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Abstract

The increasing complexity of cellular radio networks
yields new demands concerning network security. Espe-
cially the task of detecting, repulsing and preventing abuse
both by in- and outsiders becomes more and more difficult.
This paper deals with a relatively new technique that ap-
pears to be suitable for solving these issues, i.e. anomaly
detection based on profiling mobile users. Mobility pat-
tern generation and behavior prediction are discussed in
depth, before a new model of anomaly detection that is
based on the Bayes decision rule is introduced. Applying
this model to mobile user profiles proves the feasibility of
our approach. Finally, a special emphasis is put on dis-
cussing privacy aspects of anomaly detection.

1. Introduction

Cellular radio networks gain more and more popularity
and the amount of mobile communication will increase dra-
matically in the near future. Mobile users will no longer be
restricted to the use of mobile phones. New network archi-
tectures like UMTS will place enhanced multimedia com-
munication at the user’s disposal. One major concern for
the present and future cellular radio networks is security.
But with increasing complexity of the networks the task of
detecting, repulsing and preventing abuse by out- and insid-
ers becomes more and more difficult. Obviously it is not
possible to make any system absolutely secure with the cur-
rently known security techniques like e.g. authentication
and encryption. This is related to the fact that a lot of at-
tacks are simply based on software flaws and design errors,
which may often be intelligently combined in order to open
the door to any system under attack. One recent example is
the cloning of GSM cards [4].

Additional countermeasures are therefore needed. One
possible technique is anomaly detection based on the pro-
filing of mobile users. Anomaly detection tries to detect the

abnormal use of a system, i.e. a behavior which is signifi-
cantly different from the usual behavior of a user. It is not
restricted to any specific network environment. As a matter
of fact, an anomaly detection component is a major build-
ing block within most available intrusion detection systems
(IDS).

In this paper we focus on the application of anomaly de-
tection techniques to mobile networks, an issue which has
its own specific security requirements and user characteris-
tics. We introduce a new model of anomaly detection which
is based on the Bayes decision rule. A special emphasize is
put on the privacy protecting aspects, and it is shown that,
while a profiling function may seriously offend the privacy
of one user, it can add value to another user.

Our paper is subdivided into seven sections. After this
introduction we give a general outline of different anomaly
detection models. Thereafter we introduce our own model
based on the Bayes decision rule. In section 4 we apply
this rule to generate a profile for a mobile user and prove
its feasibility. Based on these results we continue with the
description of general application scenarios and respective
protocols. In this context we discuss privacy related is-
sues. Afterwards we compare our approach with related
work from other researchers and conclude with an outlook
on future work.

2. Anomaly Detection

The first work in the field of anomaly detection has been
done over a decade ago, focusing on main frame scenarios.
With the rise of more complex data- and telecommunication
networks like the Internet and mobile networks the design-
ers of anomaly detection systems have to face new chal-
lenges resulting from the more distributed nature of these
networks.

[23] lists three main statistical models currently used for
anomaly detection:

� operational model



� mean and standard deviation model

� time series model

The operational model is based on thresholds, i.e. an
alarm is raised if a variable observed (e.g. the number of
login attempts) reaches a certain threshold. The mean and
standard deviation model raises an alarm if an observation
does not lie within a given confidence interval. The time se-
ries model takes the time at which an event takes place into
account. If the probability for that event at that particular
time is too low an alarm is raised.

Anomaly detection systems have major advantages com-
pared to other intrusion detection approaches (see e.g. [23])
as they:

1. do not require any a priori knowledge of the target sys-
tem, and

2. provide a way to detect unknown attacks.

But there also exist serious disadvantages which have to
be considered before applying any of these techniques:

1. Not all users actually have a normal or standard behav-
ior.

2. A user can slowly change his behavior over time from
”good“ to ”bad“, i.e. fool the system by slow long-
term attacks.

3. The privacy of the users can be seriously injured.

We will come back to discuss these disadvantages and
their relevance to mobile networks later. First of all we in-
troduce our general approach towards anomaly detection,
which is based on the Bayes rule.

3. The Bayes Decision Rule

Our approach towards anomaly detection is based on the
Bayes decision rule and can therefore be classified as a sta-
tistical approach.

