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Is the mind, by design, predisposed against performing Bayesian inference? Previous research on
base rate neglect suggests that the mind lacks the appropriate cognitive algorithms. However, any
claim against the existence of an algorithm, Bayesian or otherwise, is impossible to evaluate unless
one specifies the information format in which it is designed to operate. The authors show that Bayes-
ian algorithms are computationally simpler in frequency formats than in the probability formats
used in previous research. Frequency formats correspond to the sequential way information is ac-
quired in natural sampling, from animal foraging to neural networks. By analyzing several thousand
solutions to Bayesian problems, the authors found that when information was presented in frequency
formats, statistically naive participants derived up to 50% of all inferences by Bayesian algorithms.
Non-Bayesian algorithms included simple versions of Fisherian and Neyman-Pearsonian inference.

Is the mind, by design, predisposed against performing
Bayesian inference? The classical probabilists of the Enlighten-
ment, including Condorcet, Poisson, and Laplace, equated
probability theory with the common sense of educated people,
who were known then as "hommes eclaires." Laplace (1814/
1951) declared that "the theory of probability is at bottom
nothing more than good sense reduced to a calculus which eval-
uates that which good minds know by a sort of instinct, without
being able to explain how with precision" (p. 196). The avail-
able mathematical tools, in particular the theorems of Bayes
and Bernoulli, were seen as descriptions of actual human judg-
ment (Daston, 1981,1988). However, the years of political up-
heaval during the French Revolution prompted Laplace, unlike
earlier writers such as Condorcet, to issue repeated disclaimers
that probability theory, because of the interference of passion
and desire, could not account for all relevant factors in human
judgment. The Enlightenment view—that the laws of probabil-
ity are the laws of the mind—moderated as it was through the
French Revolution, had a profound influence on 19th- and
20th-century science. This view became the starting point for
seminal contributions to mathematics, as when George Boole
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(1854/1958) derived the laws of algebra, logic, and probability
from what he believed to be the laws of thought. It also became
the basis of vital contributions to psychology, as when Piaget
and Inhelder (1951 /1975) added an ontogenetic dimension to
their Enlightenment view of probabilistic reasoning. And it be-
came the foundation of contemporary notions of rationality in
philosophy and economics (e.g., Allais, 1953; L. J. Cohen,
1986).

Ward Edwards and his colleagues (Edwards, 1968; Phillips &
Edwards, 1966; and earlier, Rouanet, 1961) were the first to test
experimentally whether human inference follows Bayes' theo-
rem. Edwards concluded that inferences, although "conserva-
tive," were usually proportional to those calculated from Bayes'
theorem. Kahneman and Tversky (1972, p. 450), however, ar-
rived at the opposite conclusion: "In his evaluation of evidence,
man is apparently not a conservative Bayesian: he is not Bayes-
ian at all." In the 1970s and 1980s, proponents of their "heuris-
tics-and-biases" program concluded that people systematically
neglect base rates in Bayesian inference problems. "The genu-
ineness, the robustness, and the generality of the base-rate fal-
lacy are matters of established fact" (Bar-Hillel, 1980, p. 215).
Bayes' theorem, like Bernoulli's theorem, was no longer thought
to describe the workings of the mind. But passion and desire
were no longer blamed as the causes of the disturbances. The
new claim was stronger. The discrepancies were taken as tenta-
tive evidence that "people do not appear to follow the calculus
of chance or the statistical theory of prediction" (Kahneman &
Tversky, 1973, p. 237). It was proposed that as a result of "lim-
ited information-processing abilities" (Lichtenstein, FischhofF
& Phillips, 1982, p. 333), people are doomed to compute the
probability of an event by crude, nonstatistical rules such as the
"representativeness heuristic." Blunter still, the paleontologist
Stephen J. Gould summarized what has become the common
wisdom in and beyond psychology: "Tversky and Kahneman
argue, correctly I think, that our minds are not built (for what-
ever reason) to work by the rules of probability" (Gould, 1992,
p. 469).

Here is the problem. There are contradictory claims as to
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whether people naturally reason according to Bayesian infer-
ence. The two extremes are represented by the Enlightenment
probabilists and by proponents of the heuristics-and-biases pro-
gram. Their conflict cannot be resolved by finding further ex-
amples of good or bad reasoning; text problems generating one
or the other can always be designed. Our particular difficulty is
that after more than two decades of research, we still know little
about the cognitive processes underlying human inference,
Bayesian or otherwise. This is not to say that there have been no
attempts to specify these processes. For instance, it is under-
standable that when the "representativeness heuristic" was first
proposed in the early 1970s to explain base rate neglect, it was
only loosely defined. Yet at present, representativeness remains
a vague and ill-defined notion (Gigerenzer & Murray, 1987;
Shanteau, 1989; Wallsten, 1983). For some time it was hoped
that factors such as "concreteness," "vividness," "causality,"
"salience," "specificity," "extremeness," and "relevance" of
base rate information would be adequate to explain why base
rate neglect seemed to come and go (e.g., Ajzen, 1977; Bar-
Hillel, 1980; Borgida & Brekke, 1981). However, these factors
have led neither to an integrative theory nor even to specific
models of underlying processes (Hammond, 1990; Koehler, in
press; Lopes, 1991;Scholz, 1987).

Some have suggested that there is perhaps something to be
said for both sides, that the truth lies somewhere in the middle:
Maybe the mind does a little of both Bayesian computation and
quick-and-dirty inference. This compromise avoids the polar-
ization of views but makes no progress on the theoretical front.

In this article, we argue that both views are based on an in-
complete analysis: They focus on cognitive processes, Bayesian
or otherwise, without making the connection between what we
will call a cognitive algorithm and an information format. We
(a) provide a theoretical framework that specifies why fre-
quency formats should improve Bayesian reasoning and (b)
present two studies that test whether they do. Our goal is to lead
research on Bayesian inference out of the present conceptual
cul-de-sac and to shift the focus from human errors to human
engineering (see Edwards & von Winterfeldt, 1986): how to
help people reason the Bayesian way without even teaching
them.

Algorithms Are Designed for Information Formats

Our argument centers on the intimate relationship between a
cognitive algorithm and an information format. This point was
made in a more general form by the physicist Richard Feyn-
man. In his classic The Character of Physical Law, Feynman
(1967) placed a great emphasis on the importance of deriving
different formulations for the same physical law, even if they are
mathematically equivalent (e.g., Newton's law, the local field
method, and the minimum principle). Different representa-
tions of a physical law, Feynman reminded us, can evoke varied
mental pictures and thus assist in making new discoveries: "Psy-
chologically they are different because they are completely un-
equivalent when you are trying to guess new laws" (p. 53). We
agree with Feynman. The assertion that mathematically equiv-
alent representations can make a difference to human under-
standing is the key to our analysis of intuitive Bayesian
inference.

We use the general term information representation and the

specific terms information format and information menu to re-
fer to external representations, recorded on paper or on some
other physical medium. Examples are the various formulations
of physical laws included in Feynman's book and the Feynman
diagrams. External representations need to be distinguished
from the internal representations stored in human minds,
whether the latter are prepositional (e.g., Pylyshyn, 1973) or
pictorial (e.g., Kosslyn & Pomerantz, 1977). In this article, we
do not make specific claims about internal representations, al-
though our results may be of relevance to this issue.

Consider numerical information as one example of external
representations. Numbers can be represented in Roman, Ara-
bic, and binary systems, among others. These representations
can be mapped one to one onto each other and are in this sense
mathematically equivalent. But the form of representation can
make a difference for an algorithm that does, say, multiplica-
tion. The algorithms of our pocket calculators are tuned to Ar-
abic numbers as input data and would fail badly if one entered
binary numbers. Similarly, the arithmetic algorithms acquired
by humans are designed for particular representations (Stigler,
1984). Contemplate for a moment long division in Roman
numerals.

Our general argument is that mathematically equivalent rep-
resentations of information entail algorithms that are not nec-
essarily computationally equivalent (although these algorithms
are mathematically equivalent in the sense that they produce
the same outcomes; see Larkin & Simon, 1987; Marr, 1982).
This point has an important corollary for research on inductive
reasoning. Suppose we are interested in figuring out what algo-
rithm a system uses. We will not detect the algorithm if the
representation of information we provide the system does not
match the representation with which the algorithm works. For
instance, assume that in an effort to find out whether a system
has an algorithm for multiplication, we feed that system Roman
numerals. The observation that the system produces mostly
garbage does not entail the conclusion that it lacks an algorithm
for multiplication. We now apply this argument to Bayesian
inference.

Standard Probability Format

In this article, we focus on an elementary form of Bayesian
inference. The task is to infer a single-point estimate—a proba-
bility ("posterior probability") or a frequency—for one of two
mutually exclusive and exhaustive hypotheses, based on one ob-
servation (rather than two or more). This elementary task has
been the subject of almost all experimental studies on Bayesian
inference in the last 25 years. The following "mammography
problem" (adapted from Eddy, 1982) is one example:

Mammography problem (standard probability format)
The probability of breast cancer is 1 % for a woman at age forty who
participates in routine screening. If a woman has breast cancer, the
probability is 80% that she will get a positive mammography. If a
woman does not have breast cancer, the probability is 9.6% that she
will also get a positive mammography. A woman in this age group
had a positive mammography in a routine screening. What is the
probability that she actually has breast cancer? %

There are two mutually exclusive and exhaustive hypotheses
(breast cancer and no breast cancer), there is one observation
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(the positive test), and the task is to arrive at a single-point
probability estimate.

The information is represented here in terms of single-event
probabilities: All information (base rate, hit rate, and false
alarm rate) is in the form of probabilities attached to a single
person, and the task is to estimate a single-event probability.
The probabilities are expressed as percentages; alternatively,
they can be presented as numbers between zero and one. We
refer to this representation (base rate, hit rate, and false alarm
rate expressed as single-event probabilities) as the standard
probability format.

What is the algorithm needed to calculate the Bayesian pos-
terior probability p(cancer | positive) from the standard proba-
bility format? Here and in what follows, we use the symbols H
and -H for the two hypotheses or possible outcomes (breast
cancer and no breast cancer) and D for the data obtained
(positive mammography). A Bayesian algorithm for computing
the posterior probability p(H\ D) with the values given in the
standard probability format amounts to solving the following
equation:

P(H\D) =
p(H)p(D\H)

p(H)p(D\H)+p(-H)p(D\-H)

(.01X.80)

0) + (.99)(.096)'
(O

The result is .078. We know from several studies that physi-
cians, college students (Eddy, 1982), and staff at Harvard
Medical School (Casscells, Schoenberger & Grayboys, 1978)
all have equally great difficulties with this and similar medical
disease problems. For instance, Eddy (1982) reported that 95
out of 100 physicians estimated the posterior probability
p(cancer | positive) to be between 70% and 80%, rather than
7.8%.

