How to Hash into Elliptic Curves

Thomas Icart
thomas.icart@m4x.org

ulini.lı
 UNIVERSITÉ DU LUXEMBOURG

18/08/2009

Introduction

- Hashing into elliptic curves is needed:
(1) In the IBE scheme of Boneh-Franklin (2001).
(2) In some Password Based protocols over elliptic curves.

Introduction

- Hashing into elliptic curves is needed:
(1) In the IBE scheme of Boneh-Franklin (2001).
(2) In some Password Based protocols over elliptic curves.
- Boneh-Franklin uses a particular super-singular curve on which hashing is easy

Introduction

- Hashing into elliptic curves is needed:
(1) In the IBE scheme of Boneh-Franklin (2001).
(2) In some Password Based protocols over elliptic curves.
- Boneh-Franklin uses a particular super-singular curve on which hashing is easy
- Efficient password based protocols such as the Simple Password Exponential Key Exchange (SPEKE) [Jab 1996] need hash function into ordinary curves.

Introduction

Definition (Notations)

An elliptic curve $E_{a, b}$ is the set of points verifying the equation:

$$
X^{3}+a X+b=Y^{2}
$$

over a field \mathbb{F}_{p}. The number of points in $E_{a, b}$ is N.
(1) Related Works

- Try and Increment
- Supersingular
- SW
- Wanted
(2) Proposal
- Definition
- Idea
- Properties
(3) Hashing
- Preimage
- Collision

Hashing into Finite Fields

- Hashing into finite field in deterministic polynomial time is easy.

Hashing into Finite Fields

- Hashing into finite field in deterministic polynomial time is easy.

Lemma

- Let p be a safe prime $(p=2 q+1)$.
- Let H be a $|p|$-bit one-way hash function

Hashing into Finite Fields

- Hashing into finite field in deterministic polynomial time is easy.

Lemma

- Let p be a safe prime $(p=2 q+1)$.
- Let H be a $|p|$-bit one-way hash function
- Then $H(m)^{2} \bmod p$ is a one-way hash function into the prime order subgroup of \mathbb{F}_{p}.

Hashing into Elliptic Curves

- Hashing into elliptic curves in deterministic polynomial time is much harder.

Hashing into Elliptic Curves

- Hashing into elliptic curves in deterministic polynomial time is much harder.
- It requires a deterministic function from the base field to $E_{a, b}$
- The classical point generation algorithm is not deterministic.
(1) Related Works
- Try and Increment
- Supersingular
- SW
- Wanted

(2) Proposal

- Definition
- Idea
- Properties
(3) Hashing
- Preimage
- Collision

Try and Increment Algorithm

Input: u an integer.
Output: Q, a point of $E_{a, b}\left(\mathbb{F}_{p}\right)$.
(1) For $i=0$ to $k-1$
(1) Set $x=u+i$
(2) If $x^{3}+a x+b$ is a quadratic residue in \mathbb{F}_{p}, then return $Q=\left(x,\left(x^{3}+a x+b\right)^{1 / 2}\right)$
(2) end For
(3) Return \perp

Try and Increment Algorithm

Input: u an integer.
Output: Q, a point of $E_{a, b}\left(\mathbb{F}_{p}\right)$.
(1) For $i=0$ to $k-1$
(1) Set $x=u+i$
(2) If $x^{3}+a x+b$ is a quadratic residue in \mathbb{F}_{p}, then return $Q=\left(x,\left(x^{3}+a x+b\right)^{1 / 2}\right)$
(2) end For
(3) Return \perp

The running time depends on u. This leads to partition attacks [BMN 2001].

Partition Attacks

- When u is related to the password π, different passwords lead to different running times T.

Partition Attacks

- When u is related to the password π, different passwords lead to different running times T.
- Example: $u=H\left(\pi, P K_{C}, P K_{R}\right)$ in SPEKE.

