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In this report we address the problem of accurate statistical modeling of DNA sequences, either coding or
noncoding, for a bacterial species whose genome (or a large portion) was sequenced but not yet characterized
experimentally. Availability of these models is critical for successful solution of the genome annotation task by
statistical methods of gene finding. We present the method, GeneMark-Genesis, which learns the parameters of
Markov models of protein-coding and noncoding regions from anonymous bacterial genomic sequence. These
models are subsequently used in the GeneMark and GeneMark.hmm gene-finding programs. Although there is
basically one model of a noncoding region for a given genome, several models of protein-coding region are
automatically obtained by GeneMark-Genesis. The diversity of protein-coding models reflects the diversity of
oligonucleotide compositions, particularly the diversity of codon usage strategies observed in genes from one
and the same genome. In the simplest and the most important case, there are just two gene models—typical and
atypical ones. We show that the atypical model allows one to predict genes that escape identification by the
typical model. Many genes predicted by the atypical model appear to be horizontally transferred genes. The
early versions of GeneMark-Genesis were used for annotating the genomes of Methanoccocus jannaschii and
Helicobacter pylori. We report the results of accuracy testing of the full-scale version of GeneMark-Genesis on 10
completely sequenced bacterial genomes. Interestingly, the GeneMark.hmm program that employed the typical
and atypical models defined by GeneMark-Genesis was able to predict 683 new atypical genes with 176 of them

confirmed by similarity search.

Pioneer methods for statistical identification of pro-
tein-coding regions in DNA sequence were devel-
oped in the early 1980s (Fickett 1982; Gribskov
1984; Staden 1984). These methods exploited the
statistically significant differences in compositional
features of continuous protein-coding and noncod-
ing DNA sequences. The search for formal math-
ematical tools that would express these differences
in the most efficient way led to the introduction of
inhomogeneous, three-periodic Markov chain mod-
els of protein-coding regions (Borodovsky et al.
1986a). These models, along with ordinary Markov
models of noncoding DNA sequence, were incorpo-
rated into a Bayesian algorithm, GeneMark, analyz-
ing DNA sequence locally within a sliding window
(Borodovsky et al. 1986b, Borodovsky and
Mclninch 1993). Later on these models were used in
a global maximum likelihood algorithm, Gen-
eMark.hmm, analyzing the whole DNA sequence at
once (Lukashin and Borodovsky 1998). The combi-
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nation of parameters of three-periodic Markov mod-
els of different orders, the interpolated model, was
used in the GLIMMER program for gene finding in
bacterial genomes (Salzberg et al. 1998). Three-
periodic Markov models have been also used in the
programs most often used for eukaryotic gene find-
ing, such as GENSCAN (Burge and Karlin 1997),
GRAIL (Xu et al. 1994), and HMMgene (Krogh
1997). Sound application of the Markov model-
based approach to gene finding have been per-
formed recently in annotating the first complete
bacterial genomes Haemophilus influenzae, Myco-
plasma genitalium, and others (see Methods). Diffi-
culties soon surfaced. Unlike the pioneer genome
sequencing project of H. influenzae, many genomes
completed later were swiftly sequenced starting
from the zero point. Therefore, there was an absence
of previously experimentally annotated DNA se-
quence necessary to determine the parameters of
Markov models. This difficulty was aggravated by
the fact that protein-coding sequences in a given
bacterial genome were not homogeneous in their
compositional features (Medigue et al. 1991). There-
fore, the program using models trained on the bulk
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set of protein-coding sequences happened to be in-
sensitive in finding genes of minor inhomogeneity
classes. In cases when preliminary information on
gene classes is available, class-specific models of pro-
tein-coding regions could improve the performance
of the gene-finding method (Borodovsky et al.
1995). Therefore, the problem was to derive accu-
rate models of coding and noncoding regions, in-
cluding specific models for several gene classes,
from the anonymous sequence.

