / nike / basketball - resulting in

only basketball shoes (dotted line products). How can

we define what is the optimal choice?

To quantify how much confident the model is

at any given node in the predicted path, at each

node sn we output the multinomial distribution d
over the next node sn+1

2 and calculate the Gini

coefficient of d, g(d):

g(d) =

∑n
i=1

∑n
j=1

|xi − xj |

2n2x̄
(GI)

where n is the total number of classes in the

distribution d, xi is the probability of the class i
and x̄ is the mean probability of the distribution.

Once GI = g(d) is computed, a decision rule

DR(GI) for the decision module in Figure 4 is

given by:

DR(x) =

{

1 if x ≥ ct

0 otherwise

where 1 means that the module is confident

enough to add the node to the final path that will

be shown to the user, while 0 means the path gen-

eration is stopped at the current node. ct is our

confidence threshold: since different values of ct
imply more or less aggressive behavior from the

model, it is important to tune ct by taking into

account the relevant business constraints.

2Non-existent paths account for less then 0.005% of all
the paths in the test set, proving that SessionPath is able to
accurately learn transitions between nodes and suggesting that
an explicit check at decision time is unnecessary. Of course,
if needed, a “safety check” may be performed at query time
by the search engine, to verify that filtering by the suggested
path will result in a non-empty set.

Gini Threshold Precision Recall

0.996 0.65 0.99

0.993 0.82 0.91

0.990 0.93 0.77

0.980 0.99 0.74

Table 4: Precision and recall at different decision

thresholds for Shop 1.

Due to the contextual and interactive nature of

SessionPath, we turn search logs into a “simula-

tion” of the interactions between hypothetical shop-

pers and our model (Kuzi et al., 2019). In particu-

lar, for any given search event in the test dataset -

comprising products seen in the session, the actual

query issued, all the products returned by the search

engine, the products clicked from the shopper in

the result page -, and a model prediction (e.g. sport

/ basketball), we construct two items:

• golden truth set: which is the set of the

paths corresponding to the items the shopper

deemed relevant in that context (relevance is

therefore assessed as pseudo-feedback from

clicks);

• filtered result set: which is the set of prod-

ucts returned by the engine, filtering out those

not matching the prediction by the model (i.e.

simulating the engine is actually working with

the categories suggested by SessionPath).

With the golden truth set, the filtered result set

and the original result page, we can calculate preci-

sion and recall at different values of ct (please refer

to Appendix B for a full worked out example).

Table 4 reports the chosen metrics calculated

for Shop 1 at different values of ct; the trade-off

between the two dimensions makes all the point

Pareto-optimal: there is no way to increase perfor-

mance in one dimension without hurting the other.

Going from the first configuration (ct = 0.996)

to the second (ct = 0.993) causes a big jump in

the metric space, with the model losing some re-

call to gain considerably in precision. To get a

sense of how the model is performing in practice,

Figure 6 shows three sessions for the query “nike

shoes”: when session context is empty (session 1),

the model defaults to the broadest category (sneak-

ers); when session is running-based or basketball-

based, the model adjusts its aggressiveness depend-

ing on the threshold we set. It is interesting to

note that while the prediction for 2 at ct = 0.97 is

14

wrong at the last node (product is a7, not a3), the

model is still making a reasonable guess (e.g. by

guessing sport and brand correctly).

In our experience, the adoption of data-driven

models in traditional digital shops is often received

with some skepticism over the “supervision” by

business experts (Baer and Kamalnath, 2017): a

common solution is to avoid the use of neural net-

works, in favor of model interpretability. Session-

Path’s decision-based approach dares to dream a

different dream, as the proposed architecture shows

that we can retain the accuracy of deep learning

and still provide a meaningful interface to busi-

ness users – here, in the form of a precision/recall

space to be explored with an easy-to-understand

parameter.

8 Conclusions and Future Work

This research paper introduced SessionPath, a per-

sonalized and scalable model that dynamically sug-

gests product paths in type-ahead systems; Session-

Path was benchmarked on data from two shops

and tested against count-based and neural models,

with explicit complexity-accuracy trade-offs. Fi-

nally, we proposed a confidence-based decision

rule inspired by customer discussions: by abstract-

ing away model behavior in one parameter, we wish

to solve the often hard interplay between business

requirements and machine behavior; furthermore,

by leveraging a hierarchical structure of product

concepts, the model produces predictions that are

suitable to a prima facie human inspection (e.g.