The experimenters who have amassed the apparently damn-
ing body of evidence that humans fail to meet the norms of
Bayesian inference have usually given their research partici-
pants information in the standard probability format (or its
variant, in which one or more of the three percentages are rela-
tive frequencies; see below). Studies on the cab problem (Bar-
Hillel, 1980;Tversky&Kahneman, 1982), the light-bulb prob-
lem (Lyon & Slovic, 1976), and various disease problems
(Casscells etal., 1978; Eddy, 1982; Hammerton, 1973) are ex-
amples. Results from these and other studies have generally
been taken as evidence that the human mind does not reason
with Bayesian algorithms. Yet this conclusion is not warranted,
as explained before. One would be unable to detect a Bayesian
algorithm within a system by feeding it information in a repre-
sentation that does not match the representation with which the
algorithm works.

In the last few decades, the standard probability format has
become a common way to communicate information ranging
from medical and statistical textbooks to psychological experi-
ments. But we should keep in mind that it is only one of many
mathematically equivalent ways of representing information; it
is, moreover, a recently invented notation. Neither the standard
probability format nor Equation 1 was used in Bayes' (1763)
original essay. Indeed, the notion of "probability" did not gain
prominence in probability theory until one century after the
mathematical theory of probability was invented (Gigerenzer,

Swijtink, Porter, Daston, Beatty, & Kriiger, 1989). Percentages
became common notations only during the 19th century
(mainly for interest and taxes), after the metric system was in-
troduced during the French Revolution. Thus, probabilities
and percentages took millennia of literacy and numeracy to
evolve; organisms did not acquire information in terms of prob-
abilities and percentages until very recently. How did organisms
acquire information before that time? We now investigate the
links between information representation and information
acquisition.

Natural Sampling of Frequencies

Evolutionary theory asserts that the design of the mind and
its environment evolve in tandem. Assume—pace Gould—that
humans have evolved cognitive algorithms that can perform
statistical inferences. These algorithms, however, would not be
tuned to probabilities or percentages as input format, as ex-
plained before. For what information format were these algo-
rithms designed? We assume that as humans evolved, the "nat-
ural" format was frequencies as actually experienced in a series
of events, rather than probabilities or percentages (Cosmides &
Tooby, in press; Gigerenzer, 1991b, 1993a). From animals to
neural networks, systems seem to learn about contingencies
through sequential encoding and updating of event frequencies
(Brunswik, 1939; Gallistel, 1990; Hume, 1739/1951; Shanks,
1991). For instance, research on foraging behavior indicates
that bumblebees, ducks, rats, and ants behave as if they were
good intuitive statisticians, highly sensitive to changes in fre-
quency distributions in their environments (Gallistel, 1990;
Real, 1991; Real & Caraco, 1986). Similarly, research on fre-
quency processing in humans indicates that humans, too, are
sensitive to frequencies of various kinds, including frequencies
of words, single letters, and letter pairs (e.g., Barsalou & Ross,
1986; Hasher &Zacks, 1979;Hintzman, 1976; Sedlmeier, Hert-
wig, & Gigerenzer, 1995).

The sequential acquisition of information by updating event
frequencies without artificially fixing the marginal frequencies
(e.g., of disease and no-disease cases) is what we refer to as nat-
ural sampling (Kleiter, 1994). Brunswik's (1955) "representa-
tive sampling" is a special case of natural sampling. In contrast,
in experimental research the marginal frequencies are typically
fixed a priori. For instance, an experimenter may want to inves-
tigate 100 people with disease and a control group of 100 people
without disease. This kind of sampling with fixed marginal fre-
quencies is not what we refer to as natural sampling.

The evolutionary argument that cognitive algorithms were
designed for frequency information, acquired through natural
sampling, has implications for the computations an organism
needs to perform when making Bayesian inferences. Here is the
question to be answered: Assume an organism acquires infor-
mation about the structure of its environment by the natural
sampling of frequencies. What computations would the organ-
ism need to perform to draw inferences the Bayesian way?

Imagine an old, experienced physician in an illiterate society.
She has no books or statistical surveys and therefore must rely
solely on her experience. Her people have been afflicted by a
previously unknown and severe disease. Fortunately, the phys-
ician has discovered a symptom that signals the disease, al-
though not with certainty. In her lifetime, she has seen 1,000
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Figure 1. Bayesian inference and information representation (natural
sampling of frequencies and standard probability format).

people, 10 of whom had the disease. Of those 10, 8 showed the
symptom; of the 990 not afflicted, 95 did. Now a new patient
appears. He has the symptom. What is the probability that he
actually has the disease?

The physician in the illiterate society does not need a pocket
calculator to estimate the Bayesian posterior. All she needs is
the number of cases that had both the symptom and the disease
(here, 8) and the number of symptom cases (here, 8 + 95).
A Bayesian algorithm for computing the posterior probability
p(H\D) from the frequency format (see Figure 1, left side) re-
quires solving the following equation:

p(H\D) =
d&h 8

d&h + d&~h 8 + 95 '
(2)

where d&h (data, and /zypothesis) is the number of cases with
symptom and disease, and d&—h is the number of cases having
the symptom but lacking the disease. The physician does not
need to keep track of the base rate of the disease. Her modern
counterpart, the medical student who struggles with single-
event probabilities presented in medical textbooks, may on the
other hand have to rely on a calculator and end up with little
understanding of the result (see Figure 1, right side).1 Hence-
forth, when we use the term frequency format, we always refer
to frequencies as denned by the natural sampling tree in Fig-
ure 1.

Comparison of Equations 1 and 2 leads to our first theoretical
result:

Result 1: Computational demands. Bayesian algorithms are
computationally simpler when information is encoded in a fre-
quency format rather than a standard probability format. By
"computationally simpler" we mean that (a) fewer operations
(multiplication, addition, or division) need to be performed in
Equation 2 than Equation 1, and (b) the operations can be per-

formed on natural numbers (absolute frequencies) rather than
fractions (such as percentages).

Equations 1 and 2 are mathematically equivalent formula-
tions of Bayes' theorem. Both produce the same result, p(H\ D)
= .078. Equation 1 is a standard version of Bayes' theorem in
today's textbooks in the social sciences, whereas Equation 2 cor-
responds to Thomas Bayes' (1763) original "Proposition 5"
(seeEarman, 1992).

Equation 2 implies three further (not independent) theoreti-
cal results concerning the estimation of a Bayesian posterior
probability p(H\ D) in frequency formats (Kleiter, 1994).

Result 2: Attentional demands. Only two kinds of information

need to be attended to in natural sampling: the absolute frequen-
cies d&h and d&-h (or, alternately, d&h and d, where d is the

sum of the two frequencies). An organism does not need to
keep track of the whole tree in Figure 1, but only of the two
pieces of information contained in the bold circles. These are
the hit and false alarm frequencies (not to be confused with hit
and false alarm rates).

Result 3: Base rates need not be attended to. Neglect of base
rates is perfectly rational in natural sampling. For instance, our
physician does not need to pay attention to the base rate of the
disease (10 out of 1,000; see Figure 1).

Result 4: Posterior distributions can be computed. Absolute
frequencies can carry more information than probabilities. In-
formation about the sample size allows inference beyond single-
point estimates, such as the computation of posterior distribu-
tions, confidence intervals for posterior probabilities, and sec-
ond-order probabilities (Kleiter, 1994; Sahlin, 1993). In this
article, however, we focus only on single-point estimation.

For the design of the experiments reported below, it is impor-
tant to note that the Bayesian algorithms (Equations 1 and 2)
work on the final tally of frequencies (see Figure 1), not on the
sequential record of updated frequencies. Thus, the same four
results still hold even if nothing but the final tally is presented
to the participants in an experiment.

Information Format and Menu

We propose to distinguish two aspects of information repre-
sentation, information format and information menu. The stan-
dard probability format has a probability format, whereas a fre-
quency format is obtained by natural sampling. However, as the
second result (attentional demands) shows, there is another
difference. The standard probability format displays three
pieces of information, whereas two are sufficient in natural
sampling. We use the term information menu to refer to the
manner in which information is segmented into pieces within
any format. The standard probability format displays the three
piecesp(H), p(D\H), and p(D\-H) (often called base rate,
hit rate, and false alarm rate, respectively). We refer to this as
the standard menu. Natural sampling yields a more parsimoni-
ous menu with only two pieces of information, d&h and d&-h

(or alternatively, d&h and d). We call this the short menu.

1 This clinical example illustrates that the standard probability for-
mat is a convention rather than a necessity. Clinical studies often collect
data that have the structure of frequency trees as in Figure 1. Such in-
formation can always be represented in frequencies as well as
probabilities.
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Table 1
Information Formats and Menus for the Mammography Problem

Format and menu Description of problem

Standard probability format

Standard frequency format

Short probability format

Short frequency format

The probability of breast cancer is 1 % for women at age forty who participate in routine screening.
If a woman has breast cancer, the probability is 80% that she will get a positive mammography.
If a woman does not have breast cancer, the probability is 9.6% that she will also get a positive mammography.
A woman in this age group had a positive mammography in a routine screening. What is the probability that

she actually has breast cancer? %
10 out of every 1,000 women at age forty who participate in routine screening have breast cancer.
8 of every 10 women with breast cancer will get a positive mammography.
95 out of every 990 women without breast cancer will also get a positive mammography.
Here is a new representative sample of women at age forty who got a positive mammography in routine

screening. How many of these women do you expect to actually have breast cancer? out of
The probability that a woman at age forty will get a positive mammography in routine screening is 10.3%.
The probability of breast cancer and a positive mammography is 0.8% for a woman at age forty who

participates in routine screening.
A woman in this age group had a positive mammography in a routine screening. What is the probability that

she actually has breast cancer? %
103 out of every 1,000 women at age forty get a positive mammography in routine screening.
8 out of every 1,000 women at age forty who participate in routine screening have breast cancer and a positive

mammography.
Here is a new representative sample of women at age forty who got a positive mammography in routine

screening. How many of these women do you expect to actually have breast cancer? out of

So far we have introduced the probability format with a stan-
dard menu and the frequency format with a short menu. How-
ever, information formats and menus can be completely
crossed. For instance, if we replace the probabilities in the stan-
dard probability format with frequencies, we get a standard
menu with a frequency format, or the standard frequency for-

mat. Table 1 uses the mammography problem to illustrate the
four versions that result from crossing the two menus with the
two formats. All four displays are mathematically equivalent in
the sense that they lead to the same Bayesian posterior proba-
bility. In general, within the same format information can be
divided into various menus; within the same menu, it can be
represented in a range of formats.

To transform the standard probability format into the stan-
dard frequency format, we simply replaced 1% with "10 out of
1,000," "80%" with "8 out of 10," and so on (following the tree
in Figure 1) and phrased the task in terms of a frequency esti-
mate. All else went unchanged. Note that whether the frequency
format actually carries information about the sample size (e.g.,
that there were exactly 1,000 women) or not (as in Table 1,
where it is said "in every 1,000 women") makes no difference
for Results 1 to 3 because these relate to single-point estimates
only (unlike Result 4).

What are the Bayesian algorithms needed to draw inferences
from the two new format-menu combinations? The complete
crossing of formats and menus leads to two important results.
A Bayesian algorithm for the short probability format, that is,
the probability format with a short menu (as in Table 1),
amounts to solving the following equation:

p(H\D} =
p(D&H)

P(D) '
(3)

This version of Bayes' theorem is equivalent to Equation 1.
The algorithm for computingp(H\D) from Equation 3, how-
ever, is computationally simpler than the algorithm for comput-
ing p( H | D) from Equation 1.

