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Abstract. An approach to handling colored observation
noise in large least-squares (LS) problems is presented.
The handling of colored noise is reduced to the problem
of solving a Toeplitz system of linear equations. The
colored noise is represented as an auto regressive
moving-average (ARMA) process. Stability and inver-
tability of the ARMA model allows the solution of the
Toeplitz system to be reduced to two successive filtering
operations using the inverse transfer function of the
ARMA model. The numerical complexity of the algo-
rithm scales proportionally to the order of the ARMA
model times the number of observations. This makes the
algorithm particularly suited for LS problems with
millions of observations. It can be used in combination
with direct and iterative algorithms for the solution of
the normal equations. The performance of the algorithm
is demonstrated for the computation of a model of the
Earth’s gravity field from simulated satellite-derived
gravity gradients up to spherical harmonic degree 300.

Keywords: Large least-squares problems – auto
regressive moving-average process – Noise power
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1 Introduction

This paper is prompted by the new Gravity Field and
Ocean Circulation Explorer (GOCE) mission, which will
be launched in 2006. This European Space Agency
(ESA) mission aims to develop a new model of the
Earth’s gravity field from a combination of satellite-
to-satellite tracking (SST) and satellite gravity gradiom-
etry (SGG) observations. What makes this estimation

problem challenging is the combination of colored (i.e.
frequency-dependent) observation noise with a huge
number of observations and unknown gravity field
parameters. The question answered in this paper is: How
should colored observation noise be properly taken into
account without significantly increasing the numerical
effort?
It will be shown that when the normal equations are

solved iteratively, the problem of colored noise reduces
to the solution of a Toeplitz system of linear equations
per iteration. This system is solved by exploiting an auto
regressive moving-average (ARMA) model of the col-
ored noise, which has a numerical complexity of the
order of the number of observations. This makes it
particularly suited for the solution of large least-squares
(LS) problems with millions of observations and thou-
sands of unknowns. The approach may also be used in
combination with a direct method for the solution of the
normal equations. However, the numerical effort is then
increased as each column of the design matrix has to be
filtered.
The material presented is organized as follows. In

Sect. 2, large LS problems are addressed and the benefit
of iterative methods for the solution of the normal
equations is discussed. In Sect. 3, it is shown that, when
iterative methods are used, the proper handling of sta-
tionary colored noise reduces to the solution of a
Toeplitz system of equations per iteration. In Sect. 4,
some basics about ARMA processes are provided. Sec-
tion 5 is devoted to the fast solution of a Toeplitz system
of linear equations. The approach pursued assumes that
an ARMA model of the colored noise is available. It is
shown that the solution of the Toeplitz system of linear
equations reduces to two filtering operations. The
transfer function of two filters is the inverse of the
transfer function associated with the ARMA model. In
Sect. 6, an ARMA model identification procedure is
proposed, which provides a best-fitting ARMA model
from an estimated noise power spectral density (PSD)
function. In Sect. 7, sample results of numerical exper-
iments based on simulated GOCE data are presented.Correspondence to: R. Klees
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2 Large LS problems

It is assumed that, after linearization, the relation
between the (reduced) observations and the (reduced)
unknown parameters can be written as a standard
Gauss–Markov model (see e.g. Grafarend and Schaffrin
1993)

Efyg ¼ Ax; rank ðAÞ ¼ r; Dfyg ¼ C; rank ðCÞ ¼ N

ð1Þ

where y 2 RN denotes the real stochastic vector of
observations, which is described by the first moment
Efyg (expectation value) and the second moment Dfyg
(covariance matrix C). The term x 2 Rr denotes the non-
stochastic unknown parameter vector. It is related to the
expectation Efyg by the non-stochastic design matrix
A 2 RN�r. The LS estimator of x is

x̂x ¼ ðAT C�1AÞ�1z ð2Þ

with the normal equation matrix AT C�1A and the right-
hand-side vector z ¼ AT C�1y.
In large LS problems (i.e. where N and r are very

large, e.g. of the order of 108 and 105, respectively) with
colored observation noise (i.e. with a non-diagonal co-
variance matrix), the computation of the LS estimator x̂x
poses numerical problems for two reasons.

1. The explicit computation of the design matrix A and
the normal matrix AT C�1A may be impossible due to
execution time and/or computer memory constraints.
The memory problem could be solved by storing the
matrices on a hard disk; however, this is often not a
real option, because the input and output operations
may take too long.

2. The covariance matrix associated with the colored
noise may be fully populated. Usually, the covari-
ances between observations decrease with increasing
intervals of time (so-called lags), so the covariance
matrix has a diagonal-dominant structure. Neglecting
covariances after some time lag may further simplify
the structure of the covariance matrix. Nevertheless,
computation of the inverse matrix C�1 may still be
impractical if the number of observations is of the
order of 108.

The first problem can be overcome when the normal
equations are solved iteratively. A commonly adopted
method is conjugate gradients with pre-conditioning
(PCCG) (see e.g. Hestenes and Stiefel 1952). The
common form of this algorithm is displayed in Fig. 1.
The major advantage of the PCCG method is that

convergence is guaranteed for symmetric positive-defi-
nite matrices. Moreover, convergence may be achieved
after i 	 r iterations, if a suitable pre-conditioner is
found. From a computational point of view, the most
important feature of the PCCG method is that the
normal matrix does not have to be accessed directly, but
only implicitly, which means that only the product of the
normal matrix with a vector has to computed. This
implies that the computation of the vector qi (see Fig. 1)

can be decomposed into three operations, which are also
implicit in the above-mentioned sense: first compute
ui ¼ Adi, then vi ¼ C�1ui, and finally qi ¼ AT vi. Conse-
quently, only the application to some vector of A, C�1,
and AT , respectively, has to be computed at every iter-
ation step. This has three advantages: (1) it accelerates
the LS estimation by applying fast algorithms for the
computation of the vectors ui and qi (see Ditmar et al.
submitted); (2) it saves a lot of memory since the design
matrix A and the normal matrix AT C�1A are not com-
puted explicitly; and (3) it opens the door for the efficient
handling of colored observation noise using the filtering
approach to be discussed in Sect. 5.