The Bayes decision rule is widely used in statistical pat-
tern recognition [6]. A pattern recognition problem can be
described in the following way: A set of objects can be di-
vided into a number of classes. For each of these objects we
measure a couple of observable characteristics and combine
them to a vector. This observation vector will be different
for each object, thus we can interpret this vector as a ran-
dom variableX . To classify a new object, we have to learn
the probability distribution ofX for each class. If we know
these distributions, we can calculate the probability that an
object with observation vectorx belongs to classc, namely
P (cjx). Therefore we can classify a new object in the fol-
lowing way:

1. Measure the observation vector for the object.

2. Calculate the class probabilitiesP (cjx) for every class.

3. Choose the class with the highest probability as the ob-
ject’s class.

This decision rule is called theBayes decision rule for
minimum error rate. It can be shown that every other deci-
sion rule yields even higher error rates than the Bayes rule.

The so-calleda-posterioriprobabilityP (cjx) can be ex-
pressed as:

P (cjx) =
P (c)p(xjc)

p(x)

p(xjc) is theclass conditionalprobability density of ob-
serving a vector x,P (c) is thea-priori probability for class
c, andp(x) is the probability density of observing a vector
x. Becausep(x) is constant for every class c for a partic-
ular observation vectorx, all we have to do is to learn the
class conditional probability densityp(xjc) and the a-priori
probabilityP (c). P (c) can be calculated as the relative fre-
quency of observing a vector of classc. E.g. if we observen
vectors andn1 vectors of them are of classc1, the empirical
probabilityP̂ (c1) can be calculated as

P̂ (c1) =
n1

n

p(xjc) is more difficult to learn. A simple technique is
the use of histograms: We divide the vector space into inter-
vals, count the number of vectors falling into every interval
and then estimate the probability of vectors within this in-
terval as the proportion of the number of vectors within this
part compared to the number of all vectors. This technique
only works if the number of intervals is small compared to
the number of vectors (e.g. low dimension of the vector
space).

4. Mobile User Profile Generation

We have applied the Bayes decision rule towards the gen-
eration of user profiles within GSM mobile networks.

4.1. The User and the Network

The network of GSM [12] is distributed in order to al-
low the reuse of transmission frequencies. SeveralMobile
Switching Centers(MSC) and local databases (Visitor Lo-
cation Register, VLR) are distributed in the system serving
their respective local areas (MSC-areas). The MSC-area in
turn is subdivided into severalLocation Areas(LA), and an
LA is subdivided into several cells, which are actually the
smallest unit of the cellular network. Within a cell the mo-
bile subscriber is able to call anyone and is reachable for



everyone. As the subscribers are free to go everywhere in
the service area, it is obvious that they will enter and leave
cells. Therefore, location information must be managed.
Taking into account some performance considerations, the
location information maintained in the network is in terms
of LAs. Currently management of such data is organized us-
ing a central database, theHome Location Register(HLR).
A centralized HLR stores data on subscribers and mobile
stations. When a subscriber enters a new LA served by a
new MSC, only the relevant data is downloaded to the VLR.

If a mobile terminated call from the public switched
telephone network to a GSM subscriber has to be estab-
lished, the call is routed to a gateway, calledGateway MSC
(GMSC). GMSC interrogates with the called mobile user’s
HLR. The HLR requests the currently serving VLR to find
out the routing number of the visited MSC. After receiving
the mobile subscriber’s number, the GMSC forwards the
call to the terminating MSC. The MSC initiates the trans-
mission of a paging message, i.e. the MSC pages theMo-
bile Station(MS) with a paging broadcast to all cells of the
location area, as the exact cell of the user is unknown.

Location Update(LUP) and paging procedure are the ba-
sic operations for tracking and finding a user. Both proce-
dures work with the same granularity of location informa-
tion, e.g. five cells in an LA. Therefore mobile networks al-
ready provide the basic functionality which is necessary to
track and profile users. With the use of more adaptive and
dynamic tracking and paging algorithms, i.e. the collection
and computation of more information about the users, it is
possible to define individual mobility and behavior patterns.
This additional knowledge about the users can be used to
protect them and the network providers, because the avail-
ability of user profiles allows applying anomaly detection
techniques.