What Bayesian computations are needed for the standard fre-
quency format? Equation 2 specifies the computations for both
the standard and short menus in frequency formats. The same
algorithm is sufficient for both menus. In the standard fre-
quency format of the mammography problem, for instance, the
expected number of actual breast cancer cases among positive
tests is computed as 8/(8 + 95). Thus, we have the follow-
ing two important theoretical results concerning formats
(probability vs. frequency) and menus (standard vs. short):

Result 5: With a probability format, the Bayesian computa-

tions are simpler in the short menu than in the standard menu.

Result 6: With a frequency format, the Bayesian computations

are the same for the two menus.

If the two pieces of information in the short menu are d&h

and d, as in Table 1, rather than d&h and d&-h, then the Bayes-
ian computations are even simpler because the sum in the de-
nominator is already computed.

Relative Frequencies

Several studies of Bayesian inference have used standard
probability formats in which one, two, or all three pieces of
information were presented as relative frequencies rather than
as single-event probabilities—although the task still was to esti-
mate a single-event probability (e.g., Tversky & Kahneman's,
1982, cab problem). For instance, in the following version of
the mammography problem, all information is represented in
relative frequencies (in %).

Relative frequency version (standard menu)
1 % of women at age forty who participate in routine screening have
breast cancer. 80% of women with breast cancer will get positive
mammographies. 9.6% of women without breast cancer will also
get positive mammographies. A woman in this age group had a
positive mammography in a routine screening. What is the proba-
bility that she actually has breast cancer? %

Is the algorithm needed for relative frequencies computation-



HOW TO IMPROVE BAYESIAN REASONING 689

ally equivalent to the algorithm for frequencies, or to that for
probabilities? The relative frequency format does not display
the absolute frequencies needed for Equation 2. Rather, the
numbers are the same as in the probability format, making the
Bayesian computation the same as in Equation 1. This yields
the following result:

Result 7: Algorithms for relative frequency versions are com-

putationally equivalent to those for the standard probability

format.
We tested several implications of Results 1 through 7 (except

Result 4) in the studies reported below.

The Format of the Single-Point Estimate

Whether estimates relate to single events or frequencies has
been a central issue within probability theory and statistics
since the decline of the classical interpretation of probability in
the 1830s and 1840s. The question has polarized subjectivists
and frequentists, additionally subdividing frequentists into
moderate frequentists, such as R. A. Fisher (1955), and strong
frequentists, such as J. Neyman (Gigerenzer et al., 1989). A
single-point estimate can be interpreted as a probability or a
frequency. For instance, clinical inference can be about the
probability that a particular person has cancer or about the fre-
quency of cancer in a new sample of people. Foraging (Simon,
1956; Stephens & Krebs, 1986) provides an excellent example
of a single-point estimate reasonably being interpreted as a fre-
quency. The foraging organism is interested in making infer-
ences that lead to satisfying results in the long run. Will it more
often find food if it follows Cue X or Cue Y1 Here the single-
point estimate can be interpreted as an expected frequency for
a new sample. In the experimental research of the past two de-
cades, participants were almost always required to estimate a
single-event probability. But this need not be. In the experi-
ments reported below, we asked people both for single-event
probability and frequency estimates.

To summarize, mathematically equivalent information need
not be computationally and psychologically equivalent. We
have shown that Bayesian algorithms can depend on informa-
tion format and menu, and we derived several specific results
for when algorithms are computationally equivalent and when
they are not.

Cognitive Algorithms for Bayesian Inference

How might the mind draw inferences that follow Bayes' the-
orem? Surprisingly, this question seems rarely to have been
posed. Psychological explanations typically were directed at "ir-
rational" deviations between human inference and the laws of
probability; the "rational" seems not to have demanded an ex-
planation in terms of cognitive processes. The cognitive ac-
count of probabilistic reasoning by Piaget and Inhelder (1951 /
1975), as one example, stops at the precise moment the adoles-
cent turns "rational," that is, reaches the level of formal
operations.

We propose three classes of cognitive algorithm for Bayesian
inference: first, the algorithms corresponding to Equations 1
through 3; second, pictorial or graphical analogs of Bayes' theo-
rem, as anticipated by Bayes' (1763) billiard table; and third,

shortcuts that simplify the Bayesian computations in Equations
1 through 3.

Pictorial Analogs

We illustrate pictorial analogs and shortcut algorithms by
drawing on actual performance from the studies reported be-
low, in which none of the participants was familiar with Bayes'
theorem. The German measles problem (in standard probabil-
ity format and with the numerical information given in Study
2) serves as our example.

German measles during early pregnancy can cause severe prenatal
damage in the child. Therefore, pregnant women are routinely tested
for German measles infection. In one such test, a pregnant woman
is found to be infected. In order best to advise this woman what to
do, the physician first wants to determine the probability of severe
prenatal damage in the child if a mother has German measles during
early pregnancy. The physician has the following information: The
probability of severe prenatal damage in a child is 0.5%. The proba-
bility that a mother had German measles during early pregnancy if
her child has severe prenatal damage is 40%. The probability that a
mother had German measles during early pregnancy if her child
does not have severe prenatal damage is 0.01%. What is the proba-
bility of severe prenatal damage in the child if the mother has Ger-
man measles during early pregnancy? %

The "beam analysis" (see Figure 2) is a pictorial analog of
Bayes' theorem developed by one of our research participants.
This individual represented the class of all possible outcomes
(child has severe prenatal damage and child does not have se-
vere prenatal damage) by a beam. He drew inferences (here,
about the probability that the child has severe prenatal damage)
by cutting off two pieces from each end of the beam and com-
paring their size. His algorithm was as follows:

Step 1: Base rate cut. Cut offa piece the size of the base rate from
the right end of the beam.
Step 2: Hit rate cut. From the right part of the beam (base rate
piece), cut offa proportion p(D\H).

Step 3: False alarm cut. From the left part of the beam, cut offa
proportion p(D\—H).

Step 4: Comparison. The ratio of the right piece to both pieces is
the posterior probability.

This algorithm amounts to Bayes' theorem in the form of Equa-
tion 1.

Shortcut Algorithms: Probability Format

We have observed in our experiments three elementary short-
cuts and several combinations thereof. For instance, by ignoring
small "slices," one can simplify the computation without much
loss of accuracy, which is easily compensated for by the fact that
less computation means a reduced chance of computational er-
rors. We illustrate these shortcuts using the beam analysis (see
Figure 2). However, these shortcuts are not restricted to picto-
rial analogs, and they were used by many of our participants.

Rare-Event Shortcut

Rare events—that is, outcomes with small base rates, such as
severe prenatal damage—enable simplification of the Bayesian
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Step 2: Hit rate cut

prenatal,
damage

Rare event
shortcut
If the outcome is
rare, then just cut
off p(DI-H).

no prenatal damage

p(HID) =

Prenatal
damage
&
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40% of
prenatal
damage

Step 4: Comparison Step

All cases
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Big hit rate shortcut
If p(DIH) is very large,
then skip Step 2.

Comparison shortcut
If the left piece (p(D&-H)) is very small
compared to the right piece (p(D&H)), p(HID) = 1 -
divide the smaller by the larger and take
the complement.

Figure 2. A Bayesian algorithm invented by one of our research participants. The "beam cut" is illustrated
for the German measles problem in the standard probability format. H stands for "severe prenatal damage
in the child," and D stands for "mother had German measles in early pregnancy." The information isp(H)

= 0.5%,p(D\H) = 40%, andp(D\-H) = 0.01%. The task is to infer p(H\D).

inference with little reduction in accuracy. If an event is rare,
that is, ifp(H) is very small, and p(-H) is therefore close to
1.0, thenp(D \ -H)p(-H) can be approximated byp(D\ -H).
That is, instead of cutting the proportion p(D\-H) of the left
part of the beam (Step 3), it is sufficient to cut a piece of abso-
lute size p(D] -H). The rare-event shortcut (see Figure 2) is as
follows:

IF the event is rare,

THEN simplify Step 3: Cut a piece of absolute size p(D\-H).

This shortcut corresponds to the approximation

p(H\D)~p(H)p(D\H)/[p(H)p(D\H)+p(D\-H)].

The shortcut works well for the German measles problem,
where the base rate of severe prenatal damage is very small,
p(H) = .005. The shortcut estimates p(//1Z>) as .9524, whereas
Bayes' theorem gives .9526. It also works with the mammogra-
phy problem, where it generates an estimate of .077, compared
with .078 from Bayes' theorem.

Big Hit-Rate Shortcut

Large values ofp(D \H)(such as high diagnosticities in med-
ical tests; that is, excellent hit rates) allow one to skip Step 2
with little loss of accuracy. If p(D\H) is very large, then the

p(H) piece is practically the same size as the piece one obtains
from cutting all but a tiny sliver from the p(H) piece. The big
hit-rate shortcut is then as follows:

IF p(D \ H) is very large,

THEN skip Step 2.

This shortcut corresponds to the approximation

The big hit-rate shortcut would not work as well as the rare-
event shortcut in the German measles problem because
p(D | H ) is only .40. Nevertheless, the shortcut estimate is only
a few percentage points removed from that obtained with Bayes'
theorem ( .980 instead of .953 ) . The big hit-rate shortcut works
well, to offer one instance, in medical diagnosis tasks where the
hit rate of a test is high (e.g., around .99 as in HIV tests) .

Comparison Shortcut

If one of the two pieces obtained in Steps 2 and 3 is small
relative to the other, then the comparison in Step 4 can be sim-
plified with little loss of accuracy. For example, German mea-
sles in early pregnancy and severe prenatal damage in the child
occur more frequently than do German measles and no severe
damage. More generally, ifD&H cases are much more frequent
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than D&- H cases (as in the German measles problem), or vice
versa (as in the mammography problem), then only two pieces
(rather than three) need to be related in Step 4. The comparison
shortcuts for these two cases are as follows:

IFD&—H occurs much more often than D&H,

THEN simplify Step 4: Take the ratio of D&H( right piece)

to D&-H (left piece) as the posterior probability.

This shortcut corresponds to the approximation

p(H\D)*,p(H)p(D\H)/p(-H)p(D\-H).

Note that the right side of this approximation is equivalent to
the posterior odds ratio p(H\ D)/p(-H\ D). Thus, the com-
parison shortcut estimates the posterior probability by the pos-
terior odds ratio.

IF D&H occurs much more often than D&-H,

THEN simplify Step 4: Take the ratio ofD&-H (left piece)

to D&H (right piece) as the complement

of the posterior probability.

This shortcut corresponds to the approximation

p(ff|D)« 1 -p(-H)p(D\-H)/p(H)p(D\H).

The comparison shortcut estimatesp(H\ D) as .950 in the Ger-
man measles problem, whereas Bayes' theorem gives .953. The
comparison shortcut is simpler when the D&-H cases are the
more frequent ones, which is typical for medical diagnosis,
where the number of false alarms is much larger than the num-
ber of hits, as in mammography and HIV tests.

