
MATHEMATICS OF COMPUTATION
Volume 80, Number 273, January 2011, Pages 297–325
S 0025-5718(2010)02378-6
Article electronically published on July 14, 2010

HOW TO INTEGRATE

A POLYNOMIAL OVER A SIMPLEX

VELLEDA BALDONI, NICOLE BERLINE, JESUS A. DE LOERA, MATTHIAS KÖPPE,

AND MICHÈLE VERGNE

Abstract. This paper starts by settling the computational complexity of the
problem of integrating a polynomial function f over a rational simplex. We
prove that the problem is NP-hard for arbitrary polynomials via a generaliza-
tion of a theorem of Motzkin and Straus. On the other hand, if the polynomial
depends only on a fixed number of variables, while its degree and the dimen-
sion of the simplex are allowed to vary, we prove that integration can be done
in polynomial time. As a consequence, for polynomials of fixed total degree,
there is a polynomial time algorithm as well. We explore our algorithms with
some experiments. We conclude the article with extensions to other polytopes
and discussion of other available methods.

1. Introduction

Let Δ be a d-dimensional rational simplex inside R
n and let f ∈ Q[x1, . . . , xn]

be a polynomial with rational coefficients. We consider the problem of how to
efficiently compute the exact value of the integral of the polynomial f over Δ, which
we denote by

∫
Δ
f dm. Here we use the integral Lebesgue measure dm on the affine

hull 〈Δ〉 of the simplex Δ, defined below in Section 2.1. This normalization of
the measure occurs naturally in Euler–Maclaurin formulas for a polytope P , which
relate sums over the lattice points of P with certain integrals over the various
faces of P . For this measure, the volume of the simplex and every integral of
a polynomial function with rational coefficients are rational numbers. Thus the
result has a representation in the usual (Turing) model of computation. This is
in contrast to other normalizations, such as the induced Euclidean measure, where
irrational numbers appear.

The main goals of this article are to discuss the computational complexity of the
problem and to provide methods to do the computation that are both theoretically
efficient and have reasonable performance in concrete examples.

Computation of integrals of polynomials over polytopes is fundamental for many
applications. We already mentioned summation over lattice points of a polytope.
They also make an appearance in recent results in optimization problems connected
to moment matrices [28]. In geometric modeling, the generation of smooth mul-
tivariate polynomial splines is equivalent to integrals over slices of polyhedra (see
Chapter 4 of [32]). Integrals over polyhedra are also commonly computed in finite
element methods, where the domain is decomposed into cells (typically simplices)
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via a mesh, and complicated functions are approximated by polynomials (see for in-
stance [38]). When studying a random univariate polynomial p(x) whose coefficients
are independent random variables in certain intervals, the probability distribution
for the number of real zeros of p(x) is given as an integral over a polytope [9]. Inte-
grals over polytopes also play a very important role in statistics; see, for instance,
[30]. We remark that among all polytopes, simplices are the fundamental case to
consider for integration, since any convex polytope can be triangulated into finitely
many simplices.

Regarding the computational complexity of our problem, one can ask what hap-
pens with integration over arbitrary polytopes. It is very educational to look first
at the case when f is the constant polynomial 1, and the answer is simply a vol-
ume. It has been proved already that computing the volume of polytopes of varying
dimension is #P-hard [19, 12, 25, 29] and that even approximating the volume is
hard [20]. More recently, in [34] it was proved that computing the centroid of a
polytope is #P-hard. In contrast, for a simplex, the volume is given by a determi-
nant, which can be computed in polynomial time. One of the key contributions of
this paper is to settle the computational complexity of integrating a non-constant
polynomial over a simplex. Before we can state our results let us better understand
the input and output of our computations. Our output will always be the rational
number

∫
Δ
f dm in the usual binary encoding. The d-dimensional input simplex

will be represented by its vertices s1, . . . , sd+1 (a V -representation), but note that,
in the case of a simplex, one can go from its representation as a system of linear
inequalities (an H-representation) to a V -representation in polynomial time, simply
by computing the inverse of a matrix.

Thus the encoding size of Δ is given by the number of vertices, the dimension, and
the largest binary encoding size of the coordinates among vertices. Computations
with polynomials also require that one specifies concrete data structures for reading
the input polynomial and to carry on the calculations. There are several possible
choices. One common representation of a polynomial is as a sum of monomial
terms with rational coefficients. Some authors assume the representation is dense
(polynomials are given by a list of the coefficients of all monomials up to a given
total degree r), while other authors assume it is sparse (polynomials are specified
by a list of exponent vectors of monomials with non-zero coefficients, together with
their coefficients). Another popular representation is by straight-line programs. A
straight-line program which encodes a polynomial is, roughly speaking, a program
without branches which enables us to evaluate it at any given point (see [15, 31] and
the references therein). As we explain in Section 2, general straight-line programs
are too compact for our purposes, so instead we restrict ourselves to a subclass we
call single-intermediate-use (division-free) straight-line programs, or SIU straight-
line programs for short. The precise definition and explanation will appear in
Section 2, but for now the reader should think that polynomials are represented as
fully parenthesized arithmetic expressions involving binary operators + and ×.

Now we are ready to state our first result.

Theorem 1 (Integrating general polynomials over a simplex is hard). The following
problem is NP-hard.
Input:

(I1) numbers d, n ∈ N in unary encoding,
(I2) affinely independent rational vectors s1, . . . , sd+1 ∈ Q

n in binary encoding,
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(I3) an SIU straight-line program Φ encoding a polynomial f ∈ Q[x1, . . . , xn] with
rational coefficients.

Output, in binary encoding:

(O1) the rational number
∫
Δ
f dm, where Δ ⊆ R

n is the simplex with ver-
tices s1, . . . , sd+1 and dm is the integral Lebesgue measure of the rational
affine subspace 〈Δ〉.

But we can also prove the following positive results.

Theorem 2 (Efficient integration of polynomials of a fixed effective number of
variables). For every fixed number D ∈ N, there exists a polynomial-time algorithm
for the following problem.
Input:

(I1) numbers d, n,M ∈ N in unary encoding,
(I2) affinely independent rational vectors s1, . . . , sd+1 ∈ Q

n in binary encoding,
(I3) a polynomial f ∈ Q[X1, . . . , XD] represented by either an SIU straight-line

program Φ of formal degree at most M or a sparse or dense monomial rep-
resentation of total degree at most M ,

(I4) a rational matrix L with D rows and n columns in binary encoding, the rows
of which define D linear forms x �→ 〈�j ,x〉 on R

n.

Output, in binary encoding:

(O1) the rational number
∫
Δ
f(〈�1,x〉, . . . , 〈�D,x〉) dm, where Δ ⊆ R

n is the
simplex with vertices s1, . . . , sd+1 and dm is the integral Lebesgue measure
of the rational affine subspace 〈Δ〉.

In particular, the computation of the integral of a power of one linear form can
be done by a polynomial time algorithm. This becomes false already if one considers
powers of a quadratic form instead of powers of a linear form. Actually, we prove
Theorem 1 by looking at powers QM of the Motzkin–Straus quadratic form of a
graph.

Our method relies on properties of integrals of exponentials of linear forms.
A. Barvinok had previously investigated these integrals and their computational
complexity (see [3], [5]).

As we will see later, when its degree is fixed, a polynomial has a polynomial size
representation in either the SIU straight-line program encoding or the sparse or
dense monomial representation, and one can switch between the three representa-
tions efficiently. The notion of a formal degree of an SIU straight-line program will
be defined in Section 2.

Corollary 3 (Efficient integration of polynomials of fixed degree). For every fixed
number M ∈ N, there exists a polynomial-time algorithm for the following problem.
Input:

(I1) numbers d, n ∈ N in unary encoding,
(I2) affinely independent rational vectors s1, . . . , sd+1 ∈ Q

n in binary encoding,
(I3) a polynomial f ∈ Q[x1, . . . , xn] represented by either an SIU straight-line

program Φ of formal degree at most M or a sparse or dense monomial rep-
resentation of total degree at most M .

Output, in binary encoding:
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(O1) the rational number
∫
Δ
f(x) dm, where Δ ⊆ R

n is the simplex with ver-
tices s1, . . . , sd+1 and dm is the integral Lebesgue measure of the rational
affine subspace 〈Δ〉.

Actually, we give two interesting methods that prove Corollary 3. First, we
simply observe that a monomial with total degree M involves at most M variables.
The other method is related to the polynomial Waring problem: we decompose a
homogeneous polynomial of total degree M into a sum of M -th powers of linear
forms.

In [27] Lasserre and Avrachenkov compute the integral
∫
Δ
f(x) dm when f is

a homogeneous polynomial, in terms of the corresponding polarized symmetric
multilinear form (Proposition 18). We show that their formula also leads to a proof
of Corollary 3. Furthermore, several other methods can be used for integration of
polynomials of fixed degree. We discuss them in Section 4.