Actually the first commercial versions of software which
provide a certain degree of user protection through the GSM
functionality itself have shown up on the market [3]. These
systems physically hide a GSM terminal within a vehicle,
which transmits a signal for localization purposes. The in-
tended use is fleet management, vehicle tracking, vehicle
recovery, rental services, emergency services and insurance.

Our approach goes one step further. We do not restrict
ourselves to single positions a user takes during a trip, we
also consider the different routes he normally takes over a
longer period of time. This provides us with an elaborate
user profile.

Take e.g. the following scenario into account: The mo-
bile phone card of user A has been cloned by attacker X. If
the GSM network is able to learn the routes user A normally
takes in the sense that it can predict the time at which he is
passing through single cells, the user can be tracked. In case
of any anomaly, i.e. major deviations from the route, longer
residence times or unusual cells, the user can be checked for

its current status. Thereby misuse through the cloned phone
card by attacker X can be detected by comparing the time
and place of the call with the user’s standard behavior.

One of the main questions is how the GSM network can
learn the routes of the user, i.e. predict which is the most
probable cell for a mobile station at a certain time, and what
prediction level can be achieved. The next section proposes
two algorithms for this learning process.

4.2. Decision Algorithms for Mobile Networks

The Bayesian Algorithm. If we interpret the time of day
as the observation vector and the cells as classes, we can
solve our problem of finding the most probable cell for a
mobile station at a certain time of day with the Bayes rules
as follows:

We divide the time axis into intervals (e.g. one second)
with length�t. Using the movement patterns we generate a
sequence of observation vectorst1;c1 ; t2;c2 ; : : : ; tn;cn with
ti+1;ck � ti;cl = �t. Using these vectors we estimate the
distributionsP (c) and p(xjc) by the respective empirical
distributionsP̂ (c) andp̂(xjc) and calculate with the help of
these distributions the most probable movement profile.

In the following the location algorithm using the Bayes
decision rule will be calledBayesian algorithm.

Mean Residence Times.A simpler but efficient technique
is the calculation of the mean residence times for each cell.
Here we first have to find out the different movement pat-
terns of a mobile station. Then we can use the residence
times of the samples of each movement pattern to calculate
the mean residence time for each cell. According to these
times we can construct a movement profile.

We consider this simple algorithm, which we call theAv-
erage algorithm, as an example of a domain specific algo-
rithm, while the Bayesian algorithm is universally applica-
ble.

4.3. Evaluation Modeling

The predictability of the position of a mobile station de-
pends on several factors such as:

� the number of movement patterns, and

� the variability of residence times in cells.

Even if the correct profile is chosen from the number of
profiles (movement patterns), the residence times can de-
grade the performance of a prediction algorithm. Therefore
two basic models have been developed for the performance
evaluation of our approach:

� a model of the simulation surface and the routes of the
mobile station, and



� a model of the residence times of the mobile station in
the cells.

Surface and Route Model.For the surface model we have
divided the surface into equally wide squares. Every square
models one cell, and every location area contains the same
number of cells. Every cell has got one unique number for
identification. By varying the density of the cells different
scenarios can be modeled (town, motorway). The routes
which were used for the simulation were derived from the
following real routes in Germany:

Scenario Route Distance Mean
Speed

Cell Size

town Köln-
Longerich

19 km 40 km/h 1 km

Köln-
Hochkir-
chen

motorway Aachen-
Europaplatz

74 km 100 km/h 3 km

Köln-
Longerich

In reality the base stations are located beside the roads
to save signalling costs for LU and handover. Therefore
we modified the routes on the simulation surface so that the
mobile station crosses a cell only in vertical or horizontal
direction. Thus a cell sequence can be found by the coordi-
nates of the starting point and the endpoint and the sequence
of points at which the movement direction changes.

Residence Times.The modeling of the residence times of a
mobile station in the cells is more difficult. Instead of being
fixed they vary around a certain mean. These variations can
be caused by a lot of different factors like the actual traffic
situation, the weather or the driver himself. Nonetheless,
the driving time regarding a given route cannot fall below a
minimal value because of the maximum speed of a vehicle
and the speed limits.