Multiple Shortcuts

Two or three shortcuts can be combined, which results in a
large computational simplification. What we call the quick-and-
clean shortcut combines all three. Its conditions include a rare
event, a large hit rate, and many D&—H cases compared with
D&H cases (or vice versa). The quick-and-clean shortcut is as
follows:

IF an event H is rare, p(D/H) high, andD&-H

cases much more frequent than D&H cases,

THEN simply divide the base rate by the false alarm rate.

This shortcut corresponds to the approximation

p(H\D)~p(H)/p(D\-H).

The conditions of the quick-and-clean shortcut seem to be not
infrequently satisfied. Consider routine HIV testing: According
to present law, the U.S. immigration office makes an HIV test a
condition sine qua non for obtaining a green card. Mr. Quick
has applied for a green card and wonders what a positive test
result indicates. The information available is a base rate of .002,
a hit rate of .99, and a false alarm rate of .02; all three conditions

for the quick-and-clean shortcut are thus satisfied. Mr. Quick
computes .002 / .02 = . 10 as an estimate of the posterior proba-
bility of actually being infected with the HIV virus if he tests
positive. Bayes' theorem results in .09. The shortcut is therefore
an excellent approximation. Alternately, if D&H cases are more
frequent, then the quick-and-clean shortcut is to divide the false
alarm rate by the base rate and to use this as an estimate for 1
- p(H\D). In the mammography and German measles prob-
lems, where the conditions are only partially satisfied, the quick-
and-clean shortcut still leads to surprisingly good approxima-
tions. The posterior probability of breast cancer is estimated at
.01/.096, which is about .10 (compared with .078), and the
posterior probability of severe prenatal damage is estimated as
.98 (compared with .953).

Shortcuts: Frequency Format

Does the standard frequency format invite the same short-
cuts? Consider the inference about breast cancer from a positive
mammography, as illustrated in Figure 1. Would the rare-event
shortcut facilitate the Bayesian computations? In the probabil-
ity format, the rare-event shortcut uses p(D \ -H) to approxi-
mate p(—H)p( D | —H); in the frequency format, the latter cor-
responds to the absolute frequency 95 (d&—h) and no approx-
imation is needed. Thus, a rare-event shortcut is of no use and
would not simplify the Bayesian computation in frequency for-
mats. The same can be shown for the big hit-rate shortcut for
the same reason. The comparison shortcut, however, can be ap-
plied in the frequency format:

IF d&—h occurs much more often than d&h,

THEN compute d&h/d&~h.

The condition and the rationale are the same as in the probabil-
ity format.

To summarize, we proposed three classes of cognitive algo-
rithms underlying Bayesian inference: (a) algorithms that sat-
isfy Equations 1 through 3; (b) pictorial analogs that work with
operations such as "cutting" instead of multiplying (Figure 2);
and (c) three shortcuts that approximate Bayesian inference
well when certain conditions hold.

Predictions
We now derive several predictions from the theoretical results

obtained. The predictions specify conditions that do and do not
make people reason the Bayesian way. The predictions should
hold independently of whether the cognitive algorithms follow
Equations 1 through 3, whether they are pictorial analogs of
Bayes' theorem, or whether they include shortcuts.

Prediction 1: Frequency formats elicit a substantially higher
proportion of Bayesian algorithms than probability formats.
This prediction is derived from Result 1, which states that the
Bayesian algorithm is computationally simpler in frequency
formats.2

2 At the point when we introduced Result 1, we had dealt solely with
the standard probability format and the short frequency format. How-
ever, Prediction 1 also holds when we compare formats across both
menus. This is the case because (a) the short menu is computationally
simpler in the frequency than in the probability format, because the
frequency format involves calculations with natural numbers and the
probability format with fractions, and (b) with a frequency format, the
Bayesian computations are the same for the two menus (Result 6).
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Prediction 2: Probability formats elicit a larger proportion of

Bayesian algorithms for the short menu than for the standard

menu. This prediction is deduced from Result 5, which states
that with a probability format, the Bayesian computations are
simpler in the short menu than in the standard menu.

Prediction 3: Frequency formats elicit the same proportion of

Bayesian algorithms for the two menus. This prediction is de-
rived from Result 6, which states that with a frequency format,
the Bayesian computations are the same for the two menus.

Prediction 4: Relative frequency formats elicit the same

(small) proportion of Bayesian algorithms as probability for-

mats. This prediction is derived from Result 7, which states
that the Bayesian algorithms are computationally equivalent in
both formats.

Operational Criteria for Identifying
Cognitive Algorithms

The data we obtained for each of several thousand problem
solutions were composed of a participant's (a) probability or
frequency estimate and (b) on-line protocol ("write aloud"
protocol) of his or her reasoning. Data type (a) allowed for an
outcome analysis, as used exclusively in most earlier studies on
Bayesian inference, whereas data type (b) allowed additionally
for a process analysis.

Double Check: Outcome and Process

We classified an inferential process as a Bayesian algorithm
only if (a) the estimated probability or frequency was exactly
the same as the value calculated from applying Bayes' theorem
to the information given (outcome criterion), and (b) the on-
line protocol specified that one of the Bayesian computations
defined by Equations 1 through 3 or one (or several) of the
Bayesian shortcut algorithms was used, either by means of cal-
culation or pictorial representation (process criterion). We ap-
plied the same strict criteria to identify non-Bayesian cognitive
algorithms.

Outcome: Strict Rounding Criterion

By the phrase "exactly the same" in the outcome criterion,
we mean the exact probability or frequency, with exceptions
made for rounding up or down to the next full percentage point
(e.g., in the German measles problem, where rounding the
probability of 95.3% down or up to a full percentage point re-
sults in 95% or 96%). If, for example, the on-line protocol
showed that a participant in the German measles problem had
used the rare-event shortcut and the answer was 95% or 96% (by
rounding), this inferential process was classified as a Bayesian
algorithm. Estimates below or above were not classified as
Bayesian algorithms: If, for example, another participant in the
same problem used the big hit-rate shortcut (where the condi-
tion for this shortcut is not optimally satisfied) and accordingly
estimated 98%, this was not classified as a Bayesian algorithm.
Cases of the latter type ended up in the category of "less fre-
quent algorithms." This example illustrates the strictness of the
joint criteria. The strict rounding criterion was applied to the
frequency format in the same way as to the probability format.

When a participant answered with a fraction—such as that

resulting from Equation 3—without performing the division,
this was treated as if she or he had performed the division. We
did not want to evaluate basic arithmetic skills. Similarly, if a
participant arrived at a Bayesian equation but made a calcula-
tion error in the division, we ignored the calculation error.

Process: "Write Aloud" Protocols

Statistical reasoning often involves pictorial representations
as well as computations. Neither are easily expressed verbally,
as in "think aloud" methods. Pictorial representations and
computations consequently are usually expressed by drawing
and writing down equations and calculations. We designed a
"write aloud" technique for tracking the reasoning process
without asking the participant to talk aloud either during or af-
ter the task.

The "write aloud" method consisted of the following steps.
First, participants were instructed to record their reasoning un-
less merely guessing the answer. We explained that a protocol
may contain a variety of elements, such as diagrams, pictures,
calculations, or whatever other tools one may use to find a solu-
tion. Each problem was on a separate page, which thus allowed
ample space for notes, drawings, and calculations. Second, after
a participant had completed a problem, he or she was asked to
indicate whether the answer was based on a calculation or on a
guess. Third, when a "write aloud" protocol was unreadable or
the process that generated the probability estimate was unclear,
and the participant had indicated that the given result was a
calculation, then he or she was interviewed about the particular
problem after completing all tasks. This happened only a few
times. If a participant could not immediately identify what his
or her notes meant, we did not inquire further.

The "write aloud" method avoids two problems associated
with retrospective verbal reports: that memory of the cognitive
algorithms used may have faded by the time of a retrospective
report (Ericsson & Simon, 1984) and that participants may
have reported how they believe they ought to have thought
rather than how they actually thought (Nisbett & Wilson,
1977).

We used the twin criteria of outcome and process to cross-
check outcome by process and vice versa. The outcome crite-
rion prevents a shortcut algorithm from being classified as a
Bayesian algorithm when the precondition for the shortcut is
not optimally satisfied. The process criterion protects against
the opposite error, that of inferring from a probability judgment
that a person actually used a Bayesian algorithm when he or she
did not.

We designed two studies to identify the cognitive algorithms
and test the predictions. Study 1 was designed to test Predictions
1,2, and 3.

Study 1: Information Formats and Menus

Method

Participants

Sixty students, 21 men and 39 women from 10 disciplines
(predominantly psychology) from the University of Salzburg, Austria,
were paid for their participation. The median age was 21 years. None of
the participants was familiar with Bayes' theorem.
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Table 2
Information Given and Bayesian Solutions for the 15 Problems in Study 1

Task: Estimate p(H \ D)

H

Breast cancer
Prenatal damage in child
Blue cab
AIDS
Heroin addict
Pregnant
Car accident
Bad posture in child
Accident on way to school
Commiting suicide
Red ball
Choosing course in economics
Active feminist
Pimp
Admission to school

D

Mammography positive
German measles in mother
Eyewitness says "blue"
HIV test positive
Fresh needle prick
Pregnancy test positive
Driver drunk
Heavy books carried daily
Child lives in urban area
Professor
Marked with star
Career oriented
Bank teller
Wearing a Rolex
Particular placement test result

10
21
15

100
10
20

100
50
30

240
400
300

5,000
50

360

Information (standard frequency format)*

H

1,000
10,000

100
1,000,000

100,000
1,000

10,000
1,000
1,000

1,000,000
500

1,000
100,000

1,000,000
1,000

D\H

8
10
12

100
10
19
55
20
27
36

300
210
20
40

270

10
21
15

100
10
20

100
50
30

240
400
300

5,000
50

360

D\H

95
50
17

1,000
190

5
500
190
388

120,000
25

350
2,000

500
128

990
10,000

85
1,000,000

100,000
980

9,900
950
970

1,000,000
100
700

95,000
1,000,000

640

Bayes"

p(H\D)

7.77
16.70
41.38

9.09
5.00

79.17
9.91
9.52
6.51
0.03

92.31
37.50
0.99
7.41

67.84

" The representation of the information is shown only for the standard frequency format (frequency format and standard menu). The other repre-
sentations (see Table 1) can be derived from this. The two numbers for each piece of information are connected by an "out of" relation; for example,
the information concerning H in the first problem should be read as " 10 out of 1,000." b Probabilities are expressed as percentages.

Participants were studied individually or in small groups of 2 or 3 (in
two cases, 5). We informed participants that they would need approxi-
mately 1 hr for each session but that they could have more time if nec-
essary. On the average, students worked 7 3 min in the first session (range
= 25-180 min) and 53 min in the second (range = 30-120 min).