3 Colored noise and Toeplitz systems

It has been shown in the previous section that when the
PCCG method is used to solve the normal equations, the
problem of taking colored noise into account reduces to
the application of C�1 to some vector ui (note also that
the computation of the initial residual r0 requires a
similar operation). This application can be written as the
solution of a system of linear equations Cvi ¼ ui, which
has to be performed for each iteration i. From now on,
the index i is omitted in order to simplify the notation
and the solution of a system of linear equations

Cv ¼ u ð3Þ

is considered, with the N � N covariance matrix C. It is
assumed that C is positive definite and Toeplitz. The
latter property holds if the noise is a realization of a
stationary random process and if there are no gaps in
the data.

Fig. 1. Common form of the method of preconditioned conjugate
gradients (PCCG). The pre-conditioner Npre is a suitable approxima-
tion of the normal matrix AT C�1A
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A wealth of literature has been devoted to the so-
lution of a Toeplitz system of linear equations. Maybe
the most popular algorithm is due to Levinson (1946).
It has a complexity of OðN 2Þ floating-point operations
(flops). A number of methods have been proposed
based on LU and QR factorizations (see e.g. Brent
et al. 1980). They require OðN log2 NÞ flops, but are
known to be more efficient than the Levinson algo-
rithm only for very large N . Strang (1986) proposed
an algorithm based on the PCCG method. His idea
was expanded upon by many authors (see e.g. Chan
and Ng 1995). The complexity can be reduced to
OðN logNÞ flops provided that a suitable pre-condi-
tioner is chosen under certain conditions on the
Toeplitz operator.
The solution of Toeplitz systems of linear equations

has been addressed several times in the geodetic liter-
ature. Colombo (1979), Eren (1980, 1982), and Bottoni
and Barzaghi (1993) discussed fast solution techniques
for Toeplitz systems in the context of LS collocation.
The complexity of the algorithms proposed by Co-
lombo (1979) and Eren (1980, 1982) is of OðN 2Þ or
OðN logs NÞ, s 
 2. Bottoni and Barzaghi (1993) use a
PCCG method to solve a system of linear equations
with a symmetric block Toeplitz matrix with Toeplitz
blocks. The application of that matrix to a vector, to
be done once per iteration, is performed using the Fast
Hartley Transform. The complexity of the algorithm is
of OðN logNÞ per iteration. A Jacobi pre-conditioner is
used to limit the number of iterations. Schuh (1996)
proposes time-domain and frequency-domain ap-
proaches, which require OðN logNÞ flops, provided
that the Toeplitz matrix C is band limited or can be
approximated by a band- limited Toeplitz matrix, and
the bandwidth is small compared with the number of
observations. A very similar approach has been pro-
posed in mathematical literature by Jain (1978). Schuh
(2000) uses a low-order ARMA model, which ap-
proximates the given inverse noise PSD function. The
philosophy behind his approach is different from that
of the other methods. It should not be seen as a fast
method to solve a Toeplitz system of linear equations,
but rather as a de-correlation method. The observa-
tions are de-correlated using the low-order ARMA
filter. Correspondingly, the columns of the design
matrix are also filtered. Therefore, for each iteration of
the PCCG algorithm, r columns of the design matrix
are filtered. This approach requires OðrNÞ flops, where
r is the number of columns of the design matrix (i.e.
the number of unknown parameters). According to
Schuh (Pers. commun. 2002), the performance has re-
cently been improved to essentially OðNÞ flops by
avoiding explicit filtering of the columns of the design
matrix.
The approach pursued in this paper is not a de-

correlation method, but a fast method to solve a
Toeplitz system of linear equations by exploiting an
ARMA representation of the colored noise. It is shown
that the numerical complexity is also of OðNÞ, pro-
vided that an ARMA model of the colored noise is
available.

4 ARMA filters

The pursued approach exploits the fact that any
autocovariance function that asymptotically tends to
zero can be approximated arbitrarily well by the
autocovariance function of an ARMA process (see e.g.
Brockwell and Davis 1991). Since the main aim is the
fast solution of the Toeplitz system Cv ¼ u, the colored
noise is interpreted as one realization of an ARMA
process. The corresponding ARMA model is then
exploited to solve the system Cv ¼ u efficiently.
The process fnn; n 2 Zg is said to be an ARMA(p; q)

process if fnng is stationary and if for every n 2 Z

nn ¼ �
Xp

k¼1
ap;knn�k þ

Xq

i¼0
bq;ien�i; bq;0 ¼ 1; n 2 Z

ð4Þ

where feng is a white-noise process with a zero mean and
a variance of r2e , and Z denotes the set of integer values
(see e.g. Brockwell and Davis 1991; Stoica and Moses
1997). Often, the input sequence is assumed to be
Gaussian, i.e. normally distributed. The terms fap;k :
k ¼ 1; . . . ; pg and fbq;i : i ¼ 0; . . . ; qg are the model
parameters, and the pair ðp; qÞ describes the order of
the ARMA(p,q) process. There are two important special
cases: (1) if p ¼ 0, the process is amoving-average process
of order q [i.e. MA(q)]; and (2) if q ¼ 0, the process is
purely autoregressive of order p [i.e. AR(p)]. Equation (4)
can be written symbolically in the more compact form

