
Copyright 1998 IEEE. Published in the Proceedings of HiPC '98, December 198 at Madras, India Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

How to Improve Local Load Balancing Policies
by Distorting Load Information

Franco Zambonelli

Dipartimento di Scienze dell 'Ingegneria - Università di Modena

213/b, Via Campi - 41100 Modena - Italy

Ph.: +39-59-376735 - Fax: +39-39-376799

E-mail: franco.zambonelli@unimo.it

Abstract

The paper focuses on local load balancing policies for massively parallel

architectures and introduces a new scheme for load information exchange between

neighbor nodes. The idea is to distort the exchanged load information to let the

policy keep into account a more global view of the system and overcome the limits of

the local scope. The presented scheme has been integrated into two variants of a

direct-neighbor policy and evaluated in dependence of the characteristics of the

system load. Experimental results show that the transmission of distorted load

information provides high efficiency unless the dynamicity of the load becomes too

high, in which case it is preferable to exploit non-distorted load information.

Keywords: Massively Parallel Architectures, Dynamic Load Balancing, Direct-

Neighbor Policies, Load Information Exchange, Performance Evaluation

1. Introduction

Dynamic load balancing is required for parallel applications characterized by non-predictable

patterns in the accesses to the system resources. The main goal is to dynamically tune the

allocation of the application components onto the target architecture to effectively exploit the

2

execution resources and achieve good application speed-ups [ShiKS92]. In this perspective,

dynamic load balancing can be assimilated to a system control problem [CanP95, CorLZ96]: the

execution of the application must be monitored to detect its evolution and identify load

imbalances; actions to lead the system to a balanced configuration must be decided and, then,

performed.

The load balancing policy represents the decisional component of the dynamic load balancing

control tool and, as that, has to guarantee:

• stability: the capacity of achieving the load balancing goal without wasting resources in

actions not effective toward the solution;

• low intrusion: the capacity of limiting its overhead on the controlled system;

• generality: the capacity of acting independently of the specific properties of the controlled

system, i.e., of the behavior of the applications;

In addition, any effective implementation in massively parallel architectures has to face the issue of

scalability: the policy must show a limited dependence on the system size to work effectively

even on large systems.

The above requirements constraint the possible choices in the design of the general structure

of a load balancing policy with the target of a massively parallel architecture. First of all, a

distributed approach is needed: autonomous and asynchronous decisional components are

replicated and distributed over all the system nodes. Each component is in charge of the allocation

decisions for its node, eventually by cooperating and coordinating itself with other decisional

components. In addition, the need for scalabili ty suggests limiting the coordination degree among

the decisional components of distributed load balancing policy [LulMR91, Xu95]. In particular,

both the amount of information exploited and the scope of the actions must be limited to a sub-set

of the system nodes, according to a locality principle (either logical or physical, depending on the

characteristics of the target architecture). Global policies, that consider information about the load

of all nodes of the system and can extend their actions over the whole system, requires high

coordination, and make the intrusion of the policy unacceptable in large systems [CorLZ92].

3

The distributed load balancing policies presented in this paper base their decisions only on

load information coming from the neighborhood and achieve the global load balancing goal by

composing local load balancing actions. The limited amount of load information available to the

policies can sometime lead them to inefficient load balancing actions or even to stop working

because of the recognition of a local load balance, without the capabili ty of recognizing global

imbalances. To overcome this problem, the paper introduces a new scheme for the exchange of

load information. On the one hand, each node transmits a load information that is a weighted sum

of its effective load and of the load of all i ts neighbors; on the other hand, the distorted load

information incoming to a node is considered as representative of the sender load.

The above scheme has been integrated into both a simple direct-neighbor policy and an

extended direct-neighbor policy that adopts a non-local load distribution scheme. The impact of

the load information exchange scheme on the presented policies has been evaluated on a

transputer-based architecture depending on the characteristics of the system load, in particular its

dynamicity. The experiments show that the scheme achieves effective load balancing when the

dynamicity of the application is low. In these cases, the adoption of the extended load distribution

scheme achieves further benefits. When the dynamicity of the applications increases, instead, it is

better to exploit non-distorted load information and adopt the basic direct-neighbor policy with

the local load distribution scheme.

The paper is organized as follows. Section 2 describes the basic direct-neighbor policy.

Section 3 presents the distorted load information exchange scheme and the extended load

distribution scheme. Section 4 evaluates the effectiveness of these policies on a transputer-based

architecture and compares their performances. Related works are discussed in section 5.