To derive a model for the residence times, we need statis-
tics of the behavior of individual users. Unfortunately such
statistics do not exist. So we decided to use an investigation
about driving time variations of bus routes [5]. In this inves-
tigation the driving times of the busses of three bus routes
in Dortmund (Germany) have been measured. One main re-
sult was that the variations of the driving times between two
bus stations can be described by an Erlang-k-distribution.
The Erlang-k-distribution is zero in the origin, increases to
its maximum and approaches zero again for infinity. For
k = 1 the Erlang distribution is equivalent to the exponen-
tial distribution, for largek to the normal distribution. So, if
we assume that the driving times of a car from cell border to
cell border are comparable to the driving times of a bus from

bus station to bus station, we can model the residence times
for a mobile station in a cell by an Erlang-k-distribution.

This assumption is also backed by other research in this
field [16].

We can motivate the use of an Erlang-k-distribution by
the following rationale: As a participant mostly uses the
same route through a cell, we can estimate a minimal resi-
dence timeTmin by

Tmin =
Scell

Vmax

and the actual driving timeT as

T = Tmin +�T

with Scell being the length of the route through the cell,
Vmax the maximal speed of the user and�T the variation
of the driving time which is restricted by0 � �T � 1 .
As a first approximation we can then model the time�T as
an exponentially distributed random variable [2, 13, 17].

This simple model can be refined if we consider the fact
that a route through a cell is not completely uniform, but
consists of many small pieces with different driving con-
ditions. So we can find a better approximation to reality
if we model the run through a cell as a sequence of runs
through smaller cells with i.i.d. exponentially distributed
�Tsubi (with rate�, resp.). Put it in other words: The run
through a cell may be inhomogeneous, i.e. the delay may
vary for different parts of the cell. Therefore the cell is di-
vided into subcells of such a respective size that identical
delays are experienced while crossing each of these sub-
cells. This may be modelled by a Poisson processX with
arrival rate�. Then the time between two arrivals in the
Poisson process is equivalent to the time which is necessary
for crossing one of thek subcells. Hence, the probability
that crossing the whole cell takes longer thant equals the
probability that it takes longer thant until k arrivals have
taken place, i.e. the probability that there are less or equal
k � 1 arrivals between0 andt [10]:

P (�T > t) = P (X � k � 1)

=

k�1X

j=0

(�t)j

j!
e��t

F�T (t) = P (�T � t)

= 1� P (�T > t)

= 1�

k�1X

j=0

(�t)j

j!
e��t

F�T (t) is the distribution function of the trip time for
the cell which is equal to the Erlang-k-distribution function.



4.4. Metrics

To evaluate the performance of the prediction algorithms
we use theMean Prediction Levelas a metric.

The Mean Prediction Level (MPL) is the empirical prob-
ability that a mobile station is actually in the expected cell.
This has to be verified by the verification function of the
anomaly detection system, which compares the actual cell
of the user with the expected cell(s). Lethit be the number
of successful verifications andmiss the number of unsuc-
cessful verifications. Then the MPL can be calculated as

MPL =
hit

hit+miss

4.5. General Results

The following subsections present the MPL values and
the 90% confidence intervals, which are obtained for dif-
ferent precision (different number of cells in an LA), for
both prediction algorithms (Bayesian and Average algo-
rithm) and the following verification strategies:

� Verification based on LA
The most probable cell is taken from the profile and
the corresponding LA is compared with the actual LA
of the user.

� Verification based on an2n-minute interval
The actual cell of the user is compared with the cells
which fall into the time interval(T �n; T +n) around
the most probable cell.

� Verification based onn cells
The actual cell of the user is compared with then cells
surrounding the most probable cell.

These different verification strategies define the sensitiv-
ity of the anomaly detection system concerning anomalous
behavior. The first strategy accepts the highest degree of
variance in the user’s behavior, while the other two strate-
gies are more stringent.

The results for each of the strategies are given in the fol-
lowing subsections.

Verification based on LA. Fig. 1 presents the MPL for the
motorway scenario. We can notice the same evolution of
the MPL for both algorithms. The stability of the system,
i.e. a state for which new data do not improve the learning
result, is reached after 15 days (in the following this state
will be calledconvergence state). From this point the curve
varies in a convergence interval of width 0.003, i.e. between
0.952 and 0.955. This also means that at least 15 dates must
be collected to guarantee an efficient prediction and local-
ization.