This paper is organized as follows: After some preparation in Section 2, the
main theorems are proved in Section 3. In Section 4, we discuss extensions to other
convex polytopes and give a survey of the complexity of other algorithms. Finally,
in Section 5, we describe the implementation of the two methods of Section 3, and
we report on a few computational experiments.

2. Preliminaries

In this section we prepare for the proofs of the main results.

2.1. Integral Lebesgue measure on a rational affine subspace of R
n. On

R
n itself we consider the standard Lebesgue measure, which gives volume 1 to the

fundamental domain of the lattice Z
n. Now, if we integrate using this measure

over a full-dimensional polyhedron, we will obtain a rational number. Nevertheless,
if the polyhedron is not full-dimensional, say it lies in a proper subspace L, this
may yield irrational numbers. To avoid problems in our model of computation, we
adjust the measure slightly.

Let L be a rational linear subspace of dimension d ≤ n. The lattice points inside
L form an Abelian group of rank d. This group acts on L via translation, the images
of a single point under the group action form an orbit of the action. A fundamental
domain is a subset of the space which contains exactly one point from each of these
orbits. We normalize the Lebesgue measure on L in such a way that the volume
of the fundamental domain of the intersected lattice L ∩ Z

n is 1. Then for any
affine subspace L+ a parallel to L, we define the integral Lebesgue measure dm by
translation. For example, the diagonal of the unit square has length 1 instead of√
2. Note that the standard Lebesgue measure and the integral measure coincide

when the lattice is full-dimensional, and the usual Lebesgue volume will be a scalar
multiple of the rational number we compute here.

2.2. Encoding polynomials for integration. We now explain our encoding of
polynomials as SIU straight-line programs and justify our use of this encoding. We
say that a polynomial f is represented as a (division-free) straight-line program Φ if
there is a finite sequence of polynomial functions of Q[x1, . . . , xn], namely q1, . . . , qk,
the so-called intermediate results, such that each qi is either a variable x1, . . . , xn,
an element of Q, or either the sum or the product of two preceding polynomials
in the sequence and such that qk = f . A straight-line program allows us to de-
scribe in polynomial space many polynomials which otherwise would need to be
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Table 1. The representation of (x2
1 + · · ·+ x2

n)
k as a straight-line program

Intermediate Comment

q1 = 0
q2 = x1

q3 = q2 · q2
q4 = q1 + q3 Thus q4 = x2

1.
q5 = x2

q6 = q5 · q5
q7 = q4 + q6 Now q7 = x2

1 + x2
2.

...
q3n−1 = xn

q3n = q3n−1 · q3n−1

q3n+1 = q3n−2 + q3n Now q3n+1 = x2
1 + · · ·+ x2

n.
q3n+2 = 1
q3n+3 = q3n+2 · q3n+1

q3n+4 = q3n+3 · q3n+1

...
q3n+k+2 = q3n+k+1 · q3n+1 Final result.

described with exponentially many monomial terms. For example, think of the
representation of (x2

1 + · · · + x2
n)

k as monomials versus its description with only
3n+ k+2 intermediate results; see Table 1. The number of intermediate results of
a straight-line program is called its length. To keep track of constants we define the
size of an intermediate result as one, unless the intermediate result is a constant,
in which case its size is the binary encoding size of the rational number. The size
of a straight-line program is the sum of the sizes of the intermediate results. The
formal degree of an intermediate result qi is defined recursively in the obvious way,
namely as 0 if qi is a constant of Q, as 1 if qi is a variable xj , as the maximum of the
formal degrees of the summands if qi is a sum, and as the sum of the formal degrees
of the factors if qi is a product. The formal degree of the straight-line program Φ is
the formal degree of the final result qk. Clearly the total degree of a polynomial is
bounded by the formal degree of any straight-line program which represents it.

A favorite example to illustrate the benefits of a straight-line program encoding
is that of the symbolic determinant of an n×n matrix. Its dense representation as
monomials has size Θ(n!), but it can be computed in O(n3) operations by Gaussian
elimination. See the book [15] as a reference for this concept.

From a monomial representation of a polynomial of degree M and n, variables it
is easy to encode it as a straight-line program: first, by going in increasing degree
we can write a straight-line program that generates all monomials of degree at most
M in n variables. Then for each of them compute the product of the monomial
with its coefficient; thus the length doubles. Finally, successively add each term.
This gives a final length bounded above by four times the number of monomials of
degree at most M in n variables.

Straight-line programs are quite natural in the context of integration. One would
certainly not expand (x2

1 + · · ·+ x2
n)

k to carry on numeric integration when we can
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Table 2. The representation of a straight-line program for x2k ,
using iterated squaring

Intermediate Comment

q1 = x
q2 = q1 · q1
q3 = q2 · q2

...
qk+1 = qk · qk Final result.

easily evaluate it as a function. More importantly, straight-line programs are suit-
able as an input and output encoding and data structure in certain symbolic algo-
rithms for computations with polynomials, like factoring; see [15]. Since straight-
line programs can be very compact, the algorithms can handle polynomials whose
input and output encodings have an exponential size in a sparse monomial repre-
sentation.

However, a problem with straight-line programs is that this input encoding can
be so compact that the output of many computational questions cannot be written
efficiently in the usual binary encoding. For example, while one can encode the

polynomial x2k with a straight-line program with only k+1 intermediate results (see

Table 2), when we compute the value of x2k for x = 2, or the integral
∫ 2

0
x2k dx =

22
k+1/(2k + 1), the binary encoding of the output has a size of Θ(2k). Thus the

output, given in binary encoding, turns out to be exponentially larger than the input
encoding. We remark that the same difficulty arises if we choose a sparse input
encoding of the polynomial, where not only the coefficients but also the exponent
vectors are encoded in binary encoding (rather than the usual unary encoding for
the exponent vectors).

This motivates the following variation of the notion of straight-line program:
We say a (division-free) straight-line program is single-intermediate-use, or SIU
for short, if every intermediate result is used only once in the definition of other
intermediate results. (However, the variables x1, . . . , xn can be used arbitrarily
often in the definition of intermediate results.) With this definition, all ways to

encode the polynomial x2k require at least 2k multiplications. An example SIU
straight-line program is shown in Table 3. Clearly, single-intermediate-use straight-
line programs are equivalent, in terms of expressiveness and encoding complexity,
to fully parenthesized arithmetic expressions using binary operators + and ×.

2.3. Efficient computation of a truncated product of an arbitrary number
of polynomials in a fixed number of variables. The following result will be
used in several situations.

Lemma 4. For every fixed number D ∈ N, there exists a polynomial time algorithm
for the following problem.
Input: a number M in unary encoding, a sequence of k polynomials Pj ∈
Q[X1, . . . , XD] of total degree at most M , in dense monomial representation.
Output: the product P1 · · ·Pk truncated at degree M .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



HOW TO INTEGRATE A POLYNOMIAL OVER A SIMPLEX 303

Table 3. The representation of a single-intermediate-use straight-

line program for x2k ; note that the iterated squaring method can-
not be used

Intermediate Comment

q1 = x
q2 = x
q3 = q1 · q2 Now q3 = x2, and q1 and q2 can-

not be used anymore.
q4 = x
q5 = q3 · q4 Thus q5 = x3.

...
q2k+1−2 = x
q2k+1−1 = q2k+1−3 · q2k+1−2 Final result.

Proof. We start with the product of the first two polynomials. We compute the
monomials of degree at most M in this product. This takes O(M2D) elementary
rational operations, and the maximum encoding length of any coefficient in the
product is also polynomial in the input data length. Then we multiply this trun-
cated product with the next polynomial, truncating at degree M , and so on. The
total computation takes O(kM2D) elementary rational operations. �

3. Proofs of the main results

Our aim is to perform an efficient computation of
∫
Δ
f dm where Δ is a simplex

and f a polynomial. We will first prove that this is not possible for f of varying
degree under the assumption that P �= NP. More precisely, we prove that, under
this assumption, an efficient computation of

∫
Δ
QM dm is not possible, where Q is

a quadratic form and M is allowed to vary.
In the next subsection we present an algorithm to efficiently compute the integral∫

Δ
f dm in some particular situations, most notably the case of arbitrary powers of

linear forms.

3.1. Hardness for polynomials of non-fixed degree. For the proof of Theorem
1 we need to extend the following well-known result of Motzkin and Straus [33]. In
this section, we denote by Δ the (n− 1)-dimensional canonical simplex {x ∈ R

n :
xi ≥ 0,

∑n
i=1 xi = 1 }, and we again denote by dm the integral Lebesgue measure

on the hyperplane {x ∈ R
n :

∑n
i=1 xi = 1 }.