ApðzÞnn ¼ BqðzÞen; n 2 Z ð5Þ

where ApðzÞ and BqðzÞ are the pth and qth-degree
polynomials

ApðzÞ ¼ 1þ
Xp

k¼1
ap;kzk ð6Þ

BqðzÞ ¼ 1þ
Xq

i¼1
bq;izi ð7Þ

The term z in Eq. (5) has to be interpreted as a shift
operator, defined by zsnn ¼ nn�s for arbitrary s 2 Z. The
polynomials ApðzÞ and BqðzÞ are often referred to as the
AR and MA polynomials, respectively.
When solving Toeplitz systems by exploiting ARMA

filters, the properties of causality and invertibility of the
ARMA process are required. The ARMA(p; q) process
fnng is causal if, for all n 2 Z, it can be represented as

nn ¼
X1
j¼0

hjen�j ¼ HðzÞen ð8Þ

with

HðzÞ ¼
X1
j¼0

hjzj ¼ BqðzÞ
ApðzÞ

; jzj � 1 ð9Þ

Equation (9) is invertible if, for all n 2 Z, the inverse
process can be represented as
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en ¼
X1
j¼0

ljnn�j ¼ LðzÞnn ð10Þ

with

LðzÞ ¼
X1
j¼0

ljzj ¼ ApðzÞ
BqðzÞ

; jzj � 1

A sufficient and necessary condition for causality and
invertibility of an ARMA(p; q) process is that the zeros
of ApðzÞ and BqðzÞ, respectively, are strictly outside the
unit circle in the complex-number domain.
In the terminology of filters, Eq. (8) describes a linear

time-invariant causal filter driven by the white-noise
process feng. The transfer function of this filter is the
rational polynomial HðzÞ [Eq. (9)]. Analogously, the
invertibility allows feng to be expressed as output of a
linear time-invariant causal filter driven by the colored-
noise process fnng. Its transfer function is the inverse of
HðzÞ [cf. Eq. (9)].
The PSD function of the process fnng [Eq. (4)], is

given by

PARMAðf Þ ¼ r2eDt
jBqðexpð�j2pf DtÞÞj2

jApðexpð�j2pf DtÞÞj2
;

� 1

2Dt
� f � 1

2Dt
ð11Þ

with j ¼
ffiffiffiffiffiffiffi
�1

p
; f is the frequency in units of Hz and Dt is

the sampling interval in the time domain in units of
seconds. The inverse discrete Fourier transform of
Eq. (11) provides a sufficiently accurate approximation
of the autocovariance sequence (ACS) of the process
fnng provided that the PSD is sampled sufficiently well.

5 ARMA filters and Toeplitz systems

Here it is assumed that the colored noise is modeled as a
causal invertible ARMA(p; q) process. In Sect. 6, a
method is proposed to obtain such a model from a noise
PSD estimate. Moreover, it is assumed that the vector
e ¼ ðe1; . . . ; eN ÞT contains N random numbers that
represent a white-noise realization. This vector can be
filtered by the linear shift-invariant causal filter with
transfer function HðzÞ [Eq. (9)]. The output of the filter is
a vector n ¼ ðn1; . . . ; nN ÞT . The q ‘past’ input values
e1�q; . . . ; e0 and the p ‘past’ output values n1�p; . . . ; n0 are
unknown. If they are set equal to zero, the filter output n
can be written as

n ¼ Ge; G :¼ A�1B

where

A ¼ toeplitzð1; ap;1; ap;2; . . . ; ap;p; 0; . . . ; 0Þ
B ¼ toeplitzð1; bq;1; bq;2; . . . ; bq;q; 0; . . . ; 0Þ

are N � N lower triangular matrices. The inverse of A
exists since the filter is causal. The covariance matrix of
the vector e is r2e I , where I is the N � N unit matrix.

Thus, the covariance matrix of the vector n is
~CC ¼ r2eGGT . In general, the matrix ~CC is not Toeplitz. It
is only an approximation to the Toeplitz covariance
matrix C of the colored observation noise. The differ-
ence is caused by the initialization of the filter, when past
input and output values are set equal to zero. However,
if the filter is causal and invertible, only the elements of
the m � m left upper submatrix of ~CC, with some
m � p þ q, may differ significantly from the correspond-
ing submatrix of the covariance matrix C. If N � p þ q,
most elements of ~CC are very close to the elements of the
covariance matrix C.
The matrix G is a lower triangular Toeplitz matrix

(Gardner 1988; Hayes 1996). Since every Toeplitz matrix
is also per-symmetric (i.e. symmetric about the anti-di-
agonal), it holds that GT ¼ XGX , where X is the ex-
change matrix (i.e. the matrix that is equal to the
unit matrix but with the columns in reversed order).
Therefore, the matrix ~CC can be written as

~CC ¼ r2eGXGX

This allows the approximate solution of Cv ¼ u to be
written as

~vv ¼ 1

r2e
XG�1XG�1u

where the equality X ¼ X�1 has been used. Note that the
application of the matrix X to a vector means ‘flipping’
this vector (i.e. the last element of the vector becomes
the first element of the flipped vector, the second last
element becomes the second element, etc). Thus, the
approximation ~vv of v can be obtained in the following
five steps (cf. Fig. 2):

Step 1. Filter u [filter with transfer function H�1ðzÞ].
Step 2. Flip result of step 1 (apply exchange matrix X ).
Step 3. Filter result of step 2 [filter with transfer function

H�1ðzÞ].
Step 4. Flip result of step 3 (apply exchange matrix X ).
Step 5. Scale result of step 4 with 1=r2e .