2. The Basic Direct-Neighbor Policy

The direct-neighbor policy achieves load balancing with asynchronous local actions limited in

scope. Every node communicates only with its direct-neighbors and exchanges load information

only with them. Load balancing actions are limited to two direct-neighbor nodes [LulMR91,

XuL95].

4

A load balancing action within two neighbor nodes i and j strives to equalize their loads (see

figure 1). Let Li(t) be the load of node i at time t and Lj(t) the load of node j. At the end of the

load balancing action, say at time t+1, the loads of these nodes – in the abstract case of load

indefinitely divisible load – are:

L t L t L t L ti j i j(+) = (+) = (() + ())1 1
1

2

The evolution of the global system load is the consequence of several asynchronous applications

of the above.

L=1

L=2

L=6 L=3L=10

Li=6 i k2j

k1

k3

Moved Load =
(10-6)/2 = 2

Figure 1. Load information exchange in the direct-neighbor policy

The triggering event to start the decisional activity on one node is the asynchronous arrival of

updated load information, either from one of the neighbor nodes or caused by a change in the

local state. Whenever one node receives updated load information, it compares it with the other

available load information. If the local current load exceeds the load of its less loaded neighbor by

more than a threshold (i.e., a percentage), a migration action is started toward it. Though the

algorithm has been implemented as sender-initiated [EagLZ86], a receiver-initiated

implementation is also possible and would not change the basic algorithm behavior. After a

sender-receiver couple is established, the sender decides the entities to migrate: more than one

entity can move in one migration step, though the granularity of the load – not indefinitely

divisible – makes it sometimes impossible either to perfectly balance the load of the two nodes (or

even to issue any migration between them).

5

13

10

9 8

8 7

9

10

6

7

8

11 9

8

7

5

Figure 2. A global imbalance that cannot be locally recognized
(the numbers in the nodes represent their load)

3. Local Policies with Distorted Load Information

Though local load balancing policies represent a forced design choice in massively parallel

system, they present several drawbacks.

The local perspective in which load balancing decisions have to be taken can sometime make

decisions not consistent with the global system state. It is proved that distributed load balancing

policies based on local information provide to monotonically diminish the global imbalance

[Cyb89, CorLZ96], but there is not any guarantee that their actions stop only after having reached

a global balance. In fact, the necessary presence of a threshold of no-action can sometime lead a

policy to inactivity, because of the recognition of a local balance even in presence of a high

residual global imbalance (as in figure 2). In addition, the limited information available and the

limited scope of the actions can force the distributed components to issue a high number of

separated actions to achieve a given load balance. With reference to figure 1, the amount of load

moved from j to i by the direct-neighbor policy is under-evaluated w.r.t. the more global situation

of the system. In fact, the nodes k1 k2 and k3 are even more underloaded. Further step of the

policy will cause load to be moved from i to k1, k2 and k3 and, then, to move further load from j

to i.

6

This section presents the distorted load information exchange scheme integrated in the direct-

neighbor policy to overcome the above-identified limits. In addition, it presents a further extension

to the direct-neighbor policy that permits to better exploit the introduced information exchange

scheme.

3.1 The Distorted Load Information Exchange Scheme

The basic idea of the proposed information exchange scheme is to distort the load

information exchanged between neighbor nodes in order to make the information delineate a more

global view of the system. Again with reference with figure 1, let one suppose the node i does not

communicate to j its effective load (Li) but, instead, a somehow inferior value DLi (in

consideration of the fact that all the neighbors of i but j are underloaded). If node j, by its side,

interprets this information as representative of the effective load of the sender, the following load

balancing action in j will move to i an amount of load greater than the one effectively needed to

balance the two nodes. This excess of load received from j could be used by i to balance itself

with its other neighbors.

Another situation where a similar scheme can be useful is the one in which the policy

activities stop because each replicated component detects a local balance, though the system is

globally imbalanced. In figure 2, for example, the North sector of the system is significantly less

loaded than the South sector. Because the threshold prevents actions unless the imbalance in a

neighborhood is of a significant amount, it is possible that none of the distributed components,

having all of them neighbors with only a slightly different load, starts a load balancing action. The

exchange of distorted load information, in this case, could force movements and overcome the

problem.