Just for this subsection, in order to simplify our calculations, we normalized
further so that Δ has volume 1 instead of 1/d! (this is just a multiple factor dif-
ference). For a function f on Δ, denote as usual ‖f‖∞ = maxx∈Δ |f(x)| and

‖f‖p = (
∫
Δ
|f |p dm)1/p, for p ≥ 1. Recall that the clique number of a graph G is

the largest number of vertices of a complete subgraph of G.

Theorem 5 (Motzkin–Straus). Let G be a graph with n vertices, edge set E(G) and
clique number ω(G). Let QG(x) be the Motzkin–Straus quadratic form
1
2

∑
(i,j)∈E(G) xixj. Then ‖QG(x)‖∞ = 1

2 (1−
1

ω(G) ).
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Our first result might be of independent interest, as it shows that integrals of
polynomials over simplices can carry very interesting combinatorial information.
This result builds on the theorem of Motzkin and Straus, using the proof of the
well-known relation ‖f‖∞ = limp→∞ ‖f‖p.

Lemma 6. Let G be a graph with n vertices and clique number ω(G). Let QG(x)
be the Motzkin–Straus quadratic form. Then for p ≥ 4(e− 1)n3 ln(32n2), the clique
number ω(G) is equal to

⌈
1

1−2‖QG‖p

⌉
.

To prove Lemma 6 we will first prove the following intermediate result.

Lemma 7. For ε > 0 we have

(‖QG‖∞ − ε)(
ε

4
)(n−1)/p ≤ ‖QG‖p ≤ ‖QG‖∞ .

Proof. The right-hand side inequality follows from the normalization of the mea-
sure, as |QG(x)| ≤ ‖QG‖∞, for all x ∈ Δ.

In order to obtain the other inequality, we use Hölder’s inequality
∫
Δ
|fg| dm ≤

‖f‖p ‖g‖q, where q is such that 1
p + 1

q = 1. For any (say) continuous function f on

Δ, let us denote by Δ(f, ε) the set {x ∈ Δ : |f(x)| ≥ ‖f‖∞− ε } and take for g the
characteristic function of Δ(f, ε). We obtain

(1) (‖f‖∞ − ε)(volΔ(f, ε))1/p ≤ ‖f‖p .

Let a be a point of Δ where the maximum of QG is attained. Since ∂QG

∂xi
=

∑
(i,j)∈E(G) xj we know that 0 ≤ ∂QG

∂xi
≤ 1 for x ∈ Δ. Since Δ is convex, we

conclude that for any x ∈ Δ,

0 ≤ QG(a)−QG(x) ≤
n∑

i=1

|ai − xi| .

Thus Δ(QG, ε) contains the set Cε = {x ∈ Δ :
∑n

i=1 |ai − xi| < ε}. We claim
that vol(Cε) ≥ ( ε4 )

n−1. This claim proves the left inequality of the lemma when we
apply it to (1).

Consider the dilated simplex ε/2
1+ε/2Δ and the translated set Pε =

a
1+ε/2+

ε/2
1+ε/2Δ.

Clearly Pε is contained in Δ. Moreover, for x ∈ Pε, we have
∑n

i=1 |ai − xi| ≤
ε

1+ε/2 ≤ ε, hence Pε is contained in Cε. Since vol(Δ) = 1 for the normalized

measure, the volume of Pε is equal to ( ε/2
1+ε/2 )

n−1. Hence vol(Pε) ≥ (ε/4)n−1. This

finishes the proof. �

Proof of Lemma 6. In the inequalities of Lemma 7, we substitute the relation
‖QG‖∞ = 1

2 (1 − 1
ω(G) ), given by Motzkin–Straus’s theorem (Theorem 5). We

obtain

(
1

2
(1− 1

ω(G)
)− ε)(ε/4)

n−1
p ≤ ‖QG‖p ≤ 1

2
(1− 1

ω(G)
).

Let us rewrite these inequalities as

(2)
1

1− 2 ‖QG‖p
≤ ω(G) ≤ 1

1− 2‖QG‖p

(ε/4)(n−1)/p − 2ε
.
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We only need to prove that for ε = 1
8n2 and p ≥ 4(e− 1)n3 ln(32n2) we have

(3) 0 ≤ L(p) :=
1

1− 2‖QG‖p

(ε/4)
n−1
p

− 2ε
− 1

1− 2 ‖QG‖p
< 1.

Let us write

δp = ‖QG‖p (
1

(ε/4)
n−1
p

− 1) = ‖QG‖p ((32n2)
n−1
p − 1).

Thus L(p) in (3) now becomes

(4) L(p) =
1

1− 2 ‖QG‖p
( 1

1− 2
δp+ε

1−2‖QG‖p

− 1
)
.

Since ‖QG‖p ≤ 1
2 (1−

1
ω(G) ) ≤

1
2 , we have a bound for δp:

0 ≤ δp ≤ 1

2
((32n2)

n−1
p − 1).

Let A = ( 4ε )
n−1 = (32n2)n−1. Since we assumed p ≥ 4(e − 1)n3 ln(32n2), we have

0 ≤ lnA
p < 1; hence 0 ≤ A1/p − 1 < (e− 1) lnA

p . We obtain

0 ≤ δp ≤ e− 1

2

(n− 1) log(32n2)

p
≤ 1

8n2
.

Since ω(G) ≤ n, we have 1− 2 ‖QG‖p ≥ 1/n. Hence we have

2(δp + ε)

1− 2 ‖QG‖p
≤ 1

2n
≤ 1

2
.

Finally, for any number 0 < α < 1/2 we have 1
1−α < 1 + 2α. Hence applying this

fact to (4), with α = 2
δp+ε

1−2‖QG‖p
we get

L(p) <
1

1− 2 ‖QG‖p
( 4(δ + ε)

1− 2 ‖QG‖p
)
≤ 4n2(δp + ε) ≤ 1.

This proves (3) and the lemma. �
Proof of Theorem 1. The problem of deciding whether the clique number ω(G) of
a graph G is greater than a given number K is a well-known NP-complete problem
[21]. From Lemma 6 we see that checking this is the same as checking that for
p = 4(e−1)n3 ln(32n2) the integral part of

∫
Δ
(QG)

p dm is less than Kp. Note that
the polynomial QG(x)

p is a power of a quadratic form and can be encoded as a
SIU straight-line program of length O(n3 log n · |E(G)|). If the computation of the
integral

∫
Δ
f dm of a polynomial f could be done in polynomial time in the input

size of f , we could then verify the desired inequality in polynomial time as well. �

3.2. An extension of a formula of Brion. In this section, we obtain several
expressions for the integrals

∫
Δ
e� dm and

∫
Δ
�M1
1 · · · �MD

D dm, where Δ ⊂ R
n is a

simplex, �, �1, . . . , �D are linear forms on R
n and dm again denotes the integral

Lebesgue measure. The first formula, (5) in Lemma 8, is obtained by elementary
iterated integration on the standard simplex. It leads to a computation of the
integral

∫
Δ
�M1
1 · · · �MD

D dm in terms of the Taylor expansion of a certain analytic
function associated to Δ (Corollary 11), hence to a proof of the complexity result
of Theorem 2.
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In the case of one linear form � which is regular, we recover in this way the
“short formula” of Brion as Corollary 12. This result was first obtained by Brion
as a particular case of his theorem on polyhedra [13].

Lemma 8. Let Δ be the simplex that is the convex hull of (d + 1) affinely inde-
pendent vertices s1, s2, . . . , sd+1 in R

n, and let � be an arbitrary linear form on R
n.

Then

(5)

∫

Δ

e� dm = d! vol(Δ, dm)
∑

k∈Nd+1

〈�, s1〉k1 · · · 〈�, sd+1〉kd+1

(|k|+ d)!
,

where |k| =
∑d+1

j=1 kj.

Proof. Using an affine change of variables, it is enough to prove (5) when Δ is the
d-dimensional standard simplex Δst ⊂ R

d defined by

Δst =

{

x ∈ R
d : xi ≥ 0,

d∑

i=1

xi ≤ 1

}

.

The volume of Δst is equal to 1
d! . In the case of Δst, the vertex sj is the basis

vector ej for 1 ≤ j ≤ d and sd+1 = 0. Let 〈�, x〉 =
∑d

j=1 ajxj . Then (5) becomes
∫

Δst

ea1x1+···+adxd dx =
∑

k∈Nd

ak1
1 · · · akd

d

(|k|+ d)!
.

We prove it by induction on d. For d = 1, we have
∫ 1

0

eax dx =
ea − 1

a
=

∑

k≥0

ak

(k + 1)!
.

Let d > 1. We write
∫

Δst

ea1x1+···+adxd dx

=

∫ 1

0

eadxd

( ∫

xj≥0
x1+···+xd−1≤1−xd

ea1x1+···+ad−1xd−1 dx1 · · · dxd−1

)

dxd.