Procedure

We used two formats, probability and frequency, and two menus,
standard and short. The two formats were crossed with the two menus,
so four versions were constructed for each problem. There were 15
problems, including the mammography problem (Eddy, 1982; see Ta-
ble 1), the cab problem (Tversky & Kahneman, 1982), and a short
version of Ajzen's (1977) economics problem. The four versions of each
problem were constructed in the same way as explained before with
the mammography problem (see Table 1 ).3 In the frequency format,
participants were always asked to estimate the frequency of "h out of
d"; in the probability format, they were always asked to estimate the
probability p(H\D). Table 2 shows for each of the 15 problems the
information given in the standard frequency format; the information
specified in the other three versions can be derived from that.

Participants were randomly assigned to two groups, with the mem-
bers of both answering each of the 15 problems in two of the four ver-
sions. One group received the standard probability format and the short
frequency format; the other, the standard frequency format and the
short probability format. Each participant thus worked on 30 tasks.
There were two sessions, 1 week apart, with 15 problems each. Formats
and menus were distributed equally over the sessions. The two versions
of one problem were always given in different sessions. The order of the
problems was determined randomly, and two different random orders
were used within each group.

Results

Bayesian Algorithms

Prediction 1: Frequency formats elicit a substantially higher

proportion of Bayesian algorithms than probability formats.

Do frequency formats foster Bayesian reasoning? Yes. Fre-

quency formats elicited a substantially higher proportion of
Bayesian algorithms than probability formats: 46% in the stan-
dard menu and 50% in the short menu. Probability formats, in
contrast, elicited 16% and 28%, for the standard menu and the
short menu, respectively. These proportions of Bayesian algo-
rithms were obtained by the strict joint criteria of process and
outcome and held fairly stable across 15 different inference
problems. Note that 50% Bayesian algorithms means 50% of all
answers, and not just of those answers where a cognitive algo-
rithm could be identified. The percentage of identifiable cogni-
tive algorithms across all formats and menus was 84%.

Figure 3 shows the proportions of Bayesian algorithms for
each of the 15 problems. The individual problems mirror the
general result. For each problem, the standard probability for-
mat elicited the smallest proportion of Bayesian algorithms.
Across formats and menus, in every problem Bayesian algo-
rithms were the most frequent.

The comparison shortcut was used quite aptly in the standard
frequency format, that is, only when the precondition of the
algorithm was satisfied to a high degree. It was most often used
in the suicide problem, in which the ratio between D&.H cases
and D&.-Hcases was smallest (Table 2), that is, in which the
precondition was best satisfied. Here, 9 out of 30 participants
used the comparison shortcut (and 5 participants used the
Bayesian algorithm without a shortcut). In all 20 instances
where the shortcut was used, 17 satisfied the strict outcome cri-
terion, and the remaining 3 were accurate to within 4 percent-
age points.

Because of the strict rounding criterion, the numerical esti-

3 If the Y number in "X out of Y" was large and odd, such as 9,950,
we rounded the number to a close, more simple number, such as 10,000.
The German measles problem is an example. This made practically
no difference for the Bayesian calculation and was meant to prevent
participants from being puzzled by odd Y numbers.
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Figure 3. Proportion of Bayesian algorithms in the 15 problems of
Study 1. "Standard probability" stands for probability format with
standard menu, "short frequency" stands for frequency format with
short menu, and so on.

mates of the participants using a Bayesian algorithm can be di-
rectly read from Table 2. For instance, in the short frequency
version of the mammography problem, 43.3% of participants
(see Figure 3) came up with a frequency estimate of 8 out of 103
(or another value equivalent to 7.8%, or within 7% and 8%).

The empirical result in Figure 3 is consistent with the theo-
retical result that frequency formats can be handled by Bayesian
algorithms that are computationally simpler than those re-
quired by probability formats.

Prediction 2: Probability formats elicit a larger proportion of
Bayesian algorithms for the short menu than for the standard
menu. The percentages of Bayesian algorithms in probability
formats were 16% and 28% for the standard menu and the short
menu, respectively. Prediction 2 holds for each of the 15 prob-
lems (Figure 3).

Prediction 3: The proportion of Bayesian algorithms elicited
by the frequency format is independent of the menu. The effect
of the menu largely, but not completely, disappeared in the fre-
quency format. The short menu elicited 3.7 percentage points
more Bayesian algorithms than the standard menu. The resid-
ual superiority of the short menu could have the following
cause: Result 2 (attentional demands) states that in natural
sampling it is sufficient for an organism to monitor either the
frequencies d&h and d or d&h and d&-h. We have chosen the
former pair for the short menus in our studies and thus reduced
the Bayesian computation by one step, that of adding up d&h
and d&—h to d, which was part of the Bayesian computation in
the standard but not the short menu. This additional computa-
tional step is consistent with the small difference in the propor-

tions of Bayesian algorithms found between the two menus in
the frequency formats.

How does the impact of format on Bayesian reasoning com-
pare with that of menu? The effect of the format was about three
times larger than that of the menu (29.9 and 21.6 percentage
points difference compared with 12.1 and 3.7). Equally strik-
ing, the largest percentage of Bayesian algorithms in the two
probability menus (28%) was considerably smaller than the
smallest in the two frequency menus (46%).

Non-Bayesian Algorithms

We found three major non-Bayesian cognitive algorithms
(see Table 3).

Joint occurrence. The most frequent non-Bayesian algorithm
was a computation of the joint occurrence of D and H. Depending
on the menu, this involved calculatingp(H)p(D\H), or simply
"picking" p( H&D) (or the corresponding values for the frequency
format). Joint occurrence does not neglect base rates; it neglects
the false alarm rate in the standard menu and p(D) in the short
menu. Joint occurrence always underestimates the Bayesian pos-
terior unless p(D) = 1. From participants' "write aloud" proto-
cols, we learned about a variant, which we call adjusted joint oc-
currence, in which the participant starts with joint occurrence and
adjusts it slightly (5 or fewer percentage points).

Fisherian. Not all statisticians are Bayesians. R. A. Fisher,
who invented the analysis of variance and promoted signifi-
cance testing, certainly was not. In Fisher's (1955) theory of
significance testing, an inference from data D to a null hypoth-
esis H0 is based solely on p(D \ H0), which is known as the "ex-
act level of significance." The exact level of significance ignores
base rates and false alarm rates. With some reluctance, we la-
beled the second most frequent non-Bayesian algorithm—pick-
ing p(D\H) and ignoring everything else—"Fisherian." Our
hesitation lay in the fact that it is one thing to ignore everything
else besides p(D\H), as Fisher's significance testing method
does, and quite another thing to confusep( D \ H) with p(H \ D).
For instance, a p value of 1% is often erroneously believed to
mean, by both researchers (Oakes, 1986) and some statistical
textbook authors (Gigerenzer, 1993b), that the probability of
the null hypothesis being true is 1%. Thus the term Fisherian
refers to this widespread misinterpretation rather than to Fish-
er's actual ideas (we hope that Sir Ronald would forgive us).

There exist several related accounts of the strategy for infer-
ring p(H\D) solely on the basis of p(D\H). Included in these
are the tendency to infer "cue validity" from "category valid-
ity" (Medin, Wattenmaker, & Michalski, 1987) and the related
thesis that people have spontaneous access to sample spaces that
correspond to categories (e.g., cancer) rather than to features
associated with categories (Gavanski & Hui, 1992). Unlike the
Bayesian algorithms and joint occurrence, the Fisherian algo-
rithm is menu specific: It cannot be elicited from the short
menu. We observed from participants' "write aloud" protocols
the use of a variant, which we call adjusted Fisherian, in which
the participant started with p(D\H) and then adjusted this
value slightly (5 or fewer percentage points) in the direction of
some other information.

Likelihood subtraction. Jerzy Neyman and Egon S. Pearson
challenged Fisher's null-hypothesis testing (Gigerenzer, 1993b).
They argued that hypothesis testing is a decision between (at
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Table 3
Cognitive Algorithms in Study 1

Information format and menu

Probability Frequency
Cognitive
algorithm

Bayesian
Joint occurrence
Adjusted joint

occurrence
Fisherian
Adjusted Fisherian
Multiply all
Likelihood

subtraction
Base rate only
Less frequent

algorithms
(<1% of total)

Not identified

Total

Formal equivalent

P(H\D)
p(H&D)

p(H&D)±.05
p(D\H)
p(D\H)±.05
p(D)p(H&D)

p(D\H)-p(D\-H)
P(H)

Standard

69
39

67
32

30
6

71
119

433

Short

126
97

64

79

32
52

450

Standard

204
20

36
19

4
13

60
89

445

Short

221
97

55

12

29
32

446

Total

620
253

119
103
51
91

34
19

192
292

1,774"

% of total

34,9
14.3

6.7
5.8
2.9
5.1

1.9
1.1

10.8
16.5

100.0

Note. Numbers are absolute frequencies.
" The sum of total answers in Table 3 is 1,774 rather than 1,800 (60 participants times 30 tasks) because of
some participants' refusals to answer and a few missing data.

least) two hypotheses that is based on a comparison of the prob-
ability of the observed data under both, which they construed
as the likelihood r a t i o p ( D \ H ) / p ( D \ -H). We observed a sim-
plistic version of the Neyman-Pearson method, the likelihood
subtraction algorithm, which computesp(D\H) - p(D\-H).
As in Neyman-Pearson hypotheses testing, this algorithm
makes no use of prior probabilities and thus neglects base rate
information. The cognitive algorithm is menu specific (it can
only be elicited by the standard menu) and occurred predomi-
nantly in the probability format. On Robert Nozick's account,
likelihood subtraction is said to be a measure of evidential sup-
port (see Schum, 1994), and McKenzie (1994) has simulated
the performance of this and other non-Bayesian algorithms.

Others. There were cases of multiply all in the short menu
(the logic of which escaped us) and a few cases of base rate only
in the standard menu (a proportion similar to that reported in
Gigerenzer, Hell, & Blank, 1988). We identified a total of 10.8%
other algorithms; these are not described here because each was
used in fewer than 1 % of the solutions.

Summary of Study 1

The standard probability format—the information represen-
tation used in most earlier studies—elicited 16% Bayesian algo-
rithms. When information was presented in a frequency for-
mat, this proportion jumped to 46% in the standard menu and
50% in the short menu. The results of Study 1 are consistent
with Predictions 1, 2, and 3. Frequency formats, in contrast to
probability formats, "invite" Bayesian algorithms, a result that
is consistent with the computational simplicity of Bayesian al-
gorithms entailed by frequencies. Two of the three major classes
of non-Bayesian algorithms our participants used—Fisherian

and likelihood subtraction—mimic statistical inferential algo-
rithms used and discussed in the literature.

Study 2: Cognitive Algorithms for Probability Formats

In this study we concentrated on probability and relative fre-
quency rather than on frequency formats. Thus, in this study,
we explored cognitive algorithms in the two formats used by
almost all previous studies on base rate neglect. Our goal was to
test Prediction 4 and to provide another test of Prediction 2.