The GeneMark-Genesis method described be-
low addressed this problem. The method worked in
two main steps. A set of “long’’ open reading frames
(ORFs) identified in bacterial genomic sequence was
used to start a process of obtaining parameters of
Markov models of protein-coding and noncoding
regions. The initial models were used in the Gene-
Mark program to score the putative gene sequences
and to form the cluster seeds for the class-specific
training sets. Then the clusterization procedure us-
ing relative entropy (Cover and Thomas 1991) as a
distance function was run until convergence and
several sets of presumably coding sequences with
more homogeneous compositional features were
obtained. In the simplest and the most important
case, there were just two clusters that gave rise to
so-called typical and atypical models of protein-
coding region.

The early versions of the GeneMark-Genesis
program were used in genome sequencing projects
of M. jannaschii (Bult et al. 1996) and H. pylori
(Tomb et al. 1997); however, complete publication
of the method was delayed until comprehensive
data on the accuracy of various algorithm options
were obtained.
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We tested the GeneMark-Genesis program on
10 complete bacterial genomes (see Methods). The
results of the tests were presented in terms of local
“short fragment prediction accuracy’ characterized
by false-negative and false-positive error rates and in
terms of global “whole gene prediction accuracy”
characterized by sensitivity and specificity param-
eters. The intriguing possibility to predict genes of
different evolutionary origins at an early stage of
anonymous genome analysis did not escape our at-
tention. For the Escherichia coli genome, we have
analyzed the relationship between compositionally
atypical genes and horizontally transferred genes as
identified in previous studies (Medigue et al. 1991;
Lawrence and Ochman 1997). We showed that us-
ing the atypical gene models in the GeneMark.hmm
program led to prediction of >400 new genes in the
10 genomes. From these predictions, 176 were cor-
roborated by protein sequence similarity search by
gapped BLAST (Altschul et al. 1997).

RESULTS AND DISCUSSION
Root Models

The Root models, of orders zero to five, were gener-
ated, as described in Methods, for the 10 complete
bacterial genomic sequences. For each genome, the
predictive accuracy of the Root model was evaluated
by the “short DNA fragment identification™ proce-
dure with cross-validation. The accuracy of the Root
model was compared with the predictive accuracy
of the GenBank model. A summary of these com-
parisons is given in Table 1. The “optimal” order of
the Root (GenBank) model was defined as the order

Table 1. False-Negative Prediction Error Rates for Optimal Orders of the Root and GenBank
Models for 10 Species

Root model GenBank model
Species name optimal order error rate optimal order error rate
Archaeolglobus fulgidus 3 0.096 5 0.087
Bacillus subtilis 4 0.133 5 0.119
Escherichia coli 4 0.137 5 0.113
Haemophilus influenzae 3 0.073 4 0.077
Helicobacter pylori 3 0.077 5 0.082
Mycoplasma genitalium 3 0.122 4 0.105
Methanococcus jannaschii 3 0.067 4 0.060
Mycoplasma pneumoniae 3 0.112 5 0.104
Methanobacterium thermoautotrophicum 4 0.098 5 0.084
Synechocystis 4 0.122 5 0.120
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of the model that produced the lowest false-
negative error rate. The error rates produced by the
Root (GenBank) models of the optimal order are
shown in Table 1. The slightly higher false-negative
error rates produced by the Root models are within
2% of the error rates generated by the GenBank
models.

More detailed comparison of the Root and Gen-
Bank models performance is presented in Figure 1
for the E. coli case. The observed relatively high
false-positive error rate of the Root model (Fig. 1) is
partly attributable to the higher contamination of
the noncoding test set for the Root model with true
protein-coding regions as compared with the non-
coding test set for GenBank model. Note that al-
though the Root model prediction accuracy in
terms of the false-negative error rate is close to the
GenBank model for each given order (Fig. 1), there
is still room for improvement for both the Root and
GenBank model performance. For each genome, the
accuracy of the Root model and the GenBank model
was also characterized in terms of sensitivity (Sn)
and specificity (Sp) values (see Methods). The Gen-
Bank model performed slightly better than the Root
model, for instance, the Sn and Sp average for B.
subtilis was 0.941 for the GenBank model and 0.921
for the Root model. For the more homogeneous ge-
nome of H. pylori, the Sn and Sp average was 0.952
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Figure 1 False-negative (FN) and false-positive (FP)
prediction error rates observed in the short fragment
identification procedure implemented the E. coli ge-
nome. The Root and GenBank models were employed
in the GeneMark program making the predictions.
Similar graphs are called accuracy graphs (see Figs. 2
and 3, below).
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and 0.946 for the GenBank model and the Root
model, respectively. For all of the species studied in
this paper, the difference in predictive accuracy be-
tween the two models, measured by the average of
Sn and Sp, was less than three percentage points.
The upper limit of averaged Sn and Sp was 0.943 for
the GenBank model and 0.919 for the Root model.