Figure 6).

While our evaluation shows very encouraging

results, the next step will be to A/B test the pro-

posed models on a variety of target clients: Shop 1

and Shop 2 data comes from search logs of a last-

generation search engine, which possibly skewed

model behavior in subtle ways. With more data, it

will be possible to extend the current work in some

important directions:

1. while this work showed that SessionPath is

effective, the underlying deep architecture can

be improved further: on one hand, by do-

ing more extensive optimization; on the other,

by focusing on how to best perform linguis-

tic generalization: transfer learning (between

tasks as proposed by Skinner and Kallumadi

(2019), or across clients, as described in Yu

et al. (2020)) is a powerful tool that could be

used to improve performances further;

Figure 6: Sample SessionPath predictions for the can-

didate query “nike shoes”, with two thresholds (gray,

green) and three sessions, 1, 2, 3 (no product for ses-

sion 1, a pair of running shoes for 2, a pair of basket-

ball shoes for 3). The model reacts quickly both across

sessions (switching to relevant parts of the underlying

product catalog) and across threshold values, making

more aggressive decisions at a lower value (green).

2. the same model can be applied with almost no

changes to the search workflow, to provide

a principled way to do personalized query

scoping. A preliminary A/B test on Shop

1 using the MLP model on a minor catalog

facet yielded a small (2%) but statistically

significant improvement (p < 0.05) on click-

through rate and we look forward to extending

our testing;

3. we could model path depth within the decoder

itself, by teaching the model when to stop; as

an alternative to learning a decision rule in

a supervised setting, we could leverage rein-

forcement learning and let the system improve

through iterations - in particular, the choice of

cutting the path for a given query and session

vector could be cast in terms of contextual

bandits;

4. finally, precision and recall at different depths

are just a first start; preliminary tests with bal-

anced accuracy on selected examples show

promising results, but we look forward to per-

forming user studies to deepen our understand-

ing of the ideal decision mechanism.

Personalization engines for digital shops are ex-

pected to drive an increase in profits by 15% by

the end of 2020 (Gillespie et al., 2018); facet sug-

gestions help personalizing the search experience

as early as in the type-ahead drop-down window:

considering that search users account globally for

almost 14% of the total revenues (Charlton, 2013),

15

and that category suggestions may improve click-

through-rate and reduce cognitive load, Session-

Path (and similar models) may play an important

role in next-generation online experiences.

Acknowledgments

Thanks to (in order of appearance) Andrea Polo-

nioli, Federico Bianchi, Ciro Greco, Piero Molino

for helpful comments to previous versions of this

article. We also wish to thank our anonymous re-

viewers, who greatly helped in improving the clar-

ity of our exposition.

References

Himan Abdollahpouri, Robin Burke, and Bamshad
Mobasher. 2017. Controlling popularity bias in
learning-to-rank recommendation.

Chris Anderson. 2006. The Long Tail: Why the Future
of Business Is Selling Less of More. Hyperion.

Tobias Baer and Vishnu Kamalnath. 2017. Controlling
machine-learning algorithms and their biases.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Marco Baroni, Raffaela Bernardi, and Roberto Zampar-
elli. 2014. Frege in space: A program of composi-
tional distributional semantics.

Graham Charlton. 2013. Is site search less important
for niche retailers?

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen An-
derson, Gregory S. Corrado, Wei Chai, Mustafa
Ispir, Rohan Anil, Zakaria Haque, Lichan Hong,
Vihan Jain, Xiaobing Liu, and Hemal Shah. 2016.
Wide & deep learning for recommender systems. In
DLRS 2016.

Gennaro Chierchia and Sally McConnell-Ginet. 2000.
Meaning and Grammar (2nd Ed.): An Introduction
to Semantics. MIT Press, Cambridge, MA, USA.

Paul Covington, Jay Adams, and Emre Sargin. 2016.
Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM Conference on
Recommender Systems, RecSys ’16, page 191–198,
New York, NY, USA. Association for Computing
Machinery.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association

for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Fernando Diaz, Bhaskar Mitra, and Nick Craswell.
2016. Query expansion with locally-trained word
embeddings. ArXiv, abs/1605.07891.