The complexity of one filter operation with an ARMA
filter of order ðp; qÞ is ðp þ qÞN flops. Thus, the overall
complexity of computing ~vv is 2ðp þ qÞN flops. The order
(p,q) of the ARMA filter is independent of N . According
to the authors’ experience, many noise PSD functions of
measurement sensors are described very well by low-
order ARMA models. For instance, the expected noise
PSD function of the GOCE gradiometer can be
represented by an ARMA model of order p þ q < 100.
Therefore, it is reasonable to assume that when dealing
with large LS problems p þ q 	 N . Therefore, the
complexity of the presented algorithm is essentially

Fig. 2. Approximate computation of C�1u using ARMA filtering.
HðzÞ is the transfer function of the ARMA filter [Eq. (9)] and X is the
exchange matrix
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OðNÞ, provided that an ARMA model of the colored
noise is available.

6 ARMA model identification using
the noise PSD function

The procedure of handling colored noise presented in
Sect. 5 relies on an ARMA representation of that
colored noise. Such a representation is usually obtained
from a noise realization. The corresponding procedure is
known as model identification and belongs to the
standard problems in time-series analysis. The reader
is referred to, for example, Kay and Marple (1981),
Brockwell and Davis (1991), Choi (1992), and Stoica
and Moses (1997).
Unfortunately, there are situations where a noise

realization may not be available. For instance, in the
framework of ESA’s GOCE project, the prime industrial
contractor (ALENIA Spazio) has only provided infor-
mation about the expected performance of the gradi-
ometer on board GOCE in terms of an estimated noise
PSD function. Time-series model identification from an
estimated noise PSD function has not yet been consid-
ered in the literature. Therefore, a procedure for ARMA
model identification from an estimated noise PSD func-
tion is developed here. However, recall that a noise PSD
function contains much less information than a noise
realization, and the pursued method of model identifi-
cation should only be applied if a noise realization is not
available. For more details on building the optimal filter,
the reader is referred to Klees and Broersen (2002).
In this section, the notation ARMA(p; q) is used

when we do not want to distinguish between AR, MA,
or ARMA models. If both p 6¼ 0 and q 6¼ 0, the notation
ARMA(p; q) is used.

6.1 Long AR model, residual variance
and order selection

The starting point of the model identification from an
estimated noise PSD function is the ACS. It can be
computed by an inverse discrete Fourier transform of
the sampled noise PSD function according to

rn ¼ Df
XNf �1

k¼0
Pk expði2pkn=Nf Þ; 0 � n � L ð12Þ

where rn is the autocovariance for lag n, Pk is the noise
PSD function sampled at frequency fk ¼ kDf , Nf is the
number of samples in the frequency domain (i.e. the
length of the noise time series used in the estimation of
the PSD function), Df ¼ ð1=Nf DtÞ is the frequency
resolution, Dt is the sampling interval in the time
domain, and L is the maximum lag to be computed.
Nf must be known. The parameter L should not exceed
Nf =2 because it holds that

Efrng ¼ Nf � n
Nf

Rn þ
n

Nf
RNf �n; 0 � n � L � Nf � 1

where Rn is the true autocovariance for lag n. This shows
that the autocovariance for lag n computed by an
inverse discrete Fourier transform is the weighted sum
of the true autocovariances Rn and RNf �n. That is, the
estimated autocovariance is always biased and often
deformed by tapering and windowing operations ap-
plied to the periodogram estimate of the PSD function.
There are no strict rules on how to choose L. It was
found empirically that L may be much less than the
upper bound Nf =2 if it is verified that it remains greater
than the selected AR order p̂pAR (cf. Sect. 6.2.1) and the
required intermediate order M of the long AR model
CMðzÞ, which is used for the MA and ARMA compu-
tations (cf. Sects. 6.2.2. and 6.2.3).
The next step is to transform the ACS frng to a long

AR model, CLðzÞ, of order L. The simplest way to do this
is to solve the Yule–Walker equations [see e.g. Stoica
and Moses 1997]

rm þ
XL

i¼1
cL;irm�i ¼ 0; m ¼ 1; . . . ; L ð13Þ

This computation can easily be performed with the
Levinson–Durbin recursion in OðL2Þ flops (cf. Kay and
Marple 1981). The long AR model CLðzÞ can be seen as
an intermediate stage to estimate and select AR, MA,
and ARMA models.
Model identification includes the selection of type

and order of a model. AR, MA, and ARMA are the
types of model to be considered here. Order selection is
based on the reduction of the logarithm of the residual
variance as a function of the model order, with an ad-
ditional penalty for every estimated model parameter
(see e.g. Choi 1992). The residual variance is the vari-
ance of êen ¼ ÂAp̂p=B̂Bq̂qnn, where ÂAp̂p and B̂Bq̂q denote the AR
and the MA part, respectively, of the estimated AR–MA
model. When only the noise PSD function is available,
but not a realization of the random process fnng, the
residual variance cannot be computed. However, it is
possible to compare the different AR, MA, and ARMA
models with the very long AR model CLðzÞ. When ApðzÞ
and BqðzÞ denote the corresponding parts of the true
AR–MA process, the random process fgng is defined by

ÂAp̂pðzÞnn ¼ B̂Bq̂qðzÞgn

This random process can be related to the unknown
white-noise process feng, defined by