Clustering

We used the clustering procedures described in the
Methods section to reduce the level of inhomoge-
neity in the sets of coding regions used for training
models of several gene classes. The results of ORF
clusterization and the characteristics of the perfor-
mance of these cluster-specific models are presented
and discussed in this section.

It was argued that the GeneMark-type algo-
rithm reliably identifies the protein-coding regions
whose oligonucleotide composition conforms to
the Markov model that GeneMark is using. The
Markov model, however, derived from a large
enough set of genes represents the composition fea-
tures common to the majority of genes in this set.
Therefore, even using this model in the GeneMark
program to analyze the same set of genes, some cod-
ing regions with atypical composition could be mi-
sidentified as noncoding. Our attempt to divide the
initial set of long ORFs into several homogeneous
subsets (clusters) pursued the goal of forming at
least, and preferably at most, two clusters that
would be used as training sets for typical and atypi-
cal models. As shown below, for all bacterial ge-
nomes in the current study, the two-cluster division
was indeed possible and worked sufficiently well for
gene-finding purposes. To follow the previous stud-
ies of E. coli genome (Medigue et al. 1991), however,
we also considered the three-cluster case with the
third cluster called the highly typical cluster.

The two-means clustering algorithm, which
produced the type A clusters, was initially tested on
a “toy” sequence, the hybrid DNA sequence com-
bining E. coli and H. influenzae genomic sequences.
The long ORF clusters, typical and atypical, ob-
tained by the clustering procedure were named as
EC and HI clusters after the name of the species rep-
resenting a majority of the ORFs in a particular clus-
ter. The typical cluster turned out to be the EC clus-
ter, as there are almost three times as many E. coli
ORFs as H. influenzae ORFs. Table 2 shows the sizes
of the overlaps between the sets of true E. coli and H.
influenzae ORFs and the resulting EC and HI clusters
obtained from the hybrid sequence.

The models derived from the EC and HI clusters



Table 2. Composition of Typical and
Atypical ORF clusters Obtained for
Combined Sequence in Terms of Native
E. coli and H. influenzae ORFs

Cluster type

atypical typical
Set of E. coli ORFs 265 2270
Set of H. influenzae ORFs 925 30

Majority of E. coli long ORFs fell into the typical cluster; ma-
jority of H. influenzae long ORFs fell into the atypical cluster.

of long ORFs were evaluated using the “short DNA
fragment identification” procedure. In Figure 2, the
top panel shows the false-negative error rate pro-
duced by the Combined (Root) model of different
orders. This model was used to identify coding func-
tion in short fragments of long ORFs from the Com-
bined set (solid line), from the EC cluster (dotted
line), and from the HI cluster (dashed line). Obvi-
ously, the Combined model more reliably recog-
nized as coding the sequences from the larger EC

~—— Combined vs Combined
ined us E. col

Error Rate

Error Rate
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Figure 2 Accuracy graph of the analysis of the com-
bined sequence of E. coli and H. influenzae (see text and
Fig. 3 legend).
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cluster than the sequences from the smaller HI clus-
ter (the majority of the training set effect). The EC
cluster derived model, the middle panel, identified
quite well the coding property of short sequences
from the EC cluster, was less precise, on average, in
identifying sequences from the Combined set, and
was a poor coding function predictor for the se-
quences from the HI cluster. The HI cluster model,
the bottom panel, predicted the coding property of
sequences from the HI cluster quite well, moderately
well for those from the Combined set and rather
poorly for the sequences from EC cluster. As is seen
in Table 2 and Figure 2, the toy example demon-
strated the ability of the algorithm to detect the
presence of two types of protein-coding sequences
in one anonymous DNA sequence.