Partition Attacks

- When u is related to the password π, different passwords lead to different running times T.
- Example: $u=H\left(\pi, P K_{C}, P K_{R}\right)$ in SPEKE.
- A partition of the password dictionary is possible following the different T.

Possible solutions

Making the Try and Increment algorithm constant time:

Possible solutions

Making the Try and Increment algorithm constant time:
Input: u an integer.
Output: Q, a point of $E_{a, b}\left(\mathbb{F}_{p}\right)$.
(1) For $i=0$ to $k-1$
(1) Set $x=u+i$
(2) If $x^{3}+a x+b$ is a quadratic residue in \mathbb{F}_{p}, then store $Q=\left(x,\left(x^{3}+a x+b\right)^{1 / 2}\right)$
(2) end For
(3) Return Q

Possible solutions

Making the Try and Increment algorithm constant time:
Input: u an integer.
Output: Q, a point of $E_{a, b}\left(\mathbb{F}_{p}\right)$.
(1) For $i=0$ to $k-1$
(1) Set $x=u+i$
(2) If $x^{3}+a x+b$ is a quadratic residue in \mathbb{F}_{p}, then store $Q=\left(x,\left(x^{3}+a x+b\right)^{1 / 2}\right)$
(2) end For
(3) Return Q

The running time is $\mathcal{O}\left(\log ^{3} p\right)$ in general. When using exponentiation for testing quadratic residuosity, running time in $\mathcal{O}\left(\log ^{4} p\right)$.

Supersingular Elliptic Curve

Definition

A curve $E_{0, b}$:

$$
X^{3}+b=Y^{2} \quad \bmod p
$$

with $p=2 \bmod 3$ has $p+1$ points and is supersingular.

Supersingular Elliptic Curve

Definition

A curve $E_{0, b}$:

$$
X^{3}+b=Y^{2} \quad \bmod p
$$

with $p=2 \bmod 3$ has $p+1$ points and is supersingular.

- The function $u \mapsto\left(\left(u^{2}-b\right)^{1 / 3} \bmod p-1, u\right)$ is a bijection from \mathbb{F}_{p} to $E_{0, b}$.

Supersingular Elliptic Curve

Definition

A curve $E_{0, b}$:

$$
X^{3}+b=Y^{2} \quad \bmod p
$$

with $p=2 \bmod 3$ has $p+1$ points and is supersingular.

- The function $u \mapsto\left(\left(u^{2}-b\right)^{1 / 3} \bmod p-1, u\right)$ is a bijection from \mathbb{F}_{p} to $E_{0, b}$.
- Because of the MOV attacks, larger p should be used (512 bits instead of 160 bits).

Possible solutions

Previous work:

- Shallue-Woestijne's deterministic algorithm for generating EC points.
- Our algorithm is different, simpler and is an explicit function.

Andrew Shallue and Christiaan van de Woestijne: Construction of Rational Points on Elliptic Curves over Finite Fields. ANTS 2006

What do we want?

A function f with the following properties:

- It only requires the elliptic curves parameters,

What do we want?

A function f with the following properties:

- It only requires the elliptic curves parameters,
- f requires a constant number of finite field operations (exponentiations, multiplications, additions)

What do we want?

A function f with the following properties:

- It only requires the elliptic curves parameters,
- f requires a constant number of finite field operations (exponentiations, multiplications, additions)
- f^{-1} can be computed in polynomial time. This ensures that computing the discrete logarithm of $f(x)$ is hard for any x.

What do we want?

A function f with the following properties:

- It only requires the elliptic curves parameters,
- f requires a constant number of finite field operations (exponentiations, multiplications, additions)
- f^{-1} can be computed in polynomial time. This ensures that computing the discrete logarithm of $f(x)$ is hard for any x.

(1) Related Works

- Try and Increment
- Supersingular
- SW
- Wanted
(2) Proposal
- Definition
- Idea
- Properties
(3) Hashing
- Preimage
- Collision

The New Function

Fact

- Over fields such that $p=2 \bmod 3$, the $\operatorname{map} x \mapsto x^{3}$ is a bijection.
- In particular: $x^{1 / 3}=x^{(2 p-1) / 3}$.
- This operation can be computed in a constant numbers of operations for a constant p.