We used two formats, probability and relative frequency, and
three menus: standard, short, and hybrid. The hybrid menu dis-
played p(H),p(D\H), and ;?(£>), or the respective relative fre-
quencies. The first two pieces come from the standard menu,
the third from the short menu. With the probability format and
the hybrid menu, a Bayesian algorithm amounts to solving the
following equation:

(4)

The two formats and the three menus were mathematically in-
terchangeable and always entailed the same posterior probability.
However, the Bayesian algorithm for the short menu is computa-
tionally simpler than that for the standard menu, and the hybrid
menu is in between; therefore the proportion of Bayesian algo-
rithms should increase from the standard to the hybrid to the short
menu (extended Prediction 2). In contrast, the Bayesian algo-
rithms for the probability and relative frequency formats are com-
putationally equivalent; therefore there should be no difference be-
tween these two formats (Prediction 4).
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Method

Participants

Fifteen students from the fields of biology, linguistics, English studies,
German studies, philosophy, political science, and management at the
University of Konstanz, Germany, served as participants. Eight were
men, and 7 were women; the median age was 22 years. They were paid
for their participation and studied in one group. None was familiar with
Bayes' theorem.

Procedure

We used 24 problems, half from Study 1 and the other half new.4 For
each of the 24 problems, the information was presented in three menus,
which resulted in a total of 72 tasks. Each participant performed all 72
tasks. We randomly assigned half of the problems to the probability
format and half to the relative frequency format; each participant thus
answered half of the problems in each format. All probabilities and rel-
ative frequencies were stated in percentages. The questions were always
posed in terms of single-event probabilities.

Six 1-hr sessions were scheduled, spaced equally over a 3-week in-
terval. In each session, 12 tasks were performed. Participants received
the 72 tasks in different orders, which were determined as follows: (a)
Tasks that differed only in menu were never given in the same session,
and (b) the three menus were equally frequent in every session. Within
these two constraints, the 72 tasks were randomly assigned to six groups
of 12 tasks each, with the 12 tasks within each group randomly ordered.
These six groups were randomly assigned to the six sessions for each
participant. Finally, to control for possible order effects within the three
(two) pieces of information (Kroznick, Li, & Lehman, 1990), we de-
termined the order randomly for each participant.

The procedure was the same as in Study 1, except that we had partic-
ipants do an even larger number of inference problems and that we did
not use the "write aloud" instruction. However, participants could (and
did) spontaneously "write aloud." After a student had completed all 72
tasks, he or she received a new booklet. This contained copies of a sam-
ple of 6 tasks the student had worked on, showing the student's proba-
bility estimates, notes, drawings, calculations, and so forth. Attached to
each task was a questionnaire in which the student was asked, "Which
information did you use for your estimates?" and "How did you derive
your estimate from the information? Please describe this process as pre-
cisely as you can." Thus, in Study 2, we had only limited "write aloud"
protocols and after-the-fact interviews available. A special prize of 25
deutsche marks was offered for the person with the best performance.

Results

We could identify cognitive algorithms in 67% of 1,080 prob-
ability judgments. Table 4 shows the distribution of the cogni-
tive algorithms for the two formats as well as for the three
menus.

Bayesian Algorithms

Prediction 4: Relative frequency formats elicit the same

(small) proportion of Bayesian algorithms as probability for-

mats. Table 4 shows that the number of Bayesian algorithms
is not larger for the relative frequency format (60) than for the
probability format (66). Consistent with Prediction 4, the
numbers are about the same. More generally, Bayesian and non-
Bayesian algorithms were spread about equally between the two
formats. Therefore, we do not distinguish probability and rela-
tive frequency formats in our further analysis.

Prediction 2 (extended to three menus): The proportion of

Bayesian algorithms elicited by the probability format is lowest

for the standard menu, followed in ascending order by the hybrid

and short menus. Study 2 allows for a second test of Prediction
2, now with three menus. Bayesian algorithms almost doubled
from the standard to the hybrid menu and almost tripled in the
short menu (Table 4). Thus the prediction holds again. In
Study 1, the standard probability menu elicited 16% Bayesian
algorithms, as opposed to 28% for the short menu. In Study 2,
the corresponding percentages of Bayesian algorithms in prob-
ability formats were generally lower, 6.4% and 17.5%. What re-
mained unchanged, however, was the difference between the two
menus, about 12 percentage points, which is consistent with
Prediction 2.

Non-Bayesian Algorithms

Study 2 replicated the three major classes of non-Bayesian
algorithms identified in Study 1: joint occurrence, Fisherian,
and likelihood subtraction. There was also a simpler variant of
the last, the false alarm complement algorithm, which com-
putes 1 — p( D | —H) and is a shortcut for likelihood subtraction
when diagnosticity (the hit rate) is high. The other new algo-
rithms—"total negatives," "positives times base rate," "posi-
tives times hit rate," and "hit rate minus base rate"—were only
or predominantly elicited by the hybrid menu and seemed to us
to be trial and error calculations. They seem to have been used
in situations where the participants had no idea of how to rea-
son from the probability or relative frequency format and tried
somehow to integrate the information (such as by multiplying
everything).

Are Individual Inferences Menu Dependent?

Each participant worked on each problem in three different
menus. This allows us to see to what extent the cognitive algo-
rithms and probability estimates of each individual were stable
across menus. The degree of menu dependence (the sensitivity
of algorithms and estimates to changes in menu) in probability
formats was striking. The number of times the same algorithm
could be used across the three menus is some number between
0 and 360 (24 problems times 15 participants). The actual
number was only 16 and consisted of 10 Bayesian and 6 joint
occurrence algorithms. Thus in 96% of the 360 triples, the cog-
nitive algorithm was never the same across the three menus.
In the Appendix, we illustrate this general finding through the
German measles problem, which represents an "average" prob-
lem in terms of menu dependence.5 These cases reveal how
helpless and inconsistent participants were when information
was represented in a probability or relative frequency format.

4 Study 2 was performed before Study 1 but is presented here second
because it builds on the central Study 1. In a few cases the numerical
information in the problems (e.g., German measles problem) was
different in the two studies.

5 The German measles problem was "average" with respect to both
the menu dependence of probability estimates and the menu depen-
dence of cognitive algorithms. The average range of probability esti-
mates in the three menus (highest minus lowest per participant) was
40.5 percentage points for all problems and 41 for the German measles
problem.
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Table 4
Cognitive Algorithms in Study 2

Information format

Cognitive algorithm

Joint occurrence
Bayesian
Fisherian
Adjusted Fisherian
Multiply all
False alarm complement
Likelihood subtraction
Base rate only
Total negatives
Positives times base rate
Positives times hit rate
Hit rate minus base rate
Less frequent algorithms

(<1% of total)
Not identified

Total

Formal equivalent

p(H&D)
p(H\D)
p(D\H)
p(D\H)±.05
p(D)(p(H&.D)
\-p(D\~H)
p(D\H)-p(D\-H)
P(H)
\-p(D)
p(D)p(H)
p(D)p(D\H)
p(D\H)-p(H)

Relative
frequency

91
60
46
20
11
17
19
14
10
7
4
6

60
175

540

Probability

88
66
45
29
27
20
9

10
7
7
9
5

37
181

540

Information menu

Standard

46
23
41
20

37
28
14

3

37
111

360

Hybrid

31
40
50
29
3

10
9

14
13
8

34
119

360

Short

102
63

35

8

26
126

360

Total

179
126
91
49
38
37
28
24
17
14
13
11

97
356

1,080

% of total

16.6
11.7
8.4
4.5
3.5
3.4
2.6
2.2
1.6
1.3
1.2
1.0

9.0
33.0

100.0

Note. Numbers are absolute frequencies.

Menu-dependent algorithms imply menu-dependent probabil-
ity estimates. The individual cases in the Appendix are telling:
Marc's estimates ranged from 0.1% to 95.7% and Oliver's from
0.5% to 100%. The average range (highest minus lowest
estimate) for all participants and problems was 40.5 percentage
points.

The Effect of Extensive Practice

With 72 inference problems per participant, Study 2 can an-
swer the question of whether mere practice (without feedback
or instruction) increased the proportion of Bayesian algo-
rithms. There was virtually no increase during the first three
sessions, which comprised 36 tasks. Only thereafter did the pro-
portion increase—from .04, .07, and. 14 (standard, hybrid, and
short menus, respectively) in the first three sessions to .08,. 14,
and .21 in Sessions 4 through 6. Thus, extensive practice seems
to be needed to increase the number of Bayesian responses. In
Study 1, with "only" 30 problems per participant, the propor-
tion increased slightly from .30 in the first session to .38 in the
second. More generally, with respect to all cognitive algorithms,
we found that when information was presented in a frequency
format, our participants became more consistent in their use of
cognitive algorithms with time and practice, whereas there was
little if any improvement over time with probability formats.6

Summary of Study 2

Our theoretical results were that the computational complex-
ity of Bayesian algorithms varied between the three probability
menus, but not between the probability and relative frequency
formats. Empirical tests showed that the actual proportion of
Bayesian algorithms followed this pattern; the proportion
strongly increased across menus but did not differ between the
probability and the relative frequency formats, which is consis-
tent with Predictions 2 and 4.

General Discussion

We return to our initial question: Is the mind, by design, pre-
disposed against performing Bayesian inference? The conclu-
sion of 25 years of heuristics-and-biases research would suggest
as much. This previous research, however, has consistently ne-
glected Feynman's (1967) insight that mathematically equiva-
lent information formats need not be psychologically equiva-
lent. An evolutionary point of view suggests that the mind is
tuned to frequency formats, which is the information format
humans encountered long before the advent of probability the-
ory. We have combined Feynman's insight with the evolution-
ary argument and explored the computational implications:
"Which computations are required for Bayesian inference by a
given information format and menu?" Mathematically equiva-
lent representations of information can entail computationally
different Bayesian algorithms. We have argued that information
representation affects cognitive algorithms in the same way. We
deduced four novel predictions concerning when information

6 The number of times a participant used the same cognitive algo-
rithm (Bayesian or otherwise) in two subsequent problems with the
same format and menu is a measure of temporal consistency (in a se-
quence of 24 problems, the number would lie between 0 and 23.) This
number can be expressed as a relative frequency c; large values of c
reflect high consistency. When information was presented in frequen-
cies (Study 1), participants became more consistent during practice,
both for the standard menu (from mean consistency c = .32 in the first
session to .49 in the second session) and for the short menu (from c =
.61 to .76). In contrast, when information was presented in probabili-
ties, there was little improvement in consistency overtime, regardless of
the menu. For the standard probability format, c was .22 for the first
session and .24 for the second session of Study 1; in Study 2, the value
was. 15 in Sessions 1 to 3 and . 16 in Sessions 4 to 6. The values for the
short probability format were generally higher but also showed little
improvement over time, shifting only from c = .40 to .42 (averaged
across both studies).
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formats and menus make a difference and when they do not.
Data from more than 2,800 individual problem solutions are
consistent with the predictions. Frequency formats made many
participants' inferences strictly conform (in terms of outcome
and process) to Bayes' theorem without any teaching or instruc-
tion. These results were found for a number of inferential prob-
lems, including classic demonstrations of non-Bayesian infer-
ence such as the cab problem (Bar-Hillel, 1980; Tversky &
Kahneman, 1982) and the mammography problem (Eddy,
1982).