Penny Gillespie, Jason Daigler, Mike Lowndes,
Christina Klock, Yanna Dharmasthira, and Sandy
Shen. 2018. Magic quadrant for digital commerce.
Technical report, Gartner.

Laura A. Granka, Thorsten Joachims, and Geri Gay.
2004. Eye-tracking analysis of user behavior in
www search. In Proceedings of the 27th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR
’04, page 478–479, New York, NY, USA. Associa-
tion for Computing Machinery.

Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavl-
jevic, Fabrizio Silvestri, Ricardo Baeza-Yates, An-
drew Feng, Erik Ordentlich, Lee Yang, and Gavin
Owens. 2016. Scalable semantic matching of
queries to ads in sponsored search advertising. In
Proceedings of the 39th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’16, page 375–384, New
York, NY, USA. Association for Computing Machin-
ery.

Mihajlo Grbovic, Vladan Radosavljevic, Nemanja
Djuric, Narayan Bhamidipati, Jaikit Savla, Varun
Bhagwan, and Doug Sharp. 2015. E-commerce in
your inbox: Product recommendations at scale. In
Proceedings of KDD ’15.

Zhiwei Guan and Edward Cutrell. 2007. An eye
tracking study of the effect of target rank on web
search. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’07,
page 417–420, New York, NY, USA. Association for
Computing Machinery.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce
Croft. 2016. A deep relevance matching model for
ad-hoc retrieval. In CIKM ’16.

Sheena Iyengar and Mark Lepper. 2001. When choice
is demotivating: Can one desire too much of a good
thing? Journal of personality and social psychology,
79:995–1006.

Manojkumar Rangasamy Kannadasan and Grigor
Aslanyan. 2019. Personalized query auto-
completion through a lightweight representation of
the user context. CoRR, abs/1905.01386.

Saar Kuzi, Abhishek Narwekar, Anusri Pampari, and
ChengXiang Zhai. 2019. Help me search: Lever-
aging user-system collaboration for query construc-
tion to improve accuracy for difficult queries. In
Proceedings of the 42nd International ACM SIGIR

https://doi.org/10.1145/3109859.3109912
https://doi.org/10.1145/3109859.3109912
https://www.mckinsey.com/business-functions/risk/our-insights/controlling-machine-learning-algorithms-and-their-biases
https://www.mckinsey.com/business-functions/risk/our-insights/controlling-machine-learning-algorithms-and-their-biases
https://econsultancy.com/is-site-search-less-important-for-niche-retailers/#i.e6bb0iahterern
https://econsultancy.com/is-site-search-less-important-for-niche-retailers/#i.e6bb0iahterern
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/1008992.1009079
https://doi.org/10.1145/1008992.1009079
https://doi.org/10.1145/2911451.2911538
https://doi.org/10.1145/2911451.2911538
https://doi.org/http://dx.doi.org/10.1145/2783258.2788627
https://doi.org/http://dx.doi.org/10.1145/2783258.2788627
https://doi.org/10.1145/1240624.1240691
https://doi.org/10.1145/1240624.1240691
https://doi.org/10.1145/1240624.1240691
https://doi.org/10.1037/0022-3514.79.6.995
https://doi.org/10.1037/0022-3514.79.6.995
https://doi.org/10.1037/0022-3514.79.6.995
http://arxiv.org/abs/1905.01386
http://arxiv.org/abs/1905.01386
http://arxiv.org/abs/1905.01386
https://doi.org/10.1145/3331184.3331362
https://doi.org/10.1145/3331184.3331362
https://doi.org/10.1145/3331184.3331362

16

Conference on Research and Development in Infor-
mation Retrieval, SIGIR’19, page 1221–1224, New
York, NY, USA. Association for Computing Machin-
ery.

Sonya Liberman and Ronny Lempel. 2014. Approxi-
mately optimal facet value selection. Sci. Comput.
Program., 94(P1):18–31.

Y. Lin, A. Datta, and G. D. Fabbrizio. 2018. E-
commerce product query classification using im-
plicit user’s feedback from clicks. In 2018 IEEE
International Conference on Big Data (Big Data),
pages 1955–1959.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval. Found. Trends Inf. Retr., 3(3):225–331.

Bernardo Magnini, Amedeo Cappelli, Emanuele Pi-
anta, Manuela Speranza, V Bartalesi Lenzi, Rachele
Sprugnoli, Lorenza Romano, Christian Girardi, and
Matteo Negri. 2006. Annotazione di contenuti con-
cettuali in un corpus italiano: I - cab. In Proc.of
SILFI 2006.