By the induction hypothesis and an obvious change of variables, the inner integral
is equal to

(1− xd)
d−1

∑

k∈Nd−1

(1− xd)
|k| a

k1
1 · · · akd−1

d−1

(|k|+ d− 1)!
.

The result now follows from the relation
∫ 1

0

(1− x)p

p!
eax dx =

∑

k≥0

ak

(k + p+ 1)!
.

�
Remark 9. Let us replace � by t� in (5) and expand in powers of t. We obtain the
following formula:

(6)

∫

Δ

�M dm = d! vol(Δ, dm)
M !

(M + d)!

∑

k∈Nd+1,|k|=M

〈�, s1〉k1 · · · 〈�, sd+1〉kd+1 .
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This relation is a particular case of a result of Lasserre and Avrachenkov, Proposi-
tion 18, as we will explain in Section 4.3 below.

Theorem 10. Let Δ be the simplex that is the convex hull of (d + 1) affinely
independent vertices s1, s2, . . . , sd+1 in R

n. Then we have:

(7)
∑

M∈N

tM
(M + d)!

M !

∫

Δ

�M dm = d! vol(Δ, dm)
1

∏d+1
j=1(1− t〈�, sj〉)

.

Proof. We apply formula (6). Summing up from M = 0 to ∞, we recognize the
expansion of the right-hand side of (7) into a product of geometric series:

∑

M∈N

tM
(M + d)!

M !

∫

Δ

�M dm

= d! vol(Δ, dm)
∑

M∈N

tM
∑

k∈Nd+1|,k|=M

〈�, s1〉k1 · · · 〈�, sd+1〉kd+1 .

�

Theorem 10 has an extension to the integration of a product of powers of sev-
eral linear forms. The following formula is implemented in our Maple program
duality.mpl; see Table 7.

Corollary 11. Let �1, . . . , �D be D linear forms on R
n. We have the following

Taylor expansion:

(8)
∑

M∈ND

tM1
1 · · · tMD

D

(|M|+ d)!

d! vol(Δ, dm)

∫

Δ

�M1
1 · · · �MD

D

M1! · · ·MD!
dm

=
1

∏d+1
i=1 (1− t1〈�1, si〉 − · · · − tD〈�D, si〉)

.

Proof. Replace t� with t1�1 + · · · + tD�D in (7) and take the expansion in powers

tM1
1 · · · tMD

D . �

From Theorem 10, we easily obtain the “short formula” of Brion, in the case of
a simplex.

Corollary 12 (Brion). Let Δ be as in the previous theorem. Let � be a linear form
which is regular w.r.t. Δ, i.e., 〈�, si〉 �= 〈�, sj〉 for any pair i �= j. Then we have the
following relations:

∫

Δ

�M dm = d! vol(Δ, dm)
M !

(M + d)!

( d+1∑

i=1

〈�, si〉M+d

∏
j �=i〈�, si − sj〉

)
,(9)

∫

Δ

e� dm = d! vol(Δ, dm)

d+1∑

i=1

e〈�,si〉
∏

j �=i〈�, si − sj〉
.(10)

Proof. We consider the right-hand side of (7) as a rational function of t. The poles
t = 1/〈�, si〉 are simple precisely when � is regular. In this case, we obtain (9) by
taking the expansion into partial fractions. The second relation follows immediately
by expanding e�. �
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When � is regular, Brion’s formula is very short; it is a sum of d+1 terms. When
� is not regular, the expansion of (7) into partial fractions leads to an expression
of the integral as a sum of residues. Let K ⊆ {1, . . . , d+ 1} be an index set of the
different poles t = 1/〈�, sk〉, and for k ∈ K let mk denote the order of the pole, i.e.,

mk = #
{
i ∈ {1, . . . , d+ 1} : 〈�, si〉 = 〈�, sk〉

}
.

With this notation, we have the following formula, which is implemented in our
Maple program waring.mpl; see Tables 4 and 5.

Corollary 13.

(11)

∫

Δ

�M dm

= d! vol(Δ, dm)
M !

(M + d)!

∑

k∈K

Resε=0
(ε+ 〈�, sk〉)M+d

εmk
∏

i∈K
i �=k

(ε+ 〈�, sk − si〉)mi
.

Remark 14. It is worth remarking that Corollaries 12 and 13 can be seen as a par-
ticular case of the localization theorem in equivariant cohomology (see for instance
[8]), although we did not use this fact and instead gave a simple direct calculation.
In our situation, the variety is the complex projective space CP

d, with action of
a d-dimensional torus, such that the image of the moment map is the simplex Δ.
Brion’s formula corresponds to the generic case of a one-parameter subgroup act-
ing with isolated fixed points. In the degenerate case when the set of fixed points
has components of positive dimension, the polar parts in (11) coincide with the
contributions of the components to the localization formula.

A formula equivalent to Corollary 13 already appears in [3], (3.2).

3.3. Polynomial-time algorithm for polynomial functions of a fixed num-
ber of linear forms.

Proof of Theorem 2. We now present an algorithm which, given a polynomial of
the particular form f(〈�1,x〉, . . . , 〈�D,x〉) where f is a polynomial depending on a
fixed number D of variables, and 〈�j ,x〉 = Lj1x1+ · · ·+Ljnxn for j = 1, . . . , D are
linear forms on R

n, computes its integral on a simplex, in time polynomial on the
input data. This algorithm relies on Corollary 11.

The number of monomials of degree M in D variables is equal to
(
M+D−1

D−1

)
.

Therefore, when D is fixed, the number of monomials of degree at most M in D
variables is O(MD). When the number of variables D of a straight-line program Φ
is fixed, it is possible to compute a sparse or dense representation of the polynomial
represented by Φ in polynomial time, by a straightforward execution of the program.
Indeed, all intermediate results can be stored as sparse or dense polynomials with
O(MD) monomials. Since the program Φ is single-intermediate-use, the binary
encoding size of all coefficients of the monomials can be bounded polynomially by
the input encoding size. Thus it is enough to compute the integral of a monomial,

(12)

∫

Δ

〈�1,x〉M1 · · · 〈�D,x〉MD dm.

From Corollary 11, it follows that

(|M|+ d)!

d! vol(Δ, dm)

∫

Δ

�M1
1 · · · �MD

D

M1! · · ·MD!
dm
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is the coefficient of tM1
1 · · · tMD

D in the Taylor expansion of

1
∏d+1

i=1 (1− t1〈�1, si〉 − · · · − tD〈�D, si〉)
.

Since D is fixed, this coefficient can be computed in time polynomial with respect
to M and the input data, by multiplying the series truncated at degree |M|, as
explained in Lemma 4.

Finally, vol(Δ, dm) needs to be computed. If Δ = conv{s1, . . . , sd+1} is full-
dimensional (d = n), we can do so by computing the determinant of the matrix
formed by difference vectors of the vertices:

vol(Δ, dm) =
1

n!
|det(s1 − sn+1, . . . , sn − sn+1)| .

If Δ is lower-dimensional, we first compute a basis B ∈ Z
n×d of the intersection

lattice Λ = lin(Δ) ∩ Z
n. This can be done in polynomial time by applying an

efficient algorithm for computing the Hermite normal form [24]. Then we express
each difference vector vi = si − sd+1 ∈ lin(Δ) for i = 1, . . . , d using the basis B as
vi = Bv′

i, where vi ∈ Q
d. We obtain

vol(Δ, dm) =
1

d!
|det(v′

1, . . . ,v
′
d)| ,

thus the volume computation is reduced to the calculation of a determinant. This
finishes the proof of Theorem 2. �

3.4. Polynomial time algorithms for polynomials of fixed degree. In the
present section, we assume that the total degree of the input polynomial f we wish
to integrate is a constant M .

Proof of Corollary 3. First of all, when the formal degree M of a straight-line pro-
gram Φ is fixed, it is possible to compute a sparse or dense representation of the
polynomial represented by Φ in polynomial time, by a straightforward execution
of the program. Indeed, all intermediate results can be stored as sparse or dense
polynomials with O(nM ) monomials. Since the program Φ is single-intermediate-
use, the binary encoding size of all coefficients of the monomials can be bounded
polynomially by the input encoding size.

Now, the key observation is that a monomial of degree at most M depends
effectively on D ≤ M variables xi1 , . . . , xiD . Thus it is of the form

�M1
1 · · · �MD

D ,

where the linear forms �j(x) = xij are the coordinates that effectively appear in the
monomial. Thus, Corollary 3 follows immediately from Theorem 2. This method
is implemented in our Maple program duality.mpl, see Tables 7 and 131. �

Remark 15. The relations in Corollary 12 can be interpreted as equalities between
meromorphic functions of �. The right-hand side is a sum of meromorphic functions
whose poles cancel out so that the sum is actually analytic. We derive from this
another polynomial time algorithm for computating the integral

∫

Δ

xm1
1 · · ·xmd

d dm.