ApðzÞnn ¼ BqðzÞen

using the long AR model CLðzÞ. Assuming CLðzÞ �
ApðzÞ=BqðzÞ gives

CLðzÞnn � en

thus

gn ¼ ÂAp̂pðzÞ
B̂Bq̂qðzÞ

nn � ÂAp̂pðzÞ
B̂Bq̂qðzÞCLðzÞ

en

That is, the random process fgng can approximately be
expressed as filtered version of the unknown white-noise
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process feng. The ratio of the output and input
variances of this filter, r2g=r

2
e , can be computed as the

power gain of the filter with MA part ÂAp̂pðzÞ and AR part
B̂Bq̂qðzÞCLðzÞ, i.e. without knowledge of gn and en. This
ratio can be substituted in any order selection criterion
that is based on the logarithm of the residual variance.
The order selection criterion GIC (Broersen 2000) is

preferred, because it is known to often perform better
than other selection criteria proposed in the literature,
in particular for small Nf . Replacing the residual
variance by the ratio derived before, the GIC criterion
reads

GIC ¼ ln
r2g
r2e

 !
þ 3m þ 1

Nf
ð14Þ

where m ¼ p̂p for an estimated AR( p̂p) model, m ¼ q̂q for
an estimated MA(q̂q) model, and m ¼ p̂p þ q̂q for an
estimated ARMA(p̂p; q̂q) model. The model with the
smallest criterion GIC [Eq. (14)] is the selected model.

6.2 Model identification

Model identification from an estimated noise PSD
function is based on the computation of a set of AR,
MA, and ARMAmodels up to a maximum order, which
has to be chosen by the user. For each model type, the
selected model order is the one that gives the smallest
GIC [Eq. (14)]. Once a single AR, MA, and ARMA
model has been selected, the model with the smallest
value of the criterion of Eq. (14) is the final single
selected model.
The procedures for estimating AR, MA, and ARMA

models are different. These are the subjects of Sects.
6.2.1, 6.2.2, and 6.2.3.

6.2.1 AR estimation
Given the ACS [Eq. (12)], AR(p) models are estimated
for p ¼ 1; 2; . . . ; pmax by solving the Yule–Walker
equations with the Levinson–Durbin recursion. For
each candidate order p, the residual variance
ratio r2g=r

2
e is computed as the gain of the ARMA

model with ÂApðzÞ as the MA part and CLðzÞ as the AR
part. The order selection uses the criterion in Eq. (14)
with m ¼ p.

6.2.2 MA estimation
Given the ACS [Eq. (12)], MA(q) models are estimated
for q ¼ 1; 2; . . . ; qmax. First, a long intermediate AR
model CM ðzÞ is computed for each order q by solving the
Yule–Walker equations. The orderM is selected equal to
M ¼ 2p̂pAR þ q, where p̂pAR is the order of the best AR
model (Sect. 6.2.1). Then, Durbin’s MA method (Dur-
bin 1959) is used to estimate the MA(q) model
parameters, B̂BqðzÞ. Finally, for each candidate order q
the residual variance ratio r2g=r

2
e is computed as the gain

of the ARMA model with MA part 1 and AR part
B̂BqðzÞCMðzÞ. The order selection uses the criterion in
Eq. (14) with m ¼ q.

6.2.3 ARMA estimation
ARMA model identification is often performed using
Durbin’s second method of ARMA parameter estima-
tion (Durbin 1960). This method requires as input an
initial solution of the AR part of the ARMA model and
a long intermediate AR model. Durbin (1960) computes
the initial solution of the AR part from a given noise
realization. Thus, another strategy has to be developed if
only an estimated noise PSD function is available. In
this section ApðzÞ and BqðzÞ denote the AR and the MA
part, respectively, of the true ARMA model. ÂAp̂pðzÞ and
B̂Bq̂qðzÞ denote the AR and MA part, respectively, of the
ARMA model to be computed.
Four different methods are proposed with which to

obtain the initial estimate of the AR part of the ARMA
model. They are denoted long AR, long MA, long COV,
and long RINV. All four use a long AR model CM ðzÞ as
an intermediate model. The order of that model is se-
lected equal to M ¼ 3p̂pAR þ ðp̂p þ q̂qÞ, where p̂pAR is the
order of the best AR model (Sect. 6.2.1). The model
CMðzÞ is computed from the ACS [Eq. (12)] as solution
of the Yule–Walker equations using the Levinson–
Durbin recursion. Since CMðzÞ � ApðzÞ=BqðzÞ, a very
high-order AR model must be used when the zeros of
BqðzÞ are near the unit circle. In this case, the parameters
fcM ;k : k ¼ 1; . . . ;Mg of CM ðzÞ will not rapidly decay
with increasing k. This will usually be the case of inter-
est, for if the zeros of BqðzÞ are far from the unit circle,
they will have negligible effect upon the PSD. Then,
building an ARMA model is no longer necessary, as an
AR model will suffice.
Long AR. This method is based on an idea of Graupe
et al. (1975), where an ARMA(p̂p, q̂q) model with ÂAp̂pðzÞ and
B̂Bq̂qðzÞ as the AR and the MA part, respectively, is
approximated by an AR model CM ðzÞ according to

B̂Bq̂qðzÞ
ÂAp̂pðzÞ

� 1

CM ðzÞ ; or B̂Bq̂qðzÞCM ðzÞ � ÂAp̂pðzÞ ð15Þ

Initial MA parameters can be found with

cM ;m þ
X̂qq

i¼1
b̂bq̂q;icM ;m�i � 0; m ¼ maxðp̂p þ 1; q̂qÞ; . . . ;M

This system of linear equations reflects the fact that the
coefficients at degrees p̂p þ 1; . . . ;M in the polynomial
B̂Bq̂qðzÞCM ðzÞ must be close to zero. Note that for
M > p̂p þ q̂q, the system is overdetermined, and the
parameters are obtained by LS. Finally, the initial AR
parameters are obtained from