The New Function

Definition

$$
\begin{aligned}
& f_{a, b}: \mathbb{F}_{p} \mapsto\left(\mathbb{F}_{p}\right)^{2} \cup\{\mathcal{O}\} \\
& u \mapsto(x, y=u x+v) \\
& x=\left(v^{2}-b-\frac{u^{6}}{27}\right)^{1 / 3}+\frac{u^{2}}{3} \\
& y= u x+v \\
& v= \frac{3 a-u^{4}}{6 u}
\end{aligned}
$$

The idea

Fact

When $p=2 \bmod 3$, degree 3 polynomials $(x-\alpha)^{3}-\beta$ have a unique root: $\beta^{1 / 3}+\alpha$

The idea

Fact

When $p=2 \bmod 3$, degree 3 polynomials $(x-\alpha)^{3}-\beta$ have a unique root: $\beta^{1 / 3}+\alpha$

- Idea: Assume that $y=u x+v$, find $v(u)$ such that:

$$
x^{3}+a x+b-(u x+v(u))^{2}=(x-\alpha(u))^{3}-\beta(u)
$$

The idea

From the elliptic curve equation and $y=u x+v$:

$$
x^{3}+a x+b=u^{2} x^{2}+2 u v x+v^{2}=(u x+v)^{2}
$$

The idea

From the elliptic curve equation and $y=u x+v$:

$$
\begin{aligned}
x^{3}+a x+b=u^{2} x^{2}+2 u v x+v^{2} & =(u x+v)^{2} \\
x^{3}-u^{2} x^{2}+(a-2 u v) x+b-v^{2} & =0
\end{aligned}
$$

The idea

From the elliptic curve equation and $y=u x+v$:

$$
\begin{aligned}
x^{3}+a x+b=u^{2} x^{2}+2 u v x+v^{2} & =(u x+v)^{2} \\
x^{3}-u^{2} x^{2}+(a-2 u v) x+b-v^{2} & =0 \\
\left(x-\frac{u^{2}}{3}\right)^{3}+x\left(a-2 u v-\frac{u^{4}}{3}\right) & =v^{2}-b-\frac{u^{6}}{27}
\end{aligned}
$$

The idea

$$
\left(x-\frac{u^{2}}{3}\right)^{3}+x\left(a-2 u v-\frac{u^{4}}{3}\right)=v^{2}-b-\frac{u^{6}}{27}
$$

Let

$$
v=\frac{3 a-u^{4}}{6 u}
$$

The idea

$$
\left(x-\frac{u^{2}}{3}\right)^{3}+x\left(a-2 u v-\frac{u^{4}}{3}\right)=v^{2}-b-\frac{u^{6}}{27}
$$

Let

$$
v=\frac{3 a-u^{4}}{6 u}
$$

This implies:

$$
\left(x-\frac{u^{2}}{3}\right)^{3}=v^{2}-b-\frac{u^{6}}{27}
$$

Therefore, we can recover x and $y=u x+v$

Properties

Let $P=(x, y)$ be a point on the curve $E_{a, b}$.

Lemma

The solutions u_{s} of $f_{a, b}\left(u_{s}\right)=P$ are the solutions of the equation:

$$
u^{4}-6 u^{2} x+6 u y-3 a=0
$$

Properties

Let $P=(x, y)$ be a point on the curve $E_{a, b}$.