1See the “Note” following §6 regarding Tables 9–16.
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More precisely, let us write 〈�,x〉 = y1x1+ · · ·+ ydxd. Then the integral
∫
Δ
xm1
1 · · ·

xmd

d dm is the coefficient of
y
m1
1 ···ymd

d

m1!···md!
in the Taylor expansion of

∫
Δ
ey1x1+···+ydxd dm.

We compute it by taking the expansion of each of the terms of the right hand-side
of (9) into an iterated Laurent series with respect to the variables x1, . . . , xd. This
method is implemented in our Maple program iterated-laurent.mpl; see Tables
12 and 14.

In the following, we give another proof of Corollary 3, based on decompositions
of polynomials as sums of powers of linear forms.

Alternative proof of Corollary 3. From Corollaries 12 and 13, we derive another
efficient algorithm, as follows. The key idea now is that one can decompose the
polynomial f as a sum f :=

∑
� c��

M
j with at most 2M terms in the sum. We use

the well-known identity

(13) xM1
1 xM2

2 · · ·xMn
n

=
1

|M|!
∑

0≤pi≤Mi

(−1)|M|−(p1+···+pn)

(
M1

p1

)

· · ·
(
Mn

pn

)

(p1x1 + · · ·+ pnxn)
|M|,

where |M| = M1 + · · ·+Mn ≤ M .
In the implementation of this method, we may group together proportional linear

forms. The number F (n,M) of primitive vectors (p1, . . . , pn) which appear in the
decomposition of a polynomial of total degree ≤ M is given by the following closed
formula.2

Lemma 16. Let

F (n,M) = Card({(p1, . . . , pn) ∈ N
n, gcd(p1, . . . , pn) = 1, 1 ≤

∑

i

pi ≤ M}).

Then

(14) F (n,M) =
M∑

d=1

μ(d)(

(
n+ [Md ]

n

)

− 1),

where μ(d) is the Möbius function.
When M is fixed and n → ∞, we have

F (n,M) =
nM

M !
+ O(nM−1).

Proof. Let G(n,M) = Card({(p1, . . . , pn) ∈ N
n, 1 ≤

∑
pi ≤ M}). By grouping

together the vectors (p1, . . . , pn) with a given gcd d, we obtain

G(n,M) =

M∑

d=1

F (n, [
M

d
]).

Moreover, the number of all integral vectors (p1, . . . , pn) ∈ N
n such that

∑
i pi ≤ M

is equal to the binomial coefficient
(
n+M

n

)
. When we omit the zero-vector we obtain

G(n,M) =

(
n+M

n

)

− 1.

2Lemma 16 was kindly supplied by Christophe Margerin.
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Then we obtain (14) by applying the second form of the Möbius inversion formula.
The asymptotics follow easily from (14). �

Thus formula (13), together with Corollary 13, give another polynomial time
algorithm for integrating a polynomial of fixed degree. It is implemented in our
Maple program waring.mpl; see Tables 5 and 11. �

The problem of finding a decomposition with the smallest possible number of
summands is known as the polynomial Waring problem. Alexander and Hirschowitz
[1] solved the generic problem (see [11] for an extensive survey).

Theorem 17. The smallest integer r(M,n), such that a generic homogeneous poly-
nomial of degree M in n variables is expressible as the sum of r(M,n) M -th powers
of linear forms, is given by

r(M,n) =

⌈(
n+M−1

M

)

n

⌉

,

with the exception of the cases r(3, 5) = 8, r(4, 3) = 6, r(4, 4) = 10, r(4, 5) = 15,
and M = 2, where r(2, n) = n.

An algorithm for decomposing a given polynomial into the smallest possible
number of powers of linear forms can be found in [10].

In the extreme case, when the polynomial f happens to be the power of one
linear form �, one should certainly avoid applying the above decomposition formula
to each of the monomials of f . We remark that, when the degree is fixed, we
can decide in polynomial time whether a polynomial f , given in sparse or dense
monomial representation, is a power of a linear form � and, if so, construct such a
linear form.

4. Other algorithms for integration

and extensions to other polytopes

We conclude with a discussion of how to extend integration to other polytopes
and a review of the complexity of other methods to integrate polynomials over
polytopes.

4.1. A formula of Lasserre–Avrachenkov. Another nice formula is the
Lasserre–Avrachenkov formula for the integration of a homogeneous polynomial
[27] on a simplex. As we explain below, this yields a polynomial-time algorithm for
the problem of integrating a polynomial of fixed degree over a polytope in varying
dimension, thus providing an alternative proof of 3.

Proposition 18 ([27]). Denote by dx the standard Lebesgue measure. Let H be a
symmetric multilinear form defined on (Rd)M . Let s1, s2, . . . , sd+1 be the vertices
of a d-dimensional simplex Δ. Then one has

(15)

∫

Δ

H(x,x, . . . ,x)dx =
vol(Δ)
(
M+d
M

)
∑

1≤i1≤i2≤···≤iM≤d+1

H(si1 , si2 , . . . , siM ).
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Remark 19. By reindexing the summation in (15), as H is symmetric, we obtain
∫

Δ

H(x,x, . . . ,x)dx

=
vol(Δ)
(
M+d
M

)
∑

k1+···+kd+1=M

H(s1, . . . , s1, . . . , sd+1, . . . , sd+1),
(16)

where s1 is repeated k1 times, s2 is repeated k2 times, etc. When H is of the

form H =
∏M

i=1〈�,xi〉, for a single linear form �, then (16) coincides with (6) in
Remark 9.

Now any polynomial f which is homogeneous of degree M can be written
as f(x) = Hf (x,x, . . . ,x) for a unique multilinear form Hf . If f = �M , then

Hf =
∏M

i=1〈�,xi〉. Thus for fixed M the computation of Hf can be achieved by
decomposing f into a linear combination of powers of linear forms, as we did in
the proof of Corollary 3. Alternatively one can use the well-known polarization
formula,

(17) Hf (x1, . . . ,xM ) =
1

2MM !

∑

ε∈{±1}M

ε1ε2 · · · εMf
( M∑

i=1

εixi

)
,

Thus from (15) we get the following corollary.

Corollary 20. Let f be a homogeneous polynomial of degree M in d variables, and
let s1, s2, . . . , sd+1 be the vertices of a d-dimensional simplex Δ. Then

(18)

∫

Δ

f(y) dy

=
vol(Δ)

2MM !
(
M+d
M

)
∑

1≤i1≤i2≤···≤iM≤d+1

∑

ε∈{±1}M

ε1ε2 · · · εMf
( M∑

k=1

εksik

)
.

We remark that when we fix the degree M of the homogeneous polynomial f ,
the length of the polarization formula (thus the length of the second sum in (18))
is a constant. The length of the first sum in (18) is O(nM ). Thus, for fixed degree
in varying dimension, we obtain another polynomial-time algorithm for integrating
over a simplex. Note that the integral resembles a cubature formula, as the integral
is a weighted sum (with weights +1,−1) of f evaluated at sums of vertices. We
will discuss more about this in Section 5.

4.2. Traditional conversion of the integral as iterated univariate integrals.
Let P ⊆ R

d be a full-dimensional polytope and f a polynomial. The traditional
method with which we teach our calculus students to compute multivariate integrals
over a bounded region requires them to write the integral

∫
P
f dm as a sum of

sequences of one-dimensional integrals

(19)

K∑

j=1

∫ b1j

a1j

∫ b2j

a2j

· · ·
∫ bdj

adj

f dxi1 dxi2 . . . dxid

for which we know the limits of integration aij , bij explicitly. The problem of finding
the limits of integration and the sum has interesting complexity related to the well-
known Fourier-Motzkin elimination method (see Chapter One in [37] for a short
introduction).
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Given a system of linear inequalities Ax ≤ b, describing a polytope P ⊂ R
d,

Fourier–Motzkin elimination is an algorithm that computes a new larger system of
inequalities Âx ≤ b̂ with the property that those inequalities that do not contain
the variable xd describe the projection of P into the hyperplane xd = 0. We will
not explain the details, but Fourier-Motzkin elimination is quite similar to Gaussian
elimination in the sense that the main operations necessary to eliminate the last
variable xd require one to rearrange, scale, and add rows of the matrix (A,b), but
unlike Gaussian elimination, new inequalities are added to the system.