0 5 10 15 20 25 30
0.935

0.940

0.945

0.950

0.955

0.960  Avarage
 Bayes

Number of days

Figure 1. MPL - Verification based on LA for
the motorway scenario.

We can notice that this strategy obtains a very good re-
sult, because the probability of a successful verification (for
this type of user) reaches a value above 90% (0.936) at the
second day.

Fig. 2 presents the result of this strategy for a city. At
the convergence state, which is reached for both algorithms
after 15 days, the MPL is 0.835. This value is 20% lower
than the MPL value on the motorway. The reason for this
is the small cell size in the city (1 km diameter) and the
resulting small LA size.

0 5 10 15 20 25 30

0.79

0.80

0.81

0.82
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0.84

0.85
 Average
 Bayes

Number of days

Figure 2. MPL - Verification based on LA for
the city scenario.
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Figure 3. MPL - Verification based on 3 cells.

Verification based on3 cells.Fig. 3 presents the results for
the motorway scenario with a verification strategy based on
three cells. The estimation of the three cells is performed for
both algorithms in different ways. The Average algorithm
estimates for the time of the incoming call (T ) the most
probable cell and its direct neighbors from the profile ma-
trix. The Bayesian algorithm can estimate directly the three
most probable cells. At the convergence state, which is
reached with 22 days, the MPL varies around 0.85. For the
Bayesian algorithm the first value is located around 0.74,
so the gradient of the learning curve is 11% there. Consid-
ering the first value we can notice that the same value can
be achieved if we try to locate the user in one cell. This is
because, if we use only one day for estimating the profile,
then only one most probable cell exists.

Verification based on an2n-minute interval. For the ver-
fication strategy we estimate the cells at time (T ) which lie
in the (T-n;T+n) interval. The investigation of this strategy
is done forn = 20 minutes and for the city model. Both
curves start with 0.91, after the 10th day they converge at
0.97 (see Fig. 4).

With this strategy we obtain nearly the same results as by
the verification based on LA. In both cases the probability
of a successful verification is above 95%. The advantage of
this strategy is the possibility of a dynamic estimation of the
LA size for each user. If a user is called seldomly we can
choose a big time interval, for a user who is called often the
time interval is small. The size of the interval determines the
number of cells in a search area. The question is, how many
cells should be included into an interval, if we consider e.g.
a city with the cell size of 1 km. The answer is presented in

0 5 10 15 20 25 30
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0.98

 Bayes
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Number of days

Figure 4. MPL - Verification based on a 2n-
minute interval (city).
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Figure 5. The effect of the time interval on the
MPL (left) and the number of cells (right).

Fig. 5 (right). On the abscissa the different time intervals
(n = 5; 10; 20 minutes) are spread. The investigations are
performed for the convergence state (based on 30 dates for
estimating a profile). We can see that forn = 5 minutes the
number of cells is about 6.5, forn = 10 minutes 9 and for
n = 20 minutes 16. Fig. 5 (left) presents the dependence
between time interval and MPL. For intervals longer than
n = 8 minutes the user can be located with a probability of
more than 95%.

The number of cells was determined not only for the
driving time but for the whole observation period. In reality
an observation period has a duration of one day. In the simu-
lation the subscriber moves around half of the time, and the
other time he stays at the same place. That means, if a user
stays at the same place for a long time (e.g. at work), then
the average number of cells converges to 1, because most of
the calls are routed to the same cell. For the investigations
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Figure 6. The effect of the length of the sta-
tionary state on the MPL (left) and the number
of cells (right) in dependence of the time in-
terval.

above we have assumed that the subscriber spends a part of
the observation period at the same place. The next figure
(Fig. 6) shows how the MPL rates and the number of cells
(which were used for paging) change if the investigations
are limited to the period where the subscriber moves.

These results refer to the motorway and are presented
together with the results (mobile/stationary). The values for
the five minute time interval are different, the values for the
ten and twenty minute time intervals are approximately the
same. The reason for this is that for big time intervals the
user can be located anyway. For small time intervals it is
more difficult to locate the user during the trip. This long
duration of immobility influences the result.

Hence we need a classificator which indicates if a sub-
scriber is only mobile or mobile and stationary to choose
the appropriate time interval.