Formally, in the proposed scheme, the effective load (Li) of one node i is weighted with the

average load of its neighborhood. The distorted load information (DLi) sent by a node i to its

neighbor j is:

DL wL
w

M
DLi i k

k N k j

= + −
− ∈ ≠

∑()

,

1

1

7

Where Li represents the effective load of the node i, M is the number of neighbors of the node

i and DLk represents the load of the node k to the knowledge of node i (that is, at its time, a

distorted load information). w is a real between 0 and 1 and represents the weight given to the

effective load w.r.t. the load of the neighbors. When w=1 the scheme is not distorted.

The load balancing action that follows the receipt of a distorted load information strives to

equalize the effective load of the node that receives the information and the distorted load of the

neighbor, i.e.,

L t L t DL tj j i() (() ())+ = +1
1
2

With reference to figure 3, the node i transmit its load information to node j. Though the

effective load of node i is 6, the load information transmitted (with a weight w=0,5) is:

DLi = = + − + +4 0 5 6
1 0 5

3
2 3 1, *

,
()

At the receipt of this load information, node j supposes that node i has a load of 4 and, then,

sends it an amount of load of 3, in order to equalize their loads. Though this amount is excessive

w.r.t. the real load of i, its movement is likely to be effective. In fact, following load balancing

actions in i, will provide to move the load in excess to its underloaded neighbor, i.e., k3.

DL=1

DL=2

L=6 DL=3L=10
DLi=4 i k2j

k1

k3

Moved Load =
(10-4)/2 = 3

Figure 3. The node j receives distorted load information about the load of its neighbor i
and moves load in excess toward it (L= effective load, DL= distorted load information)

The opposite situation is represented in figure 4. Though the effective load of node i is 6, the

load information it transmit to j is 8, because of i’s overloaded neighbors i. In this case, the

8

distorted load information prevents node j in sending an excess of load to i: j, supposing to

equalize the load the two nodes, send to i an amount of load of 1. Sending more load, in this case,

were not worth because that would make it more difficult for k1, k2 and k3 to discharge, at their

turn, their excess of load.

DL=9

DL=12

L=6 DL=9L=10
DLi=8 i k2j

k1

k3

Moved Load =
(10-8)/2 = 1

Figure 4. The node j receives distorted load information about the load of its neighbor i
and limits the load moved toward it

3.2 Extended Load Distribution Scheme

A simple extension to the direct-neighbor policy permits to exploit additional information to

locate the destination of migrating entities [CorLZ97, Wu95]. In the direct-neighbor policy, once

a sender-receiver couple is established, the load to be migrated is allocated on the receiver node.

However, the receiver node holds load information about different nodes than the receiver. Then,

it has the possibili ty of detecting the presence of even less loaded nodes. The extended load

distribution scheme takes advantage of this situation by allowing the receiver to forward the

migrating load to more and more underloaded nodes. Load migration stops only when no useful

movements are detected, i.e., a node is reached whose load is minimal in its neighborhood (as in

figure 5).

The above load distribution scheme can be particularly effective in presence of the distorted

load information exchange scheme, as figure 6 shows. Because of the distorted load information,

node j moves an excess of load to i; this load is immediately forwarded by i to k3, thus achieving

9

in a single migration action what would have needed, in the basic direct-neighbor policy, several

actions.

10

6

8 4

5 3

5

7

5

6

8

9 6

4

1

0

Figure 5. The extended load forwarding scheme
(the number in the nodes represents the effective load of the nodes)

DL=1

DL=2

L=6 DL=3L=10
DLi=4 i k2j

k1

k3

Moved Load =
(10-4)/2 = 3

Figure 6. Exploiting the extended load distribution scheme to forward load in excess

From an implementation point of view, the scheme can be realized with a simple protocol:

when a direct-neighbor couple is established and a node i is waiting to receive load, it looks in its

neighborhood for one less loaded node. If this node exists, the node i acts as a forwarder at the

receipt of the migrating load. Any node up to a local minimum of load repeats the same protocol.

10

4. Performance Evaluation

To evaluate the effectiveness of the presented policies, I have used as target a 100-nodes

transputer-based architecture (a Meiko CS-1 [Mei89]), shaped after a 10x10 mesh. Though

obsolete, this target architecture is still a good evaluation testbed and does not invalidate our

results. In fact, the locality concept upon which our policies are based – and from which the

results derive – is independent from the characteristics of the communication hardware.

The policies has been implemented by means of one multithreaded policy handler, called

Allocation Manager (AM for short), replicated in each node of the system. Each AM is in charge

of implementing the allocation policy and of coordinating itself with the AMs of the neighbor

nodes.