Irina Matveeva, Chris Burges, Timo Burkard, Andy
Laucius, and Leon Wong. 2006. High accuracy re-
trieval with multiple nested ranker. In Proceedings
of the 29th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR ’06, page 437–444, New York, NY,
USA. Association for Computing Machinery.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013a. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Bhaskar Mitra and Nick Craswell. 2017. Neu-
ral models for information retrieval. ArXiv,
abs/1705.01509.

Piero Molino, Huaixiu Zheng, and Yi-Chia Wang.
2018. Cota: Improving the speed and accuracy
of customer support through ranking and deep net-
works. Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery &
Data Mining.

Dae Hoon Park and Rikio Chiba. 2017. A neural lan-
guage model for query auto-completion.

Benjamin Scheibehenne, Rainer Greifeneder, and Pe-
ter M. Todd. 2010. Can There Ever Be Too Many

Options? A Meta-Analytic Review of Choice Over-
load. Journal of Consumer Research, 37(3):409–
425.

Michael Skinner. 2018. Product categorization
with lstms and balanced pooling views. In
eCOM@SIGIR.

Michael Skinner and Surya Kallumadi. 2019. E-
commerce query classification using product taxon-
omy mapping: A transfer learning approach. In
eCOM@SIGIR.

Jacopo Tagliabue and Reuben Cohn-Gordon. 2019.
Lexical learning as an online optimal experiment:
Building efficient search engines through human-
machine collaboration. ArXiv, abs/1910.14164.

Damir Vandic, Flavius Frasincar, and Uzay Kaymak.
2013. Facet selection algorithms for web product
search. In Proceedings of the 22nd ACM Inter-
national Conference on Information & Knowledge
Management, CIKM ’13, page 2327–2332, New
York, NY, USA. Association for Computing Machin-
ery.

Cheng Wang, Mathias Niepert, and Hui Li. 2018a.
LRMM: Learning to recommend with missing
modalities. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3360–3370, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Po-Wei Wang et al. 2018b. Realtime query completion
via deep language models. In eCOM@SIGIR, vol-
ume 2319 of CEUR Workshop Proceedings. CEUR-
WS.org.

Ronald J. Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks.

Bingqing Yu, Jacopo Tagliabue, Federico Bianchi, and
Ciro Greco. 2020. An image is worth a thousand
features: Scalable product representations for in-
session type-ahead personalization. In Companion
Proceedings of the Web Conference, New York, NY,
USA. Association for Computing Machinery.

Barret Zoph and Quoc V. Le. 2016. Neural archi-
tecture search with reinforcement learning. ArXiv,
abs/1611.01578.

A Architectural Considerations

Figure 7 represents a functional overview of a type-

ahead service: when User X on a shop starts typing

a query after browsing some products, the query

seed and the session context are sent to the server.

An existing engine - traditional or neural - will

then take the query and the context and produce a

list of top-k query candidates, ranked by relevance,

which are then sent back to the client to populate

the dropdown window of the search bar.

https://doi.org/10.1016/j.scico.2013.07.019
https://doi.org/10.1016/j.scico.2013.07.019
https://doi.org/10.1109/BigData.2018.8622008
https://doi.org/10.1109/BigData.2018.8622008
https://doi.org/10.1109/BigData.2018.8622008
https://doi.org/10.1561/1500000016
https://doi.org/10.1561/1500000016
https://doi.org/10.1145/1148170.1148246
https://doi.org/10.1145/1148170.1148246
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://doi.org/10.1145/3077136.3080758
https://doi.org/10.1145/3077136.3080758
https://doi.org/10.1086/651235
https://doi.org/10.1086/651235
https://doi.org/10.1086/651235
https://doi.org/10.1145/2505515.2505664
https://doi.org/10.1145/2505515.2505664
https://doi.org/10.18653/v1/D18-1373
https://doi.org/10.18653/v1/D18-1373
https://doi.org/10.1145/3366424.3386198
https://doi.org/10.1145/3366424.3386198
https://doi.org/10.1145/3366424.3386198

17

Figure 7: High-level functional overview of an industry

standard API for type-ahead suggestions: query seed

and possibly session information about the user are sent

by the client to the server, where some retrieval and

re-ranking module produces the final top-k suggestions

and prepares the response for front-end consumption.