Lemma

The solutions u_{s} of $f_{a, b}\left(u_{s}\right)=P$ are the solutions of the equation:

$$
u^{4}-6 u^{2} x+6 u y-3 a=0
$$

This implies that:
(1) $f_{a, b}^{-1}(P)$ is computable in polynomial time,
(2) $\left|f_{a, b}^{-1}(P)\right| \leq 4$, for all $P \in E_{a, b}$
(3) $\left|\operatorname{lm}\left(f_{a, b}\right)\right|>p / 4$

Properties

- $\left|\operatorname{lm}\left(f_{a, b}\right)\right|>p / 4$

Conjecture

There exists a constant λ such that for any p, a, b

$$
\left|\left|\operatorname{lm}\left(f_{a, b}\right)\right|-\frac{5}{8}\right| E_{a, b}\left(\mathbb{F}_{p}\right)| | \leq \lambda \sqrt{p}
$$

Properties

- $\left|\operatorname{lm}\left(f_{a, b}\right)\right|>p / 4$

Conjecture

There exists a constant λ such that for any p, a, b

$$
\left|\left|\operatorname{lm}\left(f_{a, b}\right)\right|-\frac{5}{8}\right| E_{a, b}\left(\mathbb{F}_{p}\right)| | \leq \lambda \sqrt{p}
$$

This enables to prove that $\left(u_{1}, u_{2}\right) \mapsto f_{a, b}\left(u_{1}\right)+f_{a, b}\left(u_{2}\right)$ is a surjective function.

(1) Related Works

- Try and Increment
- Supersingular
- SW
- Wanted
(2) Proposal
- Definition
- Idea
- Properties
(3) Hashing
- Preimage
- Collision

Hashing into Elliptic Curves

We here focus on standard properties for hash functions:

- Resistance against Preimage Attacks
- Resistance against Collision Attacks

Preimage Resistance

Lemma

If h is a one-way hash function then $H(m)=f_{a, b}(h(m))$ is a one-way hash function into elliptic curves.

Preimage Resistance

Lemma

If h is a one-way hash function then $H(m)=f_{a, b}(h(m))$ is a one-way hash function into elliptic curves.

Idea:
(1) $f_{a, b}$ is invertible
(2) Its preimage size is at most 4

Collision Resistance

Fact

A collision to $H(m)=f_{a, b}(h(m))$ is either:
(1) A collision to $h: m$ and m^{\prime} such that $h(m)=h\left(m^{\prime}\right)$
(2) A collision to $f_{a, b}: m$ and m^{\prime} such that $h(m) \neq h\left(m^{\prime}\right)$ and $f_{a, b}(h(m))=f_{a, b}\left(h\left(m^{\prime}\right)\right)$

Collision Resistance

Fact

A collision to $H(m)=f_{a, b}(h(m))$ is either:
(1) A collision to h : m and m^{\prime} such that $h(m)=h\left(m^{\prime}\right)$
(2) A collision to $f_{a, b}: m$ and m^{\prime} such that $h(m) \neq h\left(m^{\prime}\right)$ and $f_{a, b}(h(m))=f_{a, b}\left(h\left(m^{\prime}\right)\right)$

- We did not find a way to prove the collision resistance of $f_{a, b}(h)$ from the collision resistance of h

Collision Resistance

Fact

A collision to $H(m)=f_{a, b}(h(m))$ is either:
(1) A collision to $h: m$ and m^{\prime} such that $h(m)=h\left(m^{\prime}\right)$
(2) A collision to $f_{a, b}: m$ and m^{\prime} such that $h(m) \neq h\left(m^{\prime}\right)$ and $f_{a, b}(h(m))=f_{a, b}\left(h\left(m^{\prime}\right)\right)$

- We did not find a way to prove the collision resistance of $f_{a, b}(h)$ from the collision resistance of h
- We thus propose a $2^{\text {nd }}$ construction.

Collision Resistance

- Heuristically, for sufficiently small value of $u, f_{a, b}(u)$ is collision free.