The results of the 15 problems in Study 1 constitute most of
the data available today about Bayesian inference with frequency
information. We know of only a few studies that have looked at
Bayesian inference through frequency formats. Christensen-Sza-
lanski and Beach (1982) sequentially presented symptom and dis-
ease information for 100 patients and asked participants to esti-
mate p(disease|positive). Thus, their format was mixed: natural
sampling of frequencies with a single-event probability judgment
(see also Gavanski & Hui, 1992). The means from the natural
sampling condition conformed better to Bayes' theorem than
those from the standard probability version; however, only
means—and not individual judgments or processes—were ana-
lyzed. Cosmides and Tooby (in press) constructed a dozen or so
versions of the medical problem presented by Casscells et al.
(1978). They converted, piece by piece, probability information
into frequencies and showed how this increases, in the same pace,
the proportion of Bayesian answers. They reported that when the
frequency format was mixed—that is, when the information was
represented in frequencies, but the single-point estimate was a sin-
gle-event probability, or vice versa—the effect of the frequency for-
mat was reduced by roughly half. Their results are consistent with
our theoretical framework.

At the beginning of this article, we contrasted the belief of the
Enlightenment probabilists that the laws of probability theory
were the laws of the mind (at least for hommes eclaires) with
the belief of the proponents of the heuristics-and-biases pro-
gram that the laws of probability are not the laws of the mind.
We side with neither view, nor with those who have settled some-
where in between the two extremes. Both views are based on an
incomplete analysis: They focus on cognitive algorithms, good
or bad, without making the connection between an algorithm
and the information format it has been designed for.7 Through
exploration of the computational consequences of an evolution-
ary argument, a novel theoretical framework for understanding
intuitive Bayesian inference has emerged.

We would like to emphasize that our results hold for an ele-
mentary form of Bayesian inference, with binary hypotheses
and data. Medical tests involving mammograms, HIV tests,
and the like are everyday examples where this elementary
form of inference is of direct relevance. However, there exist
other situations in which hypotheses, data, or both are
multinomial or continuous and where there is not only one
datum, but several. In particular, when human inference has
to deal with several cues or data that are not independent,
Bayesian calculations can become extremely complicated
mathematically. Here, it is unlikely that frequency formats
would elicit Bayesian algorithms. Rather, we suggest that in
these situations "satisficing" cognitive algorithms are in-
voked, which can perform well in complex ecological environ-
ments. The fast and frugal algorithm described in the theory of

probabilistic mental models (Gigerenzer, 1993a; Gigerenzer,
Hoffrage, & Kleinbolting, 1991) is one example; it can make
inferences about unknown aspects of the real world as accu-
rately as so-called optimal algorithms (Gigerenzer &
Goldstein, 1995).

We conclude by discussing one specific result and the general
implications of the present work.

Does the Use of Non-Bayesian Algorithms Follow

Bayesian Intuitions?

In applications of significance testing in the social sciences,
Bayesian reasoning is sometimes used implicitly. An example
would be the refusal to consider a parapsychological hypothesis
in the face of an impressively small level of significance, based
on a prior probability close to zero. We now ask whether our
participants also used Bayesian principles in an implicit way.
Does the use of non-Bayesian algorithms follow Bayesian intu-
itions? Joint occurrence would lead to the same result as Bayes'
theorem if p(D) = 1. (This condition never held in our tasks.)
A qualitative Bayesian intuition would be "When you use joint
occurrence, use it more often when p(D) is large." This intu-
ition would imply that the correlation between the magnitude
of p(D) and the frequency with which participants use joint
occurrence should be positive. In fact, there were positive Pear-
son correlations of .36 in Study 1 (over 15 problems) and .47 in
Study 2 (over 24 problems).

The Fisherian algorithm would lead to the same result as
Bayes' theorem ifp(H)/p(D)= 1. (This condition also never
held in our tasks.) A qualitative Bayesian intuition would be
"When you use the Fisherian algorithm, use it more often when
the probability of the data is similar to that of the event." This
intuition implies that the algorithm should be used more often
when p(H)/p(D) is closest to one; hence, the correlation be-
tween the frequency of use and 11 — p(H)/p(D)\ should be
negative. Indeed, the Pearson correlation was -.49 in Study 1,
and -.59 in Study 2.

The effect sizes of these correlations were medium to large
(by J. Cohen's, 1977, definition). A similar sensitivity was re-
ported by Ofir (1988). Thus, the use of each of these two non-
Bayesian algorithms appears to be grounded in a qualitative
Bayesian intuition.

7 That frequency formats have rarely been used is not to say that the
issue of single events versus frequency has never arisen in research on
Bayesian inference. For instance, Kahneman and Tversky (1982, p.
518) distinguished two modes of judgment, a singular mode that gener-
ates an "inside view" and a distributional one that generates an "outside
view," echoing the classical distinction between the "subjective" and the
"aleatory" sides of probability. Others used frequency representations
to communicate information to their readers, but not to their research
participants. An early example is Hammerton (1973), who chose the
standard probability format to communicate information about a clin-
ical inference task to his participants and found that their probability
judgments were in disagreement with Bayes' theorem. When explaining
in the article what the task's correct answer was, he switched, without
comment, to a standard frequency format. Hammerton's readers, then,
could easily "see" the answer, but his participants could not.
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Alternative Accounts

Why do judgments depend on format and menu? We started
with an evolutionary argument and explored its computational
consequences. What are alternative accounts?

One explanation of the striking difference between the stan-
dard probability format and the short frequency format would
be that participants were presented three pieces of information
in the former, but only two in the latter. The increase in Bayesian
algorithms from 16% to 50% might be due simply to the smaller
number of information units to be handled in the short menu.
The design of Study 1, in which each format was crossed with
each menu, allowed testing of this conjecture. If true, then (a)
the standard frequency format should result in a proportion of
Bayesian algorithms as small as that for the standard probability
format and (b) differences in performance should result from
the menus, and not from the formats. The empirical results,
however, are inconsistent with these implications. The perfor-
mances on the standard probability and standard frequency for-
mats differed widely, and the effect of the menu largely disap-
peared in the frequency format.

A second alternative account would be based on a refusal to
accept our notion of a "cognitive algorithm." This account
would not consider our categories of Bayesian, joint occurrence,
Fisherian, and so on, as cognitive algorithms but rather would
construe cognitive algorithms at a higher level of abstraction.
They might take the form of more general rules, such as "pick
one" (i.e., always look for the one important piece of informa-
tion and ignore everything else) or "always integrate every-
thing" (i.e., always integrate all pieces of information). The in-
teresting point is that such an account potentially eliminates
menu dependence. Imagine that the cognitive algorithm is in-
deed "pick one." One participant might accordingly pick
p(D|H) in the standard menu, p(H) in the hybrid menu, and
p(D&H) in the short menu. If the pick-one rule is the cognitive
algorithm applied to all of these menus, then there is no menu
dependence, although it looks so from our level of analysis. Fur-
thermore, the always-integrate rule (but not the pick-one rule)
could by mere trial and error generate some proportion of
Bayesian algorithms in the short menu because the number of
possible combinations of two pieces of information is small. Be-
cause each participant responded to three menus, Study 2 pro-
vides the data to test the use of these two general rules. We
checked whether one or both of these general rules were used
independently of the menu. However, only in 12 (out of 360)
cases were the data consistent with the pick-one rule and in 14
cases with the always-integrate rule. Thus, there was no evi-
dence of either general rule.

Both alternative accounts could only explain the effect of
menus, not formats, even if they were valid.

Earlier Approaches: "Heuristics and Biases"

The standard probability format (and its relative frequency
variant) has been the most common representation of informa-
tion in psychological experiments investigating whether intu-
itive inference follows the dictates of Bayes' theorem. The stan-
dard probability format presented our participants' inferential
competencies at their worst. Specifically, the standard probabil-
ity format (a) elicited the smallest number of Bayesian algo-

rithms, (b) showed the least increase in Bayesian algorithms
with extensive practice, (c) showed the lowest consistency in
cognitive algorithms, with no improvement in consistency with
practice (see Footnote 6), and (d) elicited almost all refusals to
answer that we encountered (17 out of 21 in Study 1). Testing
people's competencies for Bayesian inference with standard
probability formats thus seems analogous to testing a pocket
calculator's competence by feeding it binary numbers.

Why have so many experimental studies used the standard
probability format? Part of the reason may be historical acci-
dent. There is nothing in Bayes' theorem that dictates whether
the mathematical probabilities pertain to single events or to fre-
quencies, nor is the choice of format and menus specified by the
formal rules of probability. Thomas Bayes himself seemed not
to have sided with either single-event probabilities or frequen-
cies. Like his fellow Enlightenment probabilists, he blurred the
distinction between warranted degrees of belief and objective
frequencies by trying to combine the two (Earman, 1992).
Thus, the experimental research on Bayesian inference could as
well have started with frequency representations, if not for the
historical accident that it became tied to Savage's (1954) agenda
of bringing singular events back into the domain of probability
theory. For instance, if psychological research had been inspired
by behavioral ecology, foraging theory, or other ecological ap-
proaches to animal behavior in which Bayes' theorem figures
prominently (e.g., Stephens & Krebs, 1986), then the informa-
tion format used in human studies might have been frequencies
from the very beginning.

Neglect of Base Rates

Most earlier research has focused on prior probabilities, as
has been the case with the critique of the application of Bayes'
theorem since Laplace's nonchalant assumption that ignorance
could be expressed as uniform priors (Daston, 1988; Earman,
1992). The major conclusion of the last two decades of research
on Bayesian inference has been that people neglect base rates
most of the time (e.g., Bar-Hillel, 1990; Tversky & Kahneman,
1982). No comprehensive theory of why and when people ne-
glect base rate information has yet been found. The present
analysis can help to fill in this gap and provides novel results
concerning the nature of base rate neglect.

1. Base rate information need not be attended to in fre-

quency formats (Result 3). If our evolutionary argument that
cognitive algorithms were designed for frequency information
acquired through natural sampling is valid, then base rate ne-
glect may come naturally when generalizing to other informa-
tion representations, such as the standard probability format
(Kleiter, 1994).

2. Base rate neglect is menu specific. Even within proba-
bility formats, base rate neglect is bound to specific menus. It
can occur in the standard and hybrid menus, but not in the
short menu. Base rate neglect is thus contingent on information
menu.

3. Base rate neglect is a consequence of (at least) two differ-
ent cognitive algorithms. Which cognitive algorithms entail
base rate neglect? We have identified two: Fisherian (including
adjusted Fisherian) and likelihood subtraction (including its
shortcut version, false alarm complement). Neither of these can
be elicited in the short menu.
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4. Process analysis is indispensable in establishing base

rate neglect. This last point is methodological. Cognitive algo-
rithms having in common the neglect of base rate information
can nevertheless entail different probability judgments. Thus,
no single probability judgment can be deduced from base rate
neglect per se. The same holds for the inverse inference, from
probability judgment to base rate neglect. A particular proba-
bility judgment can be produced by various algorithms, includ-
ing ones that do and do not use base rates (see Birnbaum's,
1983, insightful analysis of the cab problem). Thus, base rate
neglect cannot safely be inferred from a particular probability
judgment, that is, from mere outcome analysis, without being
double-checked by process analysis, such as "write aloud" pro-
tocols. Working through several thousand individual protocols,
we observed many cases where probabilities of similar magni-
tude were computed by different cognitive algorithms. However,
almost all previous work has relied on outcome analysis only.