It was first observed by Schechter [35] that Fourier-Motzkin elimination provides
a way to generate the traditional iterated integrals. More precisely, let us call Pd

the projection of P into the the hyperplane xd = 0. Clearly, when integrating over
a polytopal region we expect that the limits of integration will be affine functions.
From the output of Fourier-Motzkin Âx ≤ b̂, we have that x ∈ P if and only if
(x1, . . . , xd−1) ∈ Pd, and for the first k + r inequalites of the system

xd ≤ b̂i −
d−1∑

j=1

âijxj = Au
i (x1, . . . , xd−1)

for i = 1, . . . , k, as well as

xd ≥ b̂k+i −
d−1∑

j=1

âk+ijxj = Al
i(x1, . . . , xd−1)

for i = 1, . . . , r. Then, if we define

m(x1, . . . , xd) = max{Al
j(x1, . . . , xd−1), j = 1, . . . , r}

and
M(x1, . . . , xd) = min{Au

j (x1, . . . , xd−1), j = 1, . . . , r},
we can write ∫

P

f(x) dm =

∫

Pd

∫ M

m

f(x) dx1 dx2 · · · dxd.

Finally the convex polytope Pd can be decomposed into polyhedral regions where
the functions m,M become simply affine functions from among the list. Since the
integral is additive we get an expression

∫

P

f(x) dm =
∑

i,j

∫

P ij
d

∫ Au
j

Al
j

f(x) dx1 dx2 · · · dxd.

Finally, by repeating the elimination of variables we recover the full iterated list
in (19). As it was observed in [35], this algorithm is unfortunately not efficient
because the iterated Fourier-Motzkin elimination procedure can produce exponen-
tially many inequalities for the description of the projection (when the dimension d
varies). Thus the number of summands considered can in fact grow exponentially.

4.3. Two formulas for integral computation. We would like to review two
formulas that are nice and could speed up computation in particular cases, although
they do not seem to yield efficient algorithms just on their own.

First, one may reduce the computation of
∫
P
f dm to integrals on the facets of

P by applying the Stokes formula. We must be careful to use a rational Lebesgue
measure on each facet. As shown in [4], we have the following result.
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Theorem 21. Let {Fi}i=1,...,m be the set of facets of a full-dimensional polytope
P ⊆ R

n. For each i, let ni be a rational vector which is transverse to the facet Fi

and pointing outwards P , and let dμi be the Lebesgue measure on the affine hull of
Fi which is defined by contracting the standard volume form of Rn with ni. Then

IP (a) =

∫

P

e〈a,x〉 dx =
1

〈a,y〉

m∑

i=1

〈ni,y〉
∫

Fi

e〈a,x〉 dμi

for all a ∈ C
n and y ∈ R

n such that 〈y, a〉 �= 0.

It is clear that, by considering the expansion of the analytic function
∫
P
e〈a,x〉 dx,

we can again obtain an analogous result for polynomials. An alternative proof was
provided by [26]. The above theorem, however, does not necessarily reduce the
computational burden because, depending on the representation of the polytope,
the number of facets can be large, and also the facets themselves can be complicated
polytopes. Yet, together with our results we obtain the following corollary for two
special cases.

Corollary 22. There is a polynomial-time algorithm for the following problem.
Input:

(I1) the dimension n ∈ N in unary encoding,
(I2) a list of rational vectors in binary encoding, namely

(i) either vectors (h1, h1,0), . . . , (hm, hm,0) ∈ Q
n+1 that describe the facet-

defining inequalities 〈hi,x〉 ≤ hi,0 of a simplicial full-dimensional ra-
tional polytope P (i.e. all its faces are simplices),

(ii) or vectors s1, . . . , sN ∈ Q
n that are the vertices of a simple full-

dimensional rational polytope P ,
(I3) a rational vector a ∈ Q

n in binary encoding,
(I4) an exponent M ∈ N in unary encoding.

Output, in binary encoding:

(O1) the rational number
∫

P

f(x) dm, where f(x) = 〈a,x〉M ,

where dm is the standard Lebesgue measure on R
n.

Proof. In the case (i) of simplicial polytopes P given by facet-defining inequalities,
we can use linear programming to compute in polynomial time a V -representation
for each simplex Fi that is a facet of P . By applying Theorem 21 with ta in place
of a and extracting the coefficient of tM in the Taylor expansion of the analytic
function t �→ IP (ta), we obtain the formula

∫

P

〈a,x〉M dx =
1

(M + 1)〈y, a〉

m∑

i=1

〈y,ni〉
∫

Fi

〈a,x〉M+1 dμi,

which holds for all y ∈ R
n with 〈y, a〉 �= 0. It is known that a suitable y ∈ Q

n can
be constructed in polynomial time. The integrals on the right-hand side can now
be evaluated in polynomial time using Theorem 2.

In the case (ii) of simple polytopes P given by their vertices, we make use of
the fact that a variant of Brion’s formula (9) actually holds for arbitrary rational
polytopes. For a simple polytope P , it takes the following form (collecting terms
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in the Taylor expansion of et�, the formula is a consequence from Proposition 3.10
in [14]):

(20)

∫

P

�M dx =
M !

(M + n)!

N∑

i=1

Δi
〈�, si〉M+n

∏
sj∈N(si)

〈�, si − sj〉
,

where N(si) denotes the set of vertices adjacent to si in P , and

Δi = |det(si − sj)j∈N(si)|.

The right-hand side is a sum of rational functions of �, where the denominators
cancel out so that the sum is actually polynomial. If � is regular, that is to say
〈�, si − sj〉 �= 0 for any i and j ∈ N(si), then the integral can be computed by
(20), which is a very short formula. However, it becomes difficult to extend the
method which we used in the case of a simplex. Instead, we can do a perturbation.
In (20), we replace � by � + ε�′, where �′ is such that � + ε�′ is regular for ε �= 0.
The algorithm for choosing �′ is bounded polynomially. Then we do expansions in
powers of ε as explained in Lemma 4. �

4.4. Connections to triangulations and splines. It is well known that any
convex polytope can be triangulated into finitely many simplices. Thus we can use
our result to extend the integration of polynomials over any convex polytope. The
complexity of doing it this way will directly depend on the number of simplices in a
triangulation. This raises the issue of finding the smallest triangulation possible of a
given polytope. Unfortunately this problem was proved to be NP-hard even for fixed
dimension three (see [18]). Thus it is in general not a good idea to spend time finding
the smallest triangulation possible. A cautionary remark is that one can naively
assume that triangulations help for non-convex polyhedral regions, while in reality
it does not because there exist non-convex polyhedra that are not triangulable
unless one adds new points. Deciding how many new points are necessary is an
NP-hard problem [18].

Another interesting approach to the integration of polynomials over polytopes is
through the theory of B-splines and multivariate truncated powers. B-splines are
closely related to the volume of polytopes (see Chapter 4 of [32]). Recently Xu [36]
has observed that the integration of monomials over polytopes is equivalent to the
computation of the multivariate truncated power of a matrix T (x|M) (this integral
operator on matrices was introduced by Dahmen in [17]). More precisely, for every
k = (k1, . . . , kn) ∈ Z

n
+ and an n-column matrix M = (m1, . . . ,mn) we set

Mk := (m1, . . . ,m1︸ ︷︷ ︸
k1+1

,m2, . . . ,m2︸ ︷︷ ︸
k2+1

, . . . ,mn, . . . ,mn︸ ︷︷ ︸
kn+1

).

Theorem 23. Suppose k = (k1, . . . , kn) ∈ Z
n
+ and gives a monomial f(u) =

∏n
j=1 u

kj

j . Let P := {u ∈ R
n
+| Mu = x} be a polyhedron. Then

T (x|Mk) =
1

k! ·
√

det(MMT )

∫

P

f(u) du,

where k! := k1! · · · kn!.

Such an approach yields a polynomial-time algorithm when the number of vari-
ables is fixed.
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5. Implementation and computational experiments

We have written Maple programs in order to perform some initial experiments
with the three methods described in Section 3.4. The programs are available at
[2].3

5.1. Integration of a power of a linear form and decomposition of poly-
nomials into powers of linear forms.

5.1.1. Decomposition of polynomials into powers of linear forms. Table 9 shows
the number F (n,M) of primitive linear forms (p1, . . . , pn) which may appear in the
decomposition (13) of a polynomial of total degree ≤ M . This number is computed
using the closed formula (14).

5.1.2. Integration of a power of a linear form over a simplex. We have written
a Maple program which implements the method of Corollary 13 for the efficient
integration of a power of one linear form over a simplex,

∫
Δ
�M dm.4 In a com-

putational experiment, for a given dimension n and degree M we picked random
full-dimensional simplices Δ and random linear forms � and used the Maple program
to compute the integral. Table 4 shows the computation times.5

Table 4. Integration of powers of linear forms over simplices

Degree M

n 2 10 20 50 100 300 1000

10 0.0 0.0 0.0 0.1 0.0 0.0 0.0
20 0.1 0.2 0.1 0.2 0.1 0.2 0.2
50 1.0 1.4 1.4 1.6 1.6 1.6 1.7

100 5.1 8.4 8.7 9.2 9.5 10.0 11.0
200 36 71 84 88 97 110 120
300 150 320 400 470 520 530
400 500

1000

5.1.3. Integration of a monomial over a simplex by decomposition as a sum of pow-
ers of linear forms. Next, we tested the algorithm which computes the integral of
a monomial xM over a simplex Δ, by decomposing it as a sum of powers of lin-
ear forms. This algorithm was discussed in Section 3.4. In our experiments, for
given dimension n and total degree M , we picked 50 combinations of a random
simplex Δ of dimension n and a random exponent vector M = (M1, . . . ,Mn) with∑n

i=1 Mi = M .