ÂAp̂pðzÞ � CM ðzÞB̂Bq̂qðzÞ ð16Þ

Long MA. This method uses an estimate for the impulse
response that is derived from the intermediate long AR
model CM ðzÞ according to

B̂Bq̂qðzÞ
ÂAp̂pðzÞ

� 1

CM ðzÞ ¼ GðzÞ ð17Þ

with
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GðzÞ ¼ 1þ
X1
i¼1

gizi

An approximation of the impulse response GðzÞ is
obtained by simple long division or by a filter operation
with a delta pulse as the input signal. The length M0 of
the impulse response can be chosen freely, much greater
than M . Thereafter, the initial AR parameters ÂAp̂pðzÞ are
found as LS solutions of the overdetermined system of
linear equations

gm þ
X̂pp

i¼1
âap̂p;igm�i � 0; m ¼ maxðp̂p; q̂q þ 1Þ; . . . ;M0 ð18Þ

where it is assumed that the impulse response is
practically zero at M0.
Long COV. The third method to find initial estimates for
the AR part ÂAp̂pðzÞ of the ARMA(p̂p; q̂q) model uses the
given ACS [Eq. (12)]. The initial estimate is obtained as
LS solution of the extended Yule–Walker equations (see
e.g. Stoica and Moses 1997)

rm þ
X̂pp

i¼1
âap̂p;irm�i � 0; m ¼ q̂q þ 1; . . . ;M ð19Þ

Long RINV. The fourth method uses inverse autoco-
variances, i.e. the autocovariances of a time-series model
where the AR and MA parts have been exchanged (cf.
Priestley 1981). The inverse autocovariances are com-
puted with the parameters of the intermediate long AR
model CM ðzÞ as

RinvðkÞ ¼
XM�k

i¼0
cM ;icM ;iþk; k ¼ 0; 1; . . . ;M

Furthermore, RinvðkÞ ¼ 0 for k > M and RinvðkÞ ¼
Rinvð�kÞ. The initial estimates for the MA parameters
are calculated as LS solution of the overdetermined
system of linear equations

Rinvð0Þ þ
X̂qq

i¼1
b̂bq̂q;iRinvðm � iÞ � 0; m ¼ p̂p þ 1; . . . ;M

ð20Þ

From this initial MA estimate, the estimation of the
initial AR parameters continues with Eq. (16).
Once the initial AR part ÂAp̂pðzÞ has been found, an

algorithm similar to Durbin’s (1959) MA method is used
to compute the final MA part (step 1). Then, this MA
model is used to improve the AR part (step 2). This
procedure has to be applied to all four AR initial esti-
mates: the true ARMA process and its AR approxima-
tion are given by

ApðzÞnn ¼ BqðzÞen ð21Þ

and

CM ðzÞnn ¼ êen ð22Þ

respectively. Substitution of nn from Eq. (21) in Eq. (22),
and replacement of the true polynomials by estimated
polynomials ÂAp̂pðzÞ and B̂Bq̂qðzÞ, gives

CMðzÞ
ÂAp̂pðzÞ

B̂Bq̂qðzÞ � 1 ð23Þ

Equation (23) is used to find the MA parameters B̂Bq̂q
using the MA method of Durbin (1959). Thereafter, the
final AR parameters ÂAp̂pðzÞ are obtained with Eq. (16).
The computation of the MA part (step 1) and the AR
part (step 2) can be iterated if desired. Iteration may give
an improved model if the initial AR estimate is very
poor.
The residual variance ratio needed in order selection

is computed as the gain of the ARMA filter with MA
part ÂAp̂pðzÞ and AR part B̂Bq̂qðzÞCM ðzÞ.
So far, ARMA model identification has been re-

stricted to orders (p̂p, p̂p � 1) so as to limit the number of
candidate models to be estimated. For each of the four
proposed methods, ARMA candidate models of order
(p̂p, p̂p � 1), p̂p ¼ 1; . . . ;p̂pmax are computed. The order is
selected using the criterion in Eq. (14) with m ¼ p̂p þ q̂q.
Finally, the best of the four is selected as the one with
the smallest criterion in Eq. (14).
According to our experience, all four methods (long

AR, long MA, long COV, and long RINV) always have
to be used to find the best ARMA model. It was found
that sometimes at least one of the four methods pro-
vided a solution that depends on the highest candidate
ARMA order, which is not desirable. Moreover, in some
simulations, numerical problems occurred in particular
in the long AR method and the long COV method, and
no useful initial estimates were obtained. On the other
hand, in all simulations one of the four methods pro-
vided a suitable model. This supports the existing em-
pirical evidence that at least one of the four methods
performs well for every type of data.