Collision Resistance

- Heuristically, for sufficiently small value of $u, f_{a, b}(u)$ is collision free.
- We use pair-wise independent functions to get a probabilistic result (i.e. a non-heuristic one). [CW 1981]

Collision Resistance

- Heuristically, for sufficiently small value of $u, f_{a, b}(u)$ is collision free.
- We use pair-wise independent functions to get a probabilistic result (i.e. a non-heuristic one). [CW 1981]

Definition (Pair-wise Independent Function)

A family of functions $g: \mathbb{F}_{p} \mapsto \mathbb{F}_{p}$ is pair-wise independent if given any couple $\left(x_{1}, x_{2}\right)$ with $x_{1} \neq x_{2}$ and any couple $\left(u_{1}, u_{2}\right)$, $\operatorname{Pr} g\left[g\left(x_{1}\right)=u_{1} \wedge g\left(x_{2}\right)=u_{2}\right]$ is negligible.

- The affine functions $x \mapsto c . x+d$ for $(c, d) \in\left(\mathbb{F}_{p} \times \mathbb{F}_{p}\right)$ are pair-wise independent functions
- The affine functions $x \mapsto c . x+d$ for $(c, d) \in\left(\mathbb{F}_{p} \times \mathbb{F}_{p}\right)$ are pair-wise independent functions
- For sufficiently small value of $x, f_{a, b}(c \cdot x+d)$ is collision free with a very high probability.
- The affine functions $x \mapsto c . x+d$ for $(c, d) \in\left(\mathbb{F}_{p} \times \mathbb{F}_{p}\right)$ are pair-wise independent functions
- For sufficiently small value of $x, f_{a, b}(c \cdot x+d)$ is collision free with a very high probability.

Lemma

For a random choice of c, d, the function $m \mapsto f_{a, b}(c . h(m)+d)$ is collision resistant with a high probability for a good choice of size parameter assuming that h is collision resistant.

- The affine functions $x \mapsto c . x+d$ for $(c, d) \in\left(\mathbb{F}_{p} \times \mathbb{F}_{p}\right)$ are pair-wise independent functions
- For sufficiently small value of $x, f_{a, b}(c \cdot x+d)$ is collision free with a very high probability.

Lemma

For a random choice of c, d, the function $m \mapsto f_{a, b}(c . h(m)+d)$ is collision resistant with a high probability for a good choice of size parameter assuming that h is collision resistant.

- If $h(m)$ is a 160 -bit hash function, $f_{a, b}(c . h(m)+d)$ is collision resistant if p is a 400-bit integer.
(1) Related Works
- Try and Increment
- Supersingular
- SW
- Wanted
(2) Proposal
- Definition
- Idea
- Properties
(3) Hashing
- Preimage
- Collision

Conclusion

- $f_{a, b}$ enables to deterministically generate points into elliptic curves.

Conclusion

- $f_{a, b}$ enables to deterministically generate points into elliptic curves.
- $f_{a, b}$ exists in characteristic 2 .

Conclusion

- $f_{a, b}$ enables to deterministically generate points into elliptic curves.
- $f_{a, b}$ exists in characteristic 2 .
- When the cofactor $r \neq 1, r . f_{a, b}$ can be used to hash into the subgroup of the curves.

Conclusion

- $f_{a, b}$ enables to deterministically generate points into elliptic curves.
- $f_{a, b}$ exists in characteristic 2 .
- When the cofactor $r \neq 1, r . f_{a, b}$ can be used to hash into the subgroup of the curves.
- $f_{a, b}$ is based on cube root extraction: over RSA rings, generating a point into elliptic curves only requires a cube root oracle.

Conclusion

- $f_{a, b}$ enables to deterministically generate points into elliptic curves.
- $f_{a, b}$ exists in characteristic 2 .
- When the cofactor $r \neq 1, r . f_{a, b}$ can be used to hash into the subgroup of the curves.
- $f_{a, b}$ is based on cube root extraction: over RSA rings, generating a point into elliptic curves only requires a cube root oracle.
- $f_{a, b}$ can be used on any curve model (Edwards Curve, etc) whenever the model is birationally equivalent to the Weierstrass model.

Thank You

Thank You

Questions?