3All algorithms are implemented in the files waring.mpl, iterated laurent.mpl and
duality.mpl; all tables with random examples are created using procedures in examples.mpl

and tables.mpl.
4The integration is done by the Maple procedure integral power linear form in waring.mpl.
5All experiments were done with Maple 12 on Sun Fire V440 machines with UltraSPARC-IIIi

processors running at 1.6GHz. The computation times are given in CPU seconds. All experiments
were subject to a time limit of 600 seconds per example.
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Table 5. Integration of a random monomial of prescribed degree
by decomposition into a sum of powers of linear forms

Degree

n 1 2 5 10 20 30 40 50 100 200 300

2 0
0
0

0
0
0.1

0
0
0.1

0
0.1
0.1

0
0.2
0.4

0
0.5
0.8

0.1
1.0
1.9

0.3
1.5
2.6

0.8
8.3

12

6.2
38
59

0.3
90
174

3 0
0
0

0
0
0.2

0
0
0.1

0
0.2
0.4

0
1.1
2.2

0.4
3.0
7.0

0.5
7.4

19

0.9
17
37

4.6
173
440

4 0
0
0

0
0
0.2

0
0.1
0.2

0.1
0.4
0.9

0.6
3.6
8.7

1.5
15
44

4.8
52
149

9.7
135
404

5 0
0
0

0
0
0.2

0
0.1
0.3

0.1
0.7
1.9

0.3
8.8

27

4.5
48
195

6 0
0
0.2

0
0
0.1

0
0.2
0.4

0.2
1.3
2.7

1.3
24
74

8.0
144
544

7 0
0
0.2

0
0
0.1

0
0.3
0.6

0.5
2.1
5.0

5.9
53
152

8 0
0
0.2

0
0
0.2

0.1
0.3
0.6

0.4
3.2
8.5

11
72
216

10 0
0
0.3

0
0.1
0.2

0.2
0.4
0.8

1.5
6.1

12

15 0
0.1
0.2

0
0.1
0.3

0.3
1.2
1.8

3.8
17
41

20 0.1
0.1
0.2

0.1
0.3
0.4

0.6
2.2
2.9

4.4
41
73

30 0.1
0.2
0.3

0.2
0.5
0.6

2.7
5.1
6.8

37
106
170

40 0.3
0.4
0.6

0.3
1.1
1.3

5.2
10
12

93
242
414

50 0.5
0.6
0.8

0.7
1.8
2.0

8.2
17
20

First we decompose a given monomial into a sum of powers of linear forms
and then we integrate each summand using the Maple procedure discussed above.6

Table 5 shows the minimum, average, and maximum computation times.

5.2. Integration of a monomial, using the iterated Laurent series. In this
section, we test the implementation of the method of the iterated Laurent expansion
described in Remark 15 of Section 3.4.7

Table 6 shows the results.

6This method is implemented in the Maple procedure integral via waring in waring.mpl.
7This method is implemented in the Maple procedure integral via iterated, defined in the file

iterated laurent.mpl.
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Table 6. Integration of a random monomial of prescribed degree
using the iterated Laurent series

Degree

n 1 2 5 10 20 30 40 50 100 200 300

2 0
0
0

0
0
0.1

0
0
0.1

0
0
0.1

0
0
0.1

0
0
0.1

0
0.1
0.2

0
0.1
0.3

0
0.5
1.2

0.3
3.0
7.1

0.2
8.1

30

3 0
0
0

0
0
0

0
0
0.1

0
0.1
0.2

0
0.4
6.2

0
0.5
3.7

0.1
1.2
7.1

0.1
3.4

11

0.2
34
164

4 0
0
0

0
0
0.1

0
0.1
0.2

0
0.3
0.7

0.1
1.4

12

0.3
4.8

35

0.4
16
77

1.0
39
176

5 0
0.1
0.1

0
0.1
0.1

0.1
0.2
0.4

0.1
0.7

12

0.1
4.5

35

1.4
36
551

0.2
78
353

6 0.1
0.1
0.1

0
0.2
5.0

0.1
0.3
0.6

0.2
1.6
5.9

0.4
24
205

7 0.1
0.1
0.2

0.1
0.3
5.4

0.2
0.7
4.6

0.4
4.1

22

8 0.2
0.2
0.2

0.2
0.3
4.8

0.2
1.0
4.1

0.3
11
111

10 0.3
0.5
7.0

0.4
0.5
3.5

0.4
2.8

12

15 1.3
1.7
5.8

1.4
1.9
5.1

3.5
25
73

20 3.8
5.0
9.4

4.0
5.3
8.1

4.7
123
352

30 25
29
41

26
29
32

40 88
98
106

90
101
152

50 248
271
300

259
283
429

5.3. Integration of a monomial, using Taylor expansion. Here, we test the
implementation of the algorithm described in Section 3.4. This algorithm is based
on 11.8

The running times are shown in Table 7.

5.4. Integration of a dense homogeneous polynomial over a simplex. Fol-
lowing the tests on single monomials, we ran tests on random polynomials of vary-
ing density. We generated these polynomials using the Maple function randpoly,
requesting a number r of monomials and the homogeneous degree M . For each
monomial the exponent vector was drawn uniformly from {M ∈ N

d : |M| = M },

8This method is implemented in the Maple procedure integral via duality, defined in the file
duality.mpl.
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Table 7. Integration of a random monomial of prescribed degree
using Taylor expansion

Degree

n 1 2 5 10 20 30 40 50 100 200 300

2 0
0
0

0
0
0

0
0
0

0
0
0.1

0
0
0.1

0
0.1
0.3

0
0.2
0.6

0
0.3
0.9

0
2.2

13

0.9
24
101

1.9
68
426

3 0
0
0

0
0
0

0
0
0.1

0
0.1
0.4

0
2.0

12

0
8.1

60

0.1
39
277

0
61
512

4 0
0
0

0
0
0

0
0.1
0.4

0
1.5

34

5 0
0
0

0
0
0

0
0.1
0.6

0.1
4.9

48

6 0
0
0

0
0
0

0
0.4
1.7

0.1
29
236

7 0
0
0

0
0
0

0
0.5
1.7

8 0
0
0

0
0
0

0
1.1

16

10 0
0
0

0
0
0.1

0
3.0

33

15 0
0
0

0
0.1
0.1

0.1
20
64

20 0
0
0

0
0.7

28

1.2
81
205

30 0
0
0.1

0
0.7

15

40 0
0.1
0.1

0
1.2

23

50 0.1
0.1
0.2

0.1
1.7

18

and the coefficient is drawn uniformly from {1, . . . , 100}. Due to collisions, the
generated polynomial can actually have fewer monomials than r.9

We only include the results for a family of randomly generated, very dense ho-
mogeneous polynomials, where we draw r =

(
M+d−1

d−1

)
random monomials. Table 10

shows the number of monomials in the resulting polynomials for our random tests.
Tables 11, 13, 12 show the test results of the three methods.

We remark that in the case of the method using decompositions into powers of
linear forms, we note that the same powers of linear forms appear in the decompo-
sition formulas (13) for many different monomials xM1 , xM2 . We take advantage
of this fact by collecting the coefficients of powers of linear forms.10

9This is implemented in the Maple procedure random sparse homogeneous polynomial

with degree in the file examples.mpl.
10This is implemented in the procedure list integral via waring.
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Table 8. Integration of a monomial of prescribed degree with 2
effective variables by decomposition into a sum of powers of linear
forms