To evaluate a wide range of load situations without being committed to a specific application,

I have allocated “dummy” processes onto the execution load, with the aim of generating

execution load. No inter-process dependencies are modeled. The process migration time, i.e., the

time for a process on a node to be frozen, transferred and resumed on a different node, is about

25ms in the target architecture.

4.1 Load Metrics

The paper identifies a few load factor relevant towards the study of local load balancing

policies: the imbalance, i.e., the deviation of the load situation from the ideal balanced situation,

the dispersion, i.e., the presence in the system of a heterogeneous distribution of overloaded and

underloaded nodes, and the dynamicity, i.e., the frequency of the dynamic changes of the load.

The load imbalance is the global standard deviation of the load of all the system nodes (let N be

their number), normalized to the average system load:

σ
µ

µ
=

−
=
∑1

2

1

()Li

N
i

N

The achievement of a good load balancing quality can be measured by the capacity of a policy

of keeping σ low during the execution.

11

The imbalance in the system can be more or less distributed: overloaded and underloaded

nodes can be homogeneously dispersed in every part of the system or they can be concentrated in

regions. The dispersion indicator (δ) measures this property: it represents the load standard

deviation (again normalized to the average system load) calculated as if each node had a load

equal to the average of its load and of the ones of its neighbors, i.e.,

δ
µ

µ µ
=

−
=
∑1 2

1

()i

i

N

N

where µi is the average load of the domain of nodes Di, composed by Ni nodes, i.e., i and its Ni-1

direct neighbors:

µ i
h

ih Di

L

N
=

∈
∑

If δ is small compared with σ, each neighborhood reflects a local imbalance comparable to the

global system imbalance: that indicates a homogeneous distribution of the imbalance in the

system. If δ is close to σ, the imbalance is concentrated and it is not easily recognizable in its real

magnitude with only a local view of the system. Figure 2 reports an example of one imbalance

with a high δ.

To characterize the load dynamicity, the previously described indicators (σ and δ) are extended

to take into account dynamic variations. In particular, the fluctuations of the load between time t

and t+∆t are measured by the normalized standard deviation of the load changes in the time span,

as if it were the only load to take into account. Formally:

∂σ
µ

(,)
()

((,))
t t t

t

L t t t

N
i

i

N

+ =
+

=
∑∆

∆ ∆1 2

1

The ∆t interval must be small enough to capture all significant variations of load and to avoid

situations where load is generated and then destroyed in one ∆t. A more integral indicator of the

dynamic load keeps into account over a time unit Τ the load variation in contiguous intervals of

time:

∆ ∆ Τ ∆ ∆
∆

σ σ ∂σ/ (,) (() ,)
/

T t t t i t t i t
i

T t

= + = + − +
=
∑ 1

1

Similarly, one can further characterize the dynamic changes of load by measuring the dispersion

of the load generated in a given interval (∆δ/T). The experiments have tested a wide range of

12

dynamic situations (by dynamically creating processes with different completion times), to covers

most practical cases corresponding to real-world applications, from static or quasi-static ones to

highly dynamic ones (∆σ/sec=200) and with different values of the dispersion of the generated

load (∆δ/sec=30%-70% of ∆σ).

Another important load factor toward the study of all kinds of load balancing policies is the

granularity of the load, i.e., the average number of entities allocated onto each node and their

variance. As a general rule, when the granularity is too coarse it prevents any load movement and

does not permit to achieve good load balancing. Similarly, the variance of the load imposed by

each entity slightly influences the load balancing quality: its growth makes the achieved load

balancing quality worsen, because the AMs have less chances to find entities with the appropriate

granularity to be selected for migration. Because granularity and variance of the load have a

similar impact for all algorithms and do not change their relative performances, the following of

this section assumes a granularity of 20 with 0 standard deviation and a threshold of 20%. The

interested reader can refer to [CorLZ96] for a detailed analysis of this issue.

4.2 Quasi-Static Load Situations

Figures 7 and 8 report the load balancing quality (i.e., the average σ) achieved depending on

the dynamicity of the system load, i.e., of ∆σ/sec, for two different values of ∆δ/sec; figure 9 and

10 report the corresponding number of migrations issued in a for each ∆σ generated.

When the system load exhibits a very low degree of dynamicity, i.e., in quasi-static load

situations, all policies achieve good load balancing with a limited number of migrations.