Notice that our current approach does not include a dy-
namic learning process in the sense that it considers already
verified actual user positions. In that sense our simulation
is a worst-case analysis and the result can be improved by
introducing the described level of dynamic learning.

5. Application Scenarios and the Privacy of the
Users

The results described above prove that it is possible to
profile certain kinds of mobile user with a high quality con-
cerning precision, speed and stability. Two general ques-
tions arise:

� Which kind of users can actually be profiled?

� Which of these users would like to be profiled?

Mobile Users

Working
people

High Mobility 
Users

House-
keepers

Taxi
Public

Transportation
Private

Car
TaxiPrivate

Car
Taxi

Public
Transportation

Private
Car

60% 15%
25%

35%
5%

60% 30% 70% 18% 16%
66%

Figure 7. Categorization of mobile users ac-
cording to their mobility behavior.

5.1. UMTS User Categories

The answer to the first question leads us to a basic ob-
servation, which actually provides the main base for our
work. The UMTS RACE specification dealing with mobil-
ity management explicitly takes the different mobility be-
havior of the users into account. For this reason the model
considers different user classes, environments, geographi-
cal areas like e.g. workers, driving in a bus from the rural to
the metropolitan area1. The classification is done according
to the statistics taken from different conurbations: London
(UK), Randstad (Netherlands) etc. A categorization of mo-
bile users considering their mobility behavior is shown in
Fig. 7 [11]2.

In a further investigation UMTS discusses the different
aspects of user mobility. There the mobility is defined as a
movement from one geographical location to another. The
categorization of the roaming area is made according to the
frequency the user visits these areas. The area with the
highest frequency is the daily used access domain. Within
this domain the user roams daily, for instance the trip of
a worker from his home to his working place. Statistics
about the starting point (generation model), the endpoint
(attraction model), movement duration, time of day or day
of week versus percentage of user types (e.g. car driver) can
be found in the RACE specification.

The general conclusion for our work must be that the
classification shows that approximately 75% of the users
can be considered as potential candidates for the success-
ful application of anomaly detection techniques. Only the
high mobility users, for which it must be expected that they
establish much more chaotic behavior patterns, are not di-
rectly suited for our approach. The other user groups can
be expected to behave according to more stringent behavior
patterns, simply because of their social environment.

1RACE considers the following areas starting from the center of the
city: metropolitan, urban, suburban and rural.

2To avoid any conflict with ETSI, we took a publication that follows
the work of RACE and was partly written from the same authors of the
RACE document.
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5.2. Profiling and Privacy

While this classification and the related numbers answer
the question what kind of users can actually be profiled, the
second question remains to be answered: Which of these
users would like to be profiled? For the mobile network sce-
nario depicted above the profiling adds an additional level
of security to specific groups of users. Other users will not
be too enthusiastic about the possibility of profiling their
behavior. In order to protect this sensitive information the
control over the profiling and anomaly detection algorithms
must obviously be located at a unit that the user trusts and/or
controls. No potential communication partner or third party
(including the network operator) should be able to have ac-
cess to the users profile.

An approach to store profiles in conformity with these
security requirements is to keep them in a trustworthy en-
vironment. [14], [20] and [21] propose to store confidential
information in a personal digital assistant or ”personal com-
munication bodyguard“. AHome Trusted Device(HTD) is
the most common realization of such a trusted and private
environment. In the following we explain the role it can
play in profile management and anomaly detection in a mo-
bile network (see Fig. 8).

The above scheme of a learning, predicting and control-
ling HTD, which supplements the classical GSM network,
can be realized as a modular extension. User B repeats his
daily movement from home to work and back. The MS con-
tinues to use the classical GSM location tracking algorithm
and collects the daily repeated moving data. This informa-
tion is transmitted to the HTD every day in a secure way
by connecting the MS directly withHTDB. Secret key
and authentication procedures guarantee the integrity of the
data. After this initial phase the HTD generates a user spe-
cific profile. The profile is stored in the HTD.