As depicted in Figure 8, category suggestions

can be quickly added to any existing infrastructure

by treating the current engine as a “black-box” and

adding path predictions at run-time for the first (or

the first k, since requests to the model at that point

can be batched with little overhead) query candi-

date(s). In this scenario, the decoupling between

retrieval and suggestions is absolute, which may

be a good idea when the stacks are very different

(say, traditional retrieval and neural suggestions),

but less extreme solutions are obviously possible.

The crucial engineering point is that path prediction

(using any of the methods from Section 7) can be

added and tested quickly, with few conceptual and

engineering dependencies: the more traditional the

existing stack, the more an incremental approach is

recommended: count-based first - since predictions

can be served simply from an in-memory map -,

MLP second - since predictions require a small

neural network, but they are fast enough to only

require CPU at query time -, and finally the full Ses-

sionPath - which requires dedicated hardware con-

siderations to be effective in the time constraints of

the type-ahead use case. As a practical suggestion,

we also found quite effective when using simpler

models (e.g. MLP) to first test it at a given depth:

for example, you start by only classifying the most

likely nodes in template sport / ?, and then incre-

mentally increase the target classes by adding more

diverse paths.

Adding a lightweight wrapper around the origi-

nal bare-bone endpoint allows for other improve-

ments as well: for example, considering typical

power-law of query logs, a caching layer can be

used to avoid a full retrieving-and-rerank iteration

for frequent queries; obviously, this and similar

features are independent from SessionPath itself.

Figure 8: A lightweight SessionPath functional inte-

gration: starting from a standard flow (Figure 7, a sim-

ple wrapper around the existing module sends the same

session information and the top-n suggestions to Ses-

sionPath, for dynamic path prediction. The final re-

sponse is then obtained by simply augmenting the exist-

ing response containing query candidates with category

predictions.

Figure 9: A sample row in the test set, displaying

search results (7 products in 4 paths) for the query

“shoes” and a session containing a pair of LeBron

James basketball shoes. In this example, the shopper

clicked on products P1 and P4.

B Metrics Calculation: a Worked-Out

Example

For the sake of reproducibility, we present a worked

out example of metrics calculations for offline test-

ing of the decision module (Section 7.2). Figure 9

depicts an historical interaction from the search

logs: a session containing a product, a query is-

sued by the user and the search result page (“serp”),

containing seven items belonging to the following

paths:

P1 = sport / basketball / lebron

P2 = sport / basketball / lebron

P3 = sport / basketball / lebron

P4 = sport / running / sneakers

P5 = sport / basketball / jerseys

P6 = sport / basketball / curry

P7 = sport / running / sneakers.

18

Click-through data (i.e. products in the

serp clicked by the user) indicates that P1

and P4 are relevant, and so the associated

paths are ground truths (sport/basketball/lebron

and sport/running/sneakers). We now present the

full calculations in three scenarios, corresponding

to three level of depths in the predicted path.

Scenario 1 (general): prediction is sport. In this

case, result set would be intact, so: True Positives

(TP) are P1, P2, P3, P4, P7, False Positives (FP)

are P5, P6, False Negatives (FN) are ∅. Precision

is: TP / (TP + FP) = 5/(5 + 2) = 0.71, Recall is:

TP / (TP + FN) = 5/(5+0) = 1.0 (with no cut, all

truths are retrieved so 1.0 is the expected result).

Scenario 2 (intermediate): prediction is

sport/basketball. In this case, filtering the

result set according to the decision made by the

model would give P1, P2, P3, P5, P6 as the final set.

So: TP = P1, P2, P3, FP = P5, P6, FN = P4, P7; Pre-

cision = 3/(3+2) = 0.6, Recall = 3/(3+2) = 0.6.

Scenario 3 (specific): prediction is sport / bas-

ketball / lebron. In this case, filtering the re-

sult set according to the decision made by the

model would give P1, P2, P3 as the final set. So:

TP = P1, P2, P3, FP = ∅, FN = P4, P7; Preci-

sion = 3/(3 + 0) = 1.0, Recall = 3/(3 + 2) = 0.6.

The full calculations show very clearly the natu-

ral trade-off discussed at length in Section 7.2: the

deeper the path, the more precise are the results

but also the higher the chance of hiding valuable

products from the shopper.