The basic direct-neighbor policy without distorted information (i.e., w=1) exhibits the worst

behavior in quasi-static and slowly dynamic low situation (see the left part of the figures): it is not

able to reach the same balancing quality of the other policies and it employs the higher number of

migrations.

13

0

10

20

30

40

50

60

0,2 0,5 1 2 5 10 20 50 100 200

∆∆σσ//sec

A
ve

ra
g

e
σσ

direct-neighbour - w=1

distorted information - w=0,8

distorted information - w=0,6

distorted information - w=0,4

extended load distribution - w=0,6

Figure 7. Load balancing quality depending on the dynamicity of the load; low dispersion (∆∆δδ/sec = 30% of ∆∆σσ/sec)

0

5

10

15

20

25

30

35

40

45

50

0,2 0,5 1 2 5 10 20 50 100

∆∆ σσ// sec

A
ve

ra
g

e

direct-neighbour - w =1

distorted information - w =0,8

distorted information - w =0,6

distorted information - w =0,4

extended load distribution - w =0,6

Figure 8. Load balancing quality depending on the dynamicity of the load; high dispersion (∆∆δδ/sec = 70% of ∆∆σσ/sec)

14

0

2

4

6

8

10

12

14

16

0,2 0,5 1 2 5 10 20 50 100 200

∆∆ σσ// sec

N
u

m
b

er
 o

f
M

ig
ra

ti
o

n
s

/

direct-neighbour - w =1

distorted information - w =0,8

distorted information - w =0,6

distorted information - w =0,4

extended load distribution - w =0,6

Figure 9. Number of migrations per ∆∆σσ depending on the dynamicity of the load; low dispersion (∆∆δδ/sec = 30% of ∆∆σσ/sec)

0

2

4

6

8

10

12

14

0,2 0,5 1 2 5 10 20 50 100 200

∆∆ σσ// sec

N
u

m
b

er
 o

f
M

ig
ra

ti
o

n
s

/

direct-neighbour - w =1

distorted information - w =0,8

distorted information - w =0,6

distorted information - w =0,4

extended load distribution - w =0,6

Figure 10. Number of migrations per ∆∆σσ depending on the dynamicity of the load; high dispersion (∆∆δδ/sec = 70% of ∆∆σσ/sec)

15

The distorted load information exchange scheme improves the load balancing quality and

decreases the number of migrations, because it achieves more focused migration decisions. In case

of too high distortion of the load information (i.e., of low w), the scheme deteriorates its behavior:

the residual σ is high and the number of migrations is large. As expected, highly-distorted load

information make the load balancing actions no longer reflect the real needs of the system nodes

and do not permit the policy to exploit them effectively. The experiments have revealed that the

values of w that lead to the best load balancing quality with the lowest migration effort are

comprised, in slowly dynamic situations, between 0,5 and 0,6.

The extended load distribution scheme, applied with a moderated distortion of load information

exchange, behaves the best, by obtaining the best load balancing quality with the lowest migration

effort. The capabili ty of immediately forwarding the load to less and less underloaded nodes

permits to efficiently exploit the excess of load one node is likely to receive from its neighbors to

limit the number of migrations.

By comparing figures 7 and 8, one can see that the distorted scheme achieves the greatest

improvement to the achieved load balancing in case of a high ∆δ. When ∆δ is low even the simple

direct-neighbor policy achieves quite good load balancing. When ∆δ increases, the local scope can

make it impossible for the direct-neighbor policy to detect the magnitude of the global

imbalance. The distorted load information exchange scheme and the extended load distribution

one enlarge their local view of the system and makes the policy less and less sensitive to the

dispersion of the imbalance.

4.3 Dynamic Load Situations

The situation described in the previous sub-section dramatically changes when the dynamicity

of the load becomes higher. While all the policies decrease their capacity of keeping the system

well balanced, the basic direct-neighbor policy shows itself more robust (see the right side of

figures 7 and 8). The distorted load information scheme makes the policy less and less robust as

the degree of distortion increases. The extended load distribution scheme makes the policy even

less robust w.r.t. load dynamicity. Also in this case, ∆δ influences the behavior of the policies:

16

because the distorted load information scheme and the extended distribution scheme are more

robust w.r.t. ∆δ, the higher the ∆δ of the generated load, the higher the ∆σ/sec at which these two

schemes start behaving worse than the basic direct-neighbor policy. Nevertheless, whatever the

∆δ, there exists a point in which the load dynamicity makes the distorted load information scheme

and, then, the extended load distribution one, less effective in load balancing.