Representativeness Heuristic

Tversky and Kahneman's (1974, 1982) "representativeness
heuristic" has so far provided the most widely used explanation
for base rate neglect in terms of a cognitive process. Judgment
by representativeness means that the probability p(H\ D) is in-
ferred from the similarity between D and H. However, how this
similarity is computed and how the inference from the sim-
ilarity to a numerical probability is made have not been clari-
fied since the notion was first proposed; "representativeness" is
consequently still vague and undefined (Shanteau, 1989). Fur-
thermore, it is not applicable to most of the problems in Studies
1 and 2, including all medical problems and the cab problem
(e.g., it makes little sense to ask how representative a mother's
German measles are of a child's rubella syndrome). We suggest
defining the notion of representativeness by the statistical con-
cept of the likelihood p(D\H),a proposal made by Gigerenzer
and Murray (1987, pp. 153-155). We thereby treat the repre-
sentativeness heuristic as a special case of the Fisherian algo-
rithm—namely, when the likelihood is interpreted as a degree
of similarity between D and H. If one accepts this proposal, two
interesting implications follow:

1. Frequency formats suppress inference by' 'representative-

ness." We observed that use of the Fisherian algorithm de-
creased from 99 cases in the probability format to 55 cases in
the frequency format (including the adjusted variant, see Table
3). This format dependency is a striking empirical result. Noth-
ing prevented our participants from picking "«/out of h" in the
frequency format as often as pickingp(Z) | H) in the probability
format. The decrease occurred generally in all problems,
whether p(D\H) could be interpreted as a similarity relation or
not.

2. The ' 'representativeness heuristic'' is menu specific. In-
ferences by "representativeness" can be elicited by the standard
menu, but not by the short menu (Tables 3 and 4). Thus, when
information is acquired by natural sampling, representative-
ness should play no role.

If we take these two implications together, then we arrive at
the result that the representativeness heuristic is most likely to
be elicited when information is represented in the standard
probability format. This result provides a partial answer to the

unresolved question of what conditions favor particular heuris-
tics (Brown & Siegler, 1993).

Pseudodiagnosticity

Most of the research on Bayesian inference has focused on
the neglect of base rates, but a few studies have investigated the
use or neglect ofp(D \ -H) in Bayesian inference. The phenom-
enon of people ignoring p(D \ -H) has been termed pseudodi-

agnosticity (Doherty & Mynatt, 1990; Fischhoff & Beyth-
Marom, 1983; Ofir, 1988). The term stems from an informa-
tion selection task in which participants are presented with both
p(D | H) andp(D \ -H) but tend to use only one of the two like-
lihoods, usually p(D\H). Our analysis revealed that the false
alarm rate was about as often neglected as the base rate. In Stud-
ies 1 and 2, the false alarm rate was neglected in 31% and 33%
of cases, the base rate in 32% and 36%, respectively (these are
conservative estimates because the less frequent algorithms are
not counted). We were able to identify cognitive algorithms un-
derlying this phenomenon: joint occurrence, Fisherian, and
base rate only.

Do Frequency Formats Influence Statistical Reasoning

Beyond Bayesian Inference?

It is interesting that most so-called biases and fallacies in proba-
bilistic and statistical reasoning, such as base rate neglect, have
been demonstrated using problems with probability formats. Can
frequency formats affect other "cognitive illusions"? The evidence
suggests so (see Tversky & Kahneman, 1974). Gigerenzer et al.
(1991) showed that the "overconfidence bias" (e.g., Lichtenstein
et al., 1982) disappeared when participants estimated frequencies
instead of single-event probabilities (see also May, 1987; Sniezek
& Buckley, 1993). This seems to be the only case aside from the
present analysis of Bayesian inference where a cognitive algorithm
is proposed, namely by the theory of probabilistic mental models
(Gigerenzer, 1993a; Gigerenzer et al., 1991), to explain why and
how format affects inferences. The theory additionally specifies
conditions in which frequency judgments can be made less realis-
tic than probability judgments.

Fiedler (1988) and Hertwig and Gigerenzer (1995) showed
that the "conjunction fallacy" (Tversky & Kahneman, 1983)
in the Linda problem and similar problems largely disappeared
when questions were changed from probability to frequency
formats; the proportion of conjunction rule violations dropped
from more than 80% to about 10% to 20% (see also Reeves &
Lockhart, 1993; Tversky & Kahneman, 1983). As with the
"overconfidence bias," this effect of frequency format is stronger
and more reliable than those of all earlier so-called debiasing
methods (as summarized by Fischhoff, 1982).

Koehler, Gibbs, and Hogarth (1994) reported that the "illu-
sion of control" (Langer, 1975) is reduced when the single-event
format is replaced by a frequency format—when participants
judge a series of events rather than a single event. Teigen (1974)
reported that overestimation of probabilities (e.g., What is the
probability that a randomly chosen female student at the Uni-
versity of Bergen is above 160 cm tall?) changed into more real-
istic estimates when participants were given the opportunity to
estimate frequencies (e.g., If we measure 500 female students,
how many of them will be above 160 cm tall?). Keren and Wa-
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genaar (1987) observed that the "certainty effect" and the "pos-

sibility effect," two violations of utility theory, occurred less of-

ten when single gambles were replaced by repeated gambles

(see also Keren, 1991; Montgomery & Adelbratt, 1982). For a

general discussion of these results see Ayton and Wright (1994),

Gigerenzer(1991a, 1991b, 1993a, 1994), and Lopes (1981).

These converging results do have implications for how to un-

derstand so-called cognitive illusions. Were cognitive illusions

due to the mind's inherent inability to reason statistically, or if

they were simply the result of wishful thinking or other motiva-

tional deficits, then a frequency format should make no differ-

ence. The evidence so far, however, suggests that frequency for-

mat can make quite a difference.

Some Practical Consequences

Cognitive algorithms, Bayesian or otherwise, cannot be di-

vorced from the information on which they operate and how

that information is represented. This striking result can be

made useful for teaching statistical reasoning and for human

engineering in general (von Winterfeldt & Edwards, 1986). The

problems used in our studies, such as pregnancy tests, mammo-

grams, and HIV tests, exemplify situations where Bayesian in-

ference can help people to grasp the risks and uncertainties of a

modern, technological world. However, the teaching of statisti-

cal reasoning is still a field neglected in high school mathematics

education (Shaughnessy, 1992), and instruction in Bayesian in-

ference seems to be almost nonexistent. Up until now, only a

few studies have attempted to teach Bayesian inference, mainly

by outcome feedback, and with little or no success (Lindeman,

van den Brink, & Hoogstraten, 1988; Peterson, DuCharme, &

Edwards, 1968;Schaefer, 1976).

The present framework suggests an effective way to teach

Bayesian inference and statistical reasoning generally. The les-

son of our studies is to teach representations instead of rules,

that is, to teach people how to translate probabilities into fre-

quency representations rather than how to insert probabilities

into Equation 1. In light of our results concerning how Bayesian

inference can be improved without any instruction, tutoring

systems that enhance the idea of frequency representations with

instruction, explanation, and visual aids hold out the promise of

still greater success. Frequency representations can help people
"see" the answer, appealing to a "sort of instinct" at which La-

place and the Enlightenment probabilists hinted.
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Appendix

Instability of Judgments and Cognitive Algorithms Across Menus in Probability Formats

In Study 2, participants received each problem three times, once in
each of the three menus (standard, hybrid, and short; see text). The
following 4 participants (from a total of 15) illustrate how both the
numerical probability estimates and the cognitive algorithms varied
across the three menus. The German measles problem, in which the
task was to estimate the probability p(H\D) of severe prenatal damage
in the child (H) if the mother had German measles during pregnancy
(D), is used as an example. In the standard menu, the information
(probabilities expressed in percentages) was p(H) = 0.5%, p(D\H) =
40%, and p(D\-H) = 0.01%; in the hybrid menu, p(H) = 0.5%,
p(D\H) = 40%, and p(D) = 0.21%; and in the short menu, p(D) =
0.21% and P(D&H) = 0.2%. Note that the information in all three
menus is equivalent in the sense that it would lead to the same probabil-
ity p(H\D).

Rudiger B. (Age 22), Management

In the standard menu, Rudiger focused on p(D \ H), explaining that
because a child of an infected mother is at such high risk (40%), his
estimate would accordingly be high. He adjusted p(D\H) by 5%, and
estimated the posterior probability of severe prenatal damage as 35%
(adjusted Fisherian). In the hybrid menu, he picked the base rate and
estimated the same probability as 0.5%, with the argument thatp(Z) | H)
and p(D) "are without significance" (base rate only). In the short
menu, he picked p(H&D) and estimated 0.2% because "this is the in-
formation that specifies the probability of severe damage in the child.
The percentage of infected mothers, however, is irrelevant" (joint
occurrence).

Marc P. (Age 22), Biology

In the standard menu, Marc used only p(D\H) and estimated 40%
(Fisherian). In retrospect, he noticed that he forgot to include
p(D\-H), but he did not mentionp(H). In the hybrid menu, his an-
swer was 0.1%, which he calculated by multiplyingp(D) w i thp(D\H)
and rounding the result (positives times hit rate). In the short menu, he
reasoned that 0.21% of all pregnant women do have German measles,

but because German measles and severe damage co-occur only in 0.2%
cases, 0.01% children would remain without damage. He set himself
the intermediate goal of determining the probability of there being no
prenatal damage given German measles. He first translated the proba-
bilities into frequencies, obtaining the result of 10 out of 210 children.
He then converted this frequency back into a single-event probability,
which he calculated as 4.3% (a minor calculation error). He concluded,
therefore, that the posterior probability of severe prenatal damage was
95.7% (Bayesian). In the short menu, his reasoning turned Bayesian.

SilkeH. (Age 20), Biology

In the standard menu, Silke started with the base rate, then calculated
the proportion p( D \ H) of the base rate with an answer of 0.2% (joint

occurrence). In the hybrid menu, she used all of the information. She
first multiplied p(H) byp(D), that is, the probability of prenatal dam-
age by the probability of German measles during pregnancy, and then
determined the proportion p(D\H) of this figure, which resulted in the
answer 0.04% (multiply all). In the short menu, she used the same algo-
rithm again and computed the proportion p(HStD) of p(D), which
again lead to the answer 0.04%.

Oliver G. (Age 22), German Literature

In the standard menu, Oliver stated that the "correlation between
not having damage and nevertheless having measles," as he paraphrased
p(D\—H), was the only relevant information. He calculated 1 —
p(D\-H) = 99.99% and rounded to 100%, which was his estimate
(false alarm complement). In the hybrid menu, he concluded that the
only relevant information was the base rate of severe prenatal damage,
and his estimate consequently dropped to 0.5% (base rate only). In the
short menu, he determined the proportion of severe damage and mea-
sles in all cases with German measles, which led him to the Bayesian
answer of 95.3%.
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