If a call has to be established (1), the GSM location
tracking algorithm sends its current location information to
the HTD (2). The HTD compares the location of the user
with his stored profile. If the location information given
by the GSM net corresponds to the stored profile, i.e. the

verification results in a positive answer, the call can be es-
tablished. Otherwise special measures, which we leave un-
specified here, have to be taken. The HTD sends its answer
back to the GSM net3 (3). This request/response signalling
should be protected using a symmetric cryptographic sys-
tem.

The measure taken in case of a deviation from the stored
profile and the sensitivity of the deviation must also be con-
trolled by the user. In general the mobile network scenario
is not that sensitive to certain attacks like other networks.
Recalling the argument that a general anomaly detection
systems can be fooled by a user, which slowly changes his
behavior over time from ”good“ to ”bad“, does not apply
to our scenario, because we do not have to deal with these
kinds of internal attacks. In case of a slow shift of the be-
havior pattern the profile must be updated, because it can be
considered to be a valid change of the user’s behavior. An
attacker must either steal a mobile device or clone the card.
In the first case only one user with a specific ID actually
uses the network, in the second case two users are present
in the net. Both attacks do not give the attacker the time to
slowly modify the stored profiles.

6. Profiling and Anomaly Detection - Related
Work

Work related and relevant to our own approach comes
from two fields:

� Network Oriented Location Management, and

� Anomaly Detection.

Concerning the network oriented location management
several investigations make the assumption that the mobility
of the users can be foretold [15], [18], [22].

The network in [15] observes the mobility of every user
and generates a profile for an individual user with the fol-
lowing content: for each period[ti; tj) the network handles
a set of location area identifiersa1; :::; an combined with
�1; :::; �n. �i is the probability that the user is in the re-
spective location areaai. Having this information in the
network ”memory“, the network does not need to explicitly
track the user’s mobility if the user follows the known mo-
bility pattern. If a call has to be established, the appropriate
set ofai’s and�i’s will be chosen considering the calling
time. The network will then broadcast in the differentai’s
according to their probabilities. Having this profile a first
check will be the calculation of the predictability level of
the user. Therefore Tabbane defines in [22] the mobility
predictability level asMPL :=

PN

i=1
�i
i

. This parame-
ter is a measure of how predictable the pattern of the users

3This check can be performed in parallel to the connection setup in
order to accelerate the call establishment.



are. In the subsequent work he evaluates his prediction by
using the MPL as an input parameter. He concludes that us-
ing a mobility profile results in a ”great amount of resource
(radio as network)“ savings especially for users with high
MPL values.

Our approach follows these dynamic location manage-
ment concepts (especially the work of [22]) and we have
also shown that this approach, like the one mentioned
above, can be used to reduce the location update and paging
costs [9]. Nonetheless the focus in these works has been put
on cost aspects and not on security aspects. To use these
profiles in the sense of an anomaly detection system for a
mobile network has to our knowledge not been considered
before.

The second branch of relevant work is the general re-
search in the field of anomaly detection, especially as a
building block of a broader IDS. Examples are the IDES
Statistical Anomaly Detector [7], which monitors a com-
puter system and adaptively learns what is normal for in-
dividual users and groups of users. Based on these data
it identifies potential intrusions. For the profiling the so-
called multivariate method is used (see also [8]). Statisti-
cal profiles and their generation can also be found in many
other systems and publications (see e.g. [1] [19]). How-
ever, to our knowledge, no work exists so far which bases
its learning mechanism on the Bayes decision rule. In ad-
dition the currently known anomaly detection mechanisms
have not been applied to the mobile network scenario de-
picted above.

7. Conclusions and Outlook

In this paper we have proposed a new algorithm for the
profiling of mobile users, which is based on the Bayes de-
cision algorithm. It has been shown that this approach can
successfully be applied in order to provide advanced secu-
rity features for mobile network users. One of our main
concerns has been the discussion of privacy problems re-
lated to the profiling of users.

Our future work will concentrate on the adaptation of
our profiling technique to standard data communication net-
works like the Internet. We will investigate the performance
of the Bayesian algorithm for Intranet and LAN scenarios,
the classical application fields of intrusion detection sys-
tems.

Further investigations will extend our approach to pro-
vide additional security to a mobile agent environments, as
obviously there exists a straightforward mapping between
the mobile network scenario (users moving from cell to cell)
and an mobile agent scenario (agents moving from server to
server).
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