These results derives from two main factors: slowness in reaction and over-reactivity.

When the actions of a policy are delayed w.r.t. the age of the information upon which they are

based, the load information could have become obsolete. Thus, instead of producing a better

balance, the actions could even produce a worse imbalance. The simple direct-neighbor policy,

triggered by any new load information, bases its decisions only on the load information that come

from its neighbors, not weighted with any other load information coming from farther nodes.

Then, the probabili ty of obsolescence of this load information is very low. The distorted load

information exchange scheme, instead, makes the policy base its decisions on the load information

coming also from non-direct-neighbor nodes. The risk of evaluating obsolete load information is

higher, making the scheme less efficient for highly dynamic applications.

With regard to the extended load distribution scheme, its limited robustness in highly dynamic

situations is not simply caused by slowness but from a form of over-reactivity caused by

inaccuracy in load information. The scheme makes load migrate farther to more and more

underloaded nodes, if any less loaded node is detected in the neighborhood, with no consideration

of the threshold. Thus, because the available load information may be inaccurate – and this

problem is exacerbated in highly dynamic situations – the absence of threshold could cause load to

be forwarded to more loaded nodes, with an effect of over-reaction in load balancing that leads to

instabili ty.

4.4 Discussion

The normalized process response time [Keo96] can be introduced as a global indicator to

comprehensively evaluate the impact of the presented policies on applications. For a given load

balancing policy, the normalized response time (NRT for short) is defined as follows:

17

NRT
RT RT

RT RT
NLB LB

NLB IDEAL

=
−

−

Where RTLB is the response time obtained by applying the load balancing policy, RTNLB

represents the response time in absence of the load balancing policy, RTIDEAL is the expected

response time in presence of an ideal load balancing tool that achieves a perfect load balancing at

zero cost. The higher the efficiency of a load balancing policy, the closer to 1 is its NRT. The

policy does not produce significant benefits on applications when NRT goes down to 0. A

negative NRT, instead, reflects a performance degradation due to the load balancing policy.

Figures 11 and 12 report the NRT (referred to the average process response times) achieved

by the implemented policies depending on the application dynamicity and for two different values

of ∆δ/T (30% of ∆σ/T and 70% of ∆σ/T). The reported data confirm our previous considerations

about the behavior of the policies:

• a limited distortion of load information achieves benefits over the simpler direct neighbor

scheme in slowly dynamic situations;

• the extended load distribution scheme can be effectively exploited by distorted load

information exchange scheme to provide further benefits in slowly dynamic situations;

• neither the distorted load information exchange scheme nor the extended load distribution

one are effective in highly dynamic situations, when the basic direct-neighbor scheme exhibits

the better performances.

Note that the extended schemes not only do not produce any benefits in highly dynamic

situations, but they also worse the response time (negative NRT) w.r.t. the no load balancing

(NLB) case. A further increase of dynamicity over the shown range would let the basic direct-

neighbor policy produce a negative NRTs too. However, the considered range of dynamicity is

wide enough to cover most practical situations that can benefit from a load balancing tool.

18

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0,2 0,5 1 2 5 10 20 50 100 200

∆σ/T

N
R

T

direct-neighbour - w=1
distorted information - w=0,8
distorted information - w=0,6
distorted information - w=0,4
extended load distribution - w=0,6
NLB
Ideal

Figure 11. NRT depending on the dynamicity of the load; low dispersion (∆∆δδ/sec = 30% of ∆∆σσ/sec)

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0,2 0,5 1 2 5 10 20 50 100 200

∆σ/T

N
R

T

direct-neighbour - w=1

distorted information - w=0,8

distorted information - w=0,6

distorted information - w=0,4

extended load distribution - w=0,6

NLB

Ideal

Figure 12. NRT depending on the dynamicity of the load; low dispersion (∆∆δδ/sec = 70% of ∆∆σσ/sec)

19

5. Related Work

Several works deal with algorithms based on the direct-neighbor concept. However, most of

them stress formal proofs and do not pay attention to concrete issues [Cyb89, QiaY91, XuL94,

MurV97]. On the one hand, these algorithms assume a global synchronization of the distributed

activities that hardly applies to real implementations on massively parallel architectures. On the

other hand, they aim to compute the convergence rate of the algorithms and to determine the

optimal schemes for load exchange, but the results apply to static load situations only and to

synchronous implementations only [Xu95]. In general, they give little information about the

behavior of the policies in real dynamic execution environments.