Degree

n 1 2 5 10 20 30 40 50 100 200 300

3 0
0
0

0
0
0.2

0
0
0.1

0
0.1
0.2

0
0.3
0.5

0
0.7
1.1

0
1.5
2.3

0
2.2
3.5

1.9
11
15

1.9
47
80

9.8
109
217

4 0
0
0

0
0
0.3

0
0
0.2

0
0.1
0.2

0
0.4
0.7

0
0.9
1.4

0
1.7
2.8

0.5
2.8
4.3

0.1
13
20

0.2
64
103

0.3
180
270

5 0
0
0

0
0
0.4

0
0.1
0.2

0
0.1
0.3

0
0.6
1.0

0
1.3
2.0

0
2.5
3.8

0
3.5
5.9

1.8
17
26

0.3
81
128

6.0
205
335

6 0
0
0.2

0
0
0.2

0
0.1
0.2

0
0.2
0.4

0
0.7
1.2

0
1.8
2.6

0
3.1
4.9

0
4.5
7.5

2.1
25
34

7.0
105
164

0.3
241
449

7 0
0
0

0
0
0.3

0
0.1
0.3

0
0.2
0.5

0
1.0
1.5

0
1.9
3.0

0
3.7
5.9

0
5.9
8.7

2.3
24
39

0.2
128
184

0.2
279
468

8 0
0
0

0
0
0.5

0
0.1
0.3

0
0.3
0.6

0
1.1
1.6

0
2.3
3.5

0
4.0
6.5

0.1
6.8

10.0

4.2
28
45

0.4
122
206

10.0
347
529

10 0
0
0.3

0
0
0.3

0
0.1
0.4

0
0.4
0.7

0
1.3
2.2

0
3.3
4.9

0
5.6
8.6

1.7
10
14

0.1
41
58

13
189
266

15 0
0.1
0.3

0
0.1
0.3

0
0.2
0.5

0
0.7
1.2

0.1
2.4
4.0

0.1
6.0
8.9

0.1
9.9

16

0.1
15
24

0.2
65
105

0.2
292
479

20 0
0.1
0.3

0.1
0.2
0.5

0
0.5
0.8

0.1
1.3
2.1

0.1
4.7
7.1

0.1
9.7

15

0.1
17
26

0.2
26
40

23
123
170

30 0.1
0.2
0.4

0.2
0.4
0.8

0.2
0.9
1.5

0.2
2.8
4.7

0.2
11
15

0.2
19
33

0.2
38
58

0.2
55
92

0.3
254
369

40 0.3
0.4
0.6

0.3
0.6
1.2

0.3
1.9
2.9

0.3
5.4
8.5

0.3
20
29

0.4
41
62

0.4
66
110

0.4
101
171

50 0.5
0.6
0.8

0.5
1.0
2.1

0.5
3.4
4.7

0.6
9.2

14

0.6
31
49

0.6
63
106

0.7
130
185

36
201
286

5.5. Integration of a monomial with few effective variables. Finally, we
tested the performance of the three algorithms on monomials xM with a small
number D of effective variables. We fix the number D. Then, for a given dimen-
sion n ≥ D and total degree M , we picked 50 combinations of a random simplex Δ
of dimension n and a random exponent vector M = (M1, . . . ,MD, 0, . . . , 0) with
|M| = M . We only include the results for D = 2 in Tables 8, 15, and 14.

5.6. Discussion. In our implementation of the three methods and our experiments
for the case of random monomials, we observe that the method of iterated Laurent
expansion is faster than the two other methods if the dimension n is very small (up
to n = 5). Starting from dimension n = 6, the method using decompositions into
powers of linear forms is faster than the other two methods. The method using
Taylor expansion is always inferior to the better of the two other methods, for any
combination of degree and dimension.

In the experiments with random dense polynomials, in our implementation we
did not see significant savings from collecting the coefficients of the same powers of
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linear forms. As a consequence, the ranking of the three methods is the same as it
is in the case of random monomials.

The experiments with random monomials with few effective variables show that
all three methods benefit from using few effective variables. The greatest effect is on
the method using decompositions into powers of linear forms, where, for example,
the restriction to 2 effective variables allows us to handle combinations of high
degree M = 200 and high dimension n = 15. However, for low dimensions (n ≤ 5),
the method of iterated Laurent expansion still wins. Also, here the method using
Taylor expansion is always inferior to the better of the two other methods. This
discussion shows the power of Brion’s formula.

5.7. Connections to numerical integration. Although all of our calculations
above involved exact rational arithmetic, it is a natural question to ask what are
the implications of our method for numerical computation. Of course, one ob-
vious consequence is that our algorithms can be used to calibrate floating point
calculations.

On the suggestion of a referee we also tested the performance of our algorithms in
a floating point setting. We modified the Maple programs to use IEEE 754 double-
precision floating point numbers instead of using exact rational arithmetic, using
Maple’s hfloat functions. We did not make any attempt to change the algorithms
to reduce floating point errors.

We also modified our examples so that all function evaluations and the final
results could fit into the floating point range. To this end, we chose the coordinates
of our simplices to be floating point numbers between 0.95 and 1.05. For simplic-
ity we restricted the tests to the integration of monomial functions in the same
combinations of degree and dimension as in the experiments with exact arithmetic.
For each combination, we tested 50 examples in each algorithm. To our surprise
the numerical calculations were quite interesting (we do not include the five pages
of tables here, but they are available from the authors upon request). Here is a
summary:

• iterated produces meaningful results (with maximum relative errors ≤
10%) for n = 1, M ≤ 4; for n = 2, M ≤ 5; for n = 3, M ≤ 1; and for n = 4,
M ≤ 1. For higher combinations of degree and dimension, the results are
off by orders of magnitude.

• waring works well for n = 1 for all tested degrees up to M = 1000; for
n = 2, M ≤ 10; for n = 3, M ≤ 5; and for n = 4, M = 1.

• duality works well for n = 1, M ≤ 100; for n = 2, M ≤ 30; for n = 3,
M ≤ 20; for n = 4, M ≤ 10; and generally for all low degrees M ≤ 5 that
could be computed within the time limit, i.e., for n ≤ 12 and M ≤ 5; and
for n ≤ 50 and M ≤ 2.

We then decided to run these kinds of integrals using CUBPACK [16], a state-
of-the-art Fortran 90 package for numerical integration using cubature formulas.
CUBPACK contains an implementation of an adaptive algorithm for the integration
over simplices of arbitrary dimension by Genz and Cools [22], on the basis of the
famous Grundmann–Möller cubature rule [23]. This code allows us to integrate
arbitrary functions given by point evaluations. A subdivision method is used to
improve error estimates. We ran the CUBPACK experiments on a Sun Fire V440
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with UltraSPARC-IIIi processors running at 1.6GHz, using the Sun Fortran 95
compiler, version 8.2.

In our experiments, we asked CUBPACK to compute the integral to a relative
error of 5.0 × 10−4 and allowed a maximum of 200 million function evaluations,
a limit that was by far never reached in any of the tests.11 The results of the
experiments are as follows. All computations using CUBPACK finished in a fraction
of a second. CUBPACK returned results for the tests in all dimensions up to 33
(and all degrees up to 1000), but it failed with floating point exceptions if the
dimension was at least 34.

For the combinations of degree and dimension where our Maple programs fin-
ished within 600 seconds, we then compared the exact results computed by our
programs to the numerical results of CUBPACK. Table 16 shows the average rela-
tive errors. In low dimensions (up to 12), the actual errors are always well below
the error estimation provided by CUBPACK, for dimensions up to 4 by about 2
orders of magnitude. However, starting from dimension 14, even for low degree, the
numerical results using CUBPACK are off by several orders of magnitude, which
is not indicated by the provided error estimate. The reason for the failure of the
CUBPACK error estimators in this situation is unknown to us.

6. Conclusions

We have discussed various algorithms for the exact integration of polynomials
over simplicial regions. Besides their theoretical efficiency, the simple rough experi-
ments we performed clearly demonstrated that these methods are robust enough to
attack rather difficult problems. Our investigations opened several doors for further
development, which we will present in a forthcoming paper.

First, we have some theoretical issues expanding from our results. As in the case
of volumes and the computation of centroids, it is likely that our hardness result,
Theorem 1, can be extended into an inapproximability result as those obtained in
[34]. Another goal is to study other families of polytopes for which exact integration
can be done efficiently. Furthermore, we will present a natural extension of the
computation of integrals, the efficient computation of the highest degree coefficients
of a weighted Ehrhart quasipolynomial of a simplex. Besides the methods of the
present article, these last computations are based on the results of [7] and [6].

Second, our intention has been all along to develop algorithms with a good chance
of becoming practical and that allow for clear implementation. Thus we also have
some practical improvements to discuss. For example, in order to develop practi-
cal integration software, it appears that our methods should be coupled with fast
techniques for decomposing domains into polyhedral regions (e.g. triangulations).

Finally, our experiments indicated that our exact integration algorithms are
not only useful to calibrate any numerical technique, but they may even be useful
already within the context of floating point computation. In particular, the method
‘duality’ shows good promise for floating point computations for problems in high
dimension and low degree. Obviously, a serious floating point implementation and
error analysis would be necessary, but this is beyond the scope of this paper.

11The Fortran driver for CUBPACK is contained in the file pisa-test.f90; the Maple proce-
dure that calls it is contained in the file cubpack.mpl.
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Note. Appendix A, which contains additional computational tables, 9–16, will
appear as a link in an electronic supplement to this article.

Note added in proof: Since the acceptance of this paper, our students Stanislav
Moreinis and Jianqiu Wu have created a new implementation of the method of
integration by decomposition into powers of linear forms. The implementation
is in C++ and has yielded speedups of several orders of magnitude. The new
implementation and a detailed report on it will be made available.
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