7 Computational experiments

In this section, the results of several computational
experiments will be presented and discussed. The
experiments have been designed to demonstrate the
performance of the proposed approach in large LS
problems with colored observation noise. In addition,
the effect of using a very simple AR–MA representation
of the colored noise, instead of the best-fitting AR–MA
representation, is investigated. The choice of a simple
model may be motivated by computational consider-
ations. It was shown in Sect. 5 that the numerical
complexity increases in proportion to the product of the
length of the filter and the number of observations.
Thus, in large LS problems, it may be reasonable to
reduce computational costs by using short filters. All
computations were done on an SGI Origin 3800 parallel
computer with eight processing elements. The software
package GOCESOFT (Ditmar and Klees 2002) was
used to estimate the potential coefficients by LS.
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The large LS problem considered in this paper is the
estimation of spherical harmonic coefficients from noisy
gravity gradients. The following set-up has been chosen:
along a realistic 60-day repeat GOCE orbit with a mean
altitude of 268:5 km, and a mean inclination of 96:8�,
the three diagonal components of the tensor of gravity
gradients were generated with a sampling rate of 5 sec-
onds. The difference between the OSU91A gravity field
model (Rapp et al. 1991) complete up to degree and
order 300 and the GRS80 Somigliana–Pizetti model
(Moritz 1980) defines the disturbing potential that has
been used in the simulation and that has to be estimated
from the observations by LS.
The simulated gravity gradients were deliberately

corrupted by colored noise according to the noise PSD
functions for the xx-, the yy-, and the zz-component
published in European Space Agency (ESA) (1999).
Each of the curves was first discretized by 44 samples
and then fitted by a cubic spline. Below 10�4 Hz, which
is the minimum frequency considered in ESA (1999), the
spline was extrapolated. Two different extrapolations
were used: a natural cubic spline and a 1=f 2 increase of
the noise power. The former yields flat PSDs below 10�4

Hz; the latter results in a strongly increasing noise power
with decreasing frequency. The corresponding PSD
functions for the three diagonal tensor components are
shown in Fig. 3.
Next, appropriate ARMA models were determined

to represent the given noise PSDs according to the
procedure proposed in Sect. 6: AR(150), ARMA(33,32),
and AR(163) for the xx-, the yy-, and the zz-component,
respectively. Later on, these models will be referred to as
the best ARMA models.
In the first experiment, it is demonstrated how the LS

solution is distorted if the correlations among the ob-
servations are simply neglected. The results of the in-
version in terms of geoid height errors are shown in
Fig. 4. The first conclusion is that when the colored
noise is not modeled, geoid height errors of the order of
meters occur. Moreover, a direct comparison of the two
geoid height error plots shown in Fig. 4 makes the effect
of a strong noise power below a frequency of 10�4 Hz
visible (cf. Fig. 3b); such noise yields geoid height error
patterns that resemble the satellite ground tracks. If the
noise power at low frequencies does not increase
significantly, as in Fig. 3a, geoid height errors are sig-
nificantly smaller (cf. top panel in Fig. 4). This demon-
strates that, for further studies, it is important to obtain
information about the noise behavior of the gradiometer
at low frequencies. Of course, the poor performance of
the gradiometer at low frequencies may be compensated
when satellite-to-satellite tracking observations are in-
cluded in the estimation process, since both types of
observations are complementary (cf. Ditmar and Klees
2002). Nevertheless, the measured gravity gradients may
carry valuable information even at these low frequencies
and proper weighting may yield improved gravity field
solutions.
Figure 4 also indicates that it is difficult to predict

how long-wavelength errors along the orbit are mapped
geographically due to the superposition of the satellite’s

motion along the orbit and the Earth’s rotation. Finally,
it is noted that in both solutions the yy tensor compo-
nents contribute the most to the LS solution because the
total noise power is much lower [4.0 mE2 (top) and
3844.0 mE2 (bottom) in Fig. 4] than the noise power of
the xx- and zz-components [each 2271.6 mE2 (top) and
1 766 105.4 mE2 (bottom) in Fig. 4].
In the next experiment, the best AR–MA models

representing the colored observation noise shown in
Fig. 3 were used in the LS solution according to the
procedure proposed in Sect. 6. The solutions for both
PSDs are shown in Fig. 5; the solution presented in the

Fig. 3a, b. Noise PSD functions of the three diagonal gravity
gradients: the PSDs correspond to the spectra of the total gravity-
gradient measurement error budget for the diagonal components of
the GOCE gradiometer as published in ESA (1999). Cubic splines
interpolate the discretized PSDs. Below 10�4 Hz the cubic splines were
extrapolated to simulate longer time series. a natural cubic spline
extrapolation. The total noise variances are r2xx ¼ 2271:6 mE2,
r2yy ¼ 4:0 mE2, and r2zz ¼ 2271:6 mE2 (1 E = 10�9 s�2). b 1=f 2

extrapolation with first-order continuity. The total noise variances are
r2xx ¼ 1 766 105:4 mE2, r2yy ¼ 3844:0 mE2, and r2zz ¼ 1 766 105:4
mE2. Note that the 1=f 2 extrapolation yields PSDs with much more
power at low frequencies compared with the natural cubic spline
extrapolation
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top and bottom panels uses the PSD functions shown in
Fig. 3a and Fig. 3b, respectively. The former is slightly
better in terms of the global RMS (0.17 m versus 0.19
cm) due to the lower noise power at low frequencies. The
geographical distribution of the errors does not show
significant differences. The largest errors appear in areas
with strong signal variations, such as the Andes. Two
sources contribute to this effect: first, the noise at high
frequencies limits the amount of detail that can be re-
covered from noisy gravity gradients. Secondly, Tikho-
nov regularization, which was applied in both cases,
yields over-smoothed solutions in areas with larger sig-
nal variations. Note that, in all solutions, the regular-
ization parameter was empirically chosen to yield the
smallest RMS geoid height error in the �80� latitude
band.
The next question addressed is the effect on the

gravity field solution of a ‘suboptimal’ filter. ‘Subopti-
mal’ means that the colored noise is not represented by

the best ARMA model, but by a much simpler one, such
as a model of lower order. For each diagonal component
of the gravitational tensor, a simple ARMA(2,1) model
was estimated. The results are shown in Fig. 6. Some
interesting conclusions can be drawn from the two maps
of geoid height errors. First of all, a direct comparison
of the top panels of Figs. 5 and 6 shows that there are no
significant differences between the two solutions. The
RMS difference is only 0.05 m, and the maximum dif-
ference is 0:32 m. This means that if the noise power at
frequencies below 10�4 Hz does not increase, very simple
ARMA filters are sufficient to model the colored ob-
servation noise. The situation is different if the noise
power at frequencies below 10�4 Hz increases. A com-
parison of the bottom panels of Figs. 5 and 6 shows that
the simple ARMA(2,1) models of the colored noise in-
troduce strong long wavelength errors in the geoid,
which superimpose the larger local geoid errors in areas
with strong signal variations. This is due to the poor