Different local load balancing policies have been described and evaluated in a real parallel

architecture with artificially-generated load [WilR93] or in the context of peculiar application

areas [WalB95, XuTM95]. Though these works provide useful information on the behavior of the

policies, they lack in evaluating the effect of different degrees of dynamicity on the performances

of the policies. A detailed analysis of the effect of dynamic load balancing in a dynamic

environment can be found in [CanP95]. However, this work does not aim to compare the

behavior of different load balancing policy, neither local ones, but rather to build a general model

for dynamic parallel applications under dynamic load balancing.

The issue of achieving global view of the system while keeping the communication restricted

to direct-neighbors is addressed in the well-known gradient model [LinK87] and its extensions

[LulMR91]: each underloaded node signals its presence to its neighbors; each node communicates

to its neighbors its distance from the nearest underloaded nodes. This aims to build a “proximity”

map for underloaded nodes to be used to move load in the direction of the nearest underloaded

node. Though conceptually interesting, the algorithm does not take into account the obsolescence

of the load information and the intrinsic delay in which the construction of the proximity map

incurs. Then, it can hardly fit dynamic load situations.

A local policy based on distorted load information is presented in [DutM94]: a node transmits

to its neighbours, instead of its real load, the average load of its neighborhood. The approach,

20

though similar to the one presented in this paper, does not permit the parameterization of the

degree of distortion and has not been evaluated with different degrees of dynamicity but only

within a specific application.

Load balancing algorithms with extended load distribution schemes similar to the one

presented in the paper are described in [Kal88] and [Wu95]. Apart from some difference that can

improve their effectiveness in case of high δ – the first defines minimum and maximum limits for

the number of forward actions, the seconds integrates receiver-initiated actions – both these

extensions are likely to exhibit a weak behavior in highly dynamic load situations. I have already

experienced the extended load distribution scheme in past works [CorLZ97] but never

experienced it with distorted load information.

6. Conclusions

The paper focuses on distributed load balancing policies that achieve load balancing only by

exchanging load information between neighbor nodes. A new scheme of information exchange is

presented in which the load information transmitted are distorted to make them take into account

a larger view of the system and overcome the limit of the local view. The paper evaluates the

behavior of the policies in several load situations. The main result is that the enlargement of the

locality scope produces better results for slowly dynamic applications and poorer performances in

highly dynamic situations.

On the basis of the above result, I am currently working in the design of an adaptive load

balancing policy that automatically tunes its internal parameters (i.e., the weight w of the distorted

load information exchange scheme) depending on the dynamicity of the execution environment

[Dec95, AvvRV97]. This will probably require a deeper analysis of the weight w and of its impact

depending on the characteristics of the system load.

References

[AvvRV97] M. Avvenuti, L. Rizzo, L. Vicisano, “A Hybrid Approach to Adaptive Load Sharing
and its Performance”, Journal of Systems Architecture, Vol. 42, No. 9&10, pp. 679-
696, Feb. 1997.

21

[CanP95] R. Candlin, J. Philli ps, “The Dynamic Behaviour of Parallel Programs under Process
Migration” , Concurrency: Practice and Experience, Vol. 7, No. 7, pp. 591-514, Oct.
1995.

[CorLZ92] A. Corradi, L. Leonardi, F. Zambonelli , “Load Balancing Strategies for Massively
Parallel Architectures” , Parallel Processing Letters, Vol. 2, No. 2&3, pp. 139-148.
Sept. 1992.

[CorLZ96] A. Corradi, L. Leonardi, F. Zambonelli , “Diffusive Algorithm for Dynamic Load
Balancing in Massively Parallel Architectures” , DEIS Technical Report No. DEIS-
LIA-96-001, University of Bologna, April 1996. Available at http://www-
lia.deis.unibo.it/Research/TechReport.html

[CorLZ97] A. Corradi, L. Leonardi, F. Zambonelli , “Performance Comparison of Diffusive Load
Balancing Policies” , Proceedings of EUROPAR ’97, Lecture Notes in Computer
Science, No. 1300, Springer-Verlag (D), pp. 882-886, Sept. 1997.

[Cyb89] G. Cybenko, “Dynamic Load Balancing for Distributed Memory Multiprocessors” ,
Journal of Parallel and Distributed Computing, Vol. 7, No. 2, pp. 279-301, Feb. 1989.

[Dec95] T. Decker, R. Diekmann, R. Lüling, B. Monien, “Towards Developing Universal
Dynamic Mapping Algorithms”, Proceedings of the 7th IEEE Symposium on Parallel
and Distributed Processing, pp. 456-459, 1995.

[DutM94] S. Dutt, N. M. Mahapatra, “Scalable Load Balancing Strategies for Parallel A*
Algorithms”, The Journal of Parallel and Distributed Computing, Vol. 22, No. 3, pp.
488-505, Sept. 1994.

[EagLZ86] D. L. Eager, E. D. Lazowska, J. Zahorjan, “Adaptive Load Sharing in Homogeneous
Distributed Systems”, IEEE Transactions on Software Engineering, Vol. 12, No. 5,
pp. 662-675, May 1986.

[Kal88] L. V. Kalè, “Comparing the Performance of Two Dynamic Load Distribution
Methods” , Proceedings of the International Conference on Parallel Processing, pp. 8-
12, IEEE CS Press, 1988.

[Keo96] P. K. Keong Loh, W. Jing Hsu, C. Wentong, N. Sriskantan, “How Network
Topology Affects Load Balancing” , IEEE Parallel and Distributed Technology, Vol.
4, No. 3, pp. 25-35, Fall 1996.

[LinK87] F. C. H. Lin, R. M. Keller, “The Gradient Model Load Balancing Method”, IEEE
Transactions on Software Engineering, Vol. 13, No. 1, pp. 32-38, Jan. 1987.

[LulMR91] R. Luling, B. Monien, F. Ramme, “Load Balancing in Large Networks: A
Comparative Study” , Proc. of the 3rd IEEE Symposium on Parallel and Distributed
Processing (SPDP'91), pp. 686-689, IEEE CS Press, 1991.

[Mei89] Meiko Ltd., Computing Surface Technical Manual, Meiko Technical Report, 1989

22

[MurV97] T. A Murphy, J. G. Vaughan, “On the Relative Performance of Diffusion and
Dimension Exchange Load Balancing in Hypercubes” , 5th EUROMICRO Workshop
on Parallel and Distributed Processing, London (UK), January 1997, pp. 29-34, IEEE
CS Press.

[QiaY91] X. S. Qian, Q. Yang, “Load Balancing on Generalized Hypercube and Mesh
Multiprocessors” , Proceedings of the 11th International Conference on Distributed
Computing Systems, pp. 402-409, IEEE CS Press, 1991.

[ShiKS92] N. G. Shivaratri, P. Krueger, M. Singhal, “Load Distributing for Locally Distributed
System”, IEEE Computer, Vol. 25, No. 12, pp. 33-44, Dec. 1992.

[WalB95] C. Walshaw, M. Berzins, “Dynamic Load Balancing for PDE Solvers on Adaptive
Unstructured Meshes” , Concurrency: Practice and Experience, Vol. 7, No. 1, pp. 17-
28, Feb. 1995.

[WilR93] M. H. Will ebeck-Le Mair, A. P. Reeves, “Strategies for Dynamic Load Balancing on
Highly Parallel Computers” , IEEE Transactions on Parallel and Distributed Systems,
Vol. 4, No. 9, pp. 979-993, Sept. 1993.

[Wu95] M. Y. Wu, “Symmetrical Hopping: a Scalable Scheduling Algorithm for Irregular
Problems”, Concurrency: Practice and Experience, Vol. 7, No. 7, pp. 689-706, Oct.
1995.

[Xu95] M. Xu, B. Monien, R. Luling, F. C. M. Lau, “Nearest Neighbour Algorithms for Load
Balancing in Parallel Computers” , Concurrency: Practice and Experience, Vol. 7, No.
7, pp. 707-736, Oct. 1995.

[XuL94] M. Xu, F. C. M. Lau, “Optimal Parameters for Load Balancing with the Diffusion
Method in Mesh Networks” , Parallel Processing Letters, Vol. 4, No. 2, pp. 139-147,
1994.

[XuL95] M. Xu, F. C. M. Lau, “The Generalised Dimension Exchange Method for Load
Balancing in k-ary n-cubes and Variants” , The Journal of Parallel and Distributed
Computing, Vol. 24, No. 1, pp. 72-85, January 1995.

[XuTM95] C. Z. Xu, S. Tschoke, B. Monien, “Performance Evaluation of Load Distribution
Strategies in Parallel Branch and Bound Computation” , Proceedings of the 7th

Symposium on Parallel and Distributed Processing, IEEE CS Press, 1995.