Fig. 4a, b. Map of geoid height
errors below �80� latitude. The
potential coefficients were
estimated without modeling the
colored observation noise shown
in Fig. 3. Top: colored observa-
tion noise according to Fig. 3a.
The RMS geoid height error in
the �80� latitude band is �0:32
m; the maximum geoid height
error is 4:9 m. Bottom: colored
observation noise according to
Fig. 3b. The RMS geoid height
error in the �80� latitude band is
�2:4 m; the maximum geoid
height error is 16:6 m
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performance of these short filters at low frequencies.
Therefore, proper noise modeling becomes more
important in the inversion of SGG data if much
noise power is concentrated at low frequencies. How-
ever, this may not be necessary in combined SGG/SST
solutions.
The last aspect to be addressed is the performance of

the filter operation in terms of the wall-clock time. Table 1
compares the overall wall-clock time for the LS esti-
mation of the potential coefficients from gravity gradi-
ents and the contribution of the filter operation. It
demonstrates that the proposed filter approach is very
fast and contributes to the overall wall-clock time by
only a few percent. This contribution is reduced even
further when a simple ARMA(2,1) model is used.
However, since in the GOCESOFT software the con-
tribution of the filter operation to the overall wall-clock
time is minor, the use of simple filters is not necessary

from a computational point of view. The number of
iterations increases noticeably when filtering is applied.
There are two reasons for this. First, edge effects caused
by the initialization of the filters with zero values have
been suppressed by deleting the edges after filtering.
Practically, this means that the orbit has been made
non-repeat, which reduces the performance of the pre-
conditioner used in the computations. Second, the pre-
conditioner was defined using the noise model published
by ESA (1999). Differences between this noise model
and the one represented by the ARMAmodels may have
reduced the performance of the pre-conditioner.

8 Conclusions and future work

The proposed procedure can be applied to all large
LS problems in the presence of stationary colored

Fig. 5a, b. Map of geoid height
errors below �80� latitude. The
best AR–MA model for each
tensor component was used to
model the colored observation
noise shown in Fig. 3. Top: noise
PSD functions shown in Fig. 3a.
The RMS geoid height error in
the �80� latitude band is �0:17
m; the maximum geoid height
error is 2:1 m. Bottom: noise PSD
functions shown in Fig. 3b. The
RMS geoid height error in the
�80� latitude band is �0:19 m;
the maximum geoid height error
is 2:0 m
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observation noise. This includes LS collocation. Maxi-
mum efficiency is obtained when the normal equations
are solved iteratively. Then, extra efforts to properly
take colored noise into account require only OðNÞ flops.
Moreover, the extra computer memory required is
practically negligible. Accurate handling of colored
noise is especially important if the noise intensity varies

significantly (i.e. by orders of magnitude) as a function
of frequency.
However, there are some questions and situations

that have not yet been addressed. First, the initialization
of the filters by zero values causes edge effects, i.e. local
distortions in the geoid below the location of the first
and last few observations. The edge effects have been

Table 1. Performance of the fil-
ter operation in terms of wall-
clock time. ‘PSD 1’ and ‘PSD 2’
refer to the PSD function shown
in Fig. 3a and Fig. 3b, respec-
tively

No filtering Best AR–MA filter ARMA(2,1) filter

PSD 1
Number of iterations 26 124 104
Total wall-clock time (s) 5262 (100%) 22 691 (100%) 18 469 (100%)
Filtering (s) 0 833 (3.7%) 170 (0.9%)

PSD 2
Number of iterations 19 41 95
Total wall-clock time (s) 3371 (100%) 7676 (100%) 16 672 (100%)
Filtering (s) 0 168 (2.2%) 156 (0.9%)

Fig. 6a, b. Map of geoid height
errors below �80� latitude. A
simple ARMA(2,1) approxima-
tion of the colored observation
noise shown in Fig. 3 was used to
design the whitening filter. Top:
noise PSD functions shown in
Fig. 3a. The RMS geoid height
error in the �80� latitude band is
�0:17 m; the maximum geoid
height error is 2:1 m. Bottom:
noise PSD functions shown in
Fig. 3b. The RMS geoid height
error in the �80� latitude band is
�0:21 m; the maximum geoid
height error is 2.2 m
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suppressed so far by simply deleting edge values in the
data vector after filtering. Of course, this is a very crude
approach. Using real data, this may be not acceptable
because time series of observations acquired by sensors
on moving platforms often experience data gaps and
spikes. A very recent example is the accelerometer on
board CHAMP. Hence, a certain modification of the
presented approach is necessary. This is the subject of a
forthcoming paper (Klees and Ditmar, submitted).
Another aspect to be addressed is the fact that no

information about the noise characteristic may be
available. Then, the proposed approach cannot be used
at all, because it relies on either a given realization of the
noise or an estimate of the noise power spectrum. One
solution to this problem might be variance component
estimation techniques in combination with a suitable
parameterization of the autocovariance function. This
subject will be addressed in Kusche (submitted).
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