The two-means clusterization procedure was ap-
plied to the 10 complete bacterial genomes, assum-
ing no annotation was known, to obtain the typical
and atypical clusters of long ORFs (A, B, and C types
of clusters). The cluster-specific models of protein-
coding sequences obtained from these clusters were
designated as 2A-, 2B-, and 2C-type models. The
three-means (k = 3) clustering procedure was also
applied to the 10 genomes and produced the typi-
cal, atypical, and highly typical ORF clusters (of
types A, B, and C). The cluster-specific models ob-
tained from these clusters were designated as 3A-,
3B-, and 3C-type models. The sizes of all clusters are
given in Table 3. Interestingly, the largest atypical
clusters of type A were found in the two Mycoplasma
genomes.

Long ORFs from the atypical cluster defined ei-
ther by the two- or three-means clustering possessed
an atypical oligonucleotide composition. Many of
these ORFs could be descendants of genes horizon-
tally transferred into the bacterial genome in the
course of evolution. For a given genome, one might
expect to see two types of horizontally transferred
genes, the ones with GC content lower than average
and ones with GC content higher than average.
Therefore, one may assume that the atypical cluster
should contain two subsets, one with higher-than-
average GC content and another one with lower
than average GC content. The clustering results,
however, did not quite meet this expectation. Atypi-
cal long ORFs in all bacterial genomes, besides the
two genomes of M. genitalium and M. pneumonia,
yielded bell-shaped unimodal GC content distribu-
tions. Also, as shown in Table 4, in all but the two
Mycoplasma genomes, the GC content of the atypi-
cal cluster was 3%-5% lower than the typical clus-
ter.

As an exception to the rule, among the M. geni-
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Table 3. Numbers of Long ORFs in the Clusters of Type A, B, and C Obtained
by k-Means Clustering Procedure (k = 2, 3)
Number of ORFs in clusters
Total no. Cluster 2-means 3-means
Species name of long ORFs  types  (AT) m (AT) (HT) @)
A. fulgidus 1222 AB,C 148 1071 137 263 819
B. subtilis 2234 687 1547 600 392 1242
B,C 335 1899 335 392 1507
E. coli 2553 691 1844 628 534 1373
B,C 380 2155 380 534 1621
H. influenzae 987 203 782 172 240 573
B,C 147 838 147 240 598
H. pylori 907 194 706 166 264 470
B,C 134 766 134 264 502
M. genitalium 309 88 221 76 54 179
B,C 46 263 46 54 209
M. jannaschii 887 151 736 136 273 478
B,C 133 754 133 273 481
M. pneumoniae 416 188 228 178 82 156
B,C 62 354 62 82 272
M. thermoautotrophicum 957 AB,C 99 858 95 194 668
Synechocystis 1837 352 1479 337 438 1056
B,C 274 1557 274 438 1119

talium long ORFs assigned to type A or C atypical
clusters by two-means clustering procedure there
were nine ORFs highly deviant in GC content. Only
one of the nine ORFs, the one encoding a cell en-
velope protein of unknown function, was anno-
tated in GenBank. Among the M. pneumonia ORFs
assigned to type A or C atypical clusters there were
22 ORFs with deviated GC content. Of these 22
ORFs, 20 were annotated in GenBank. These anno-
tated genes were either adhesin genes or genes of
hypothetical proteins. Two M. jannaschii ORFs with
highly deviant GC content were assigned to type A
or C atypical clusters.

Incidentally, those of the GC-deviant ORFs ob-
served in these three species that were annotated in
GenBank were encoding cell-envelope or surface-
structure proteins. The other atypical ORFs, pre-
dicted as genes but not annotated, were also likely
to belong to the same family. Interestingly, for the
three species mentioned above, all GC deviants did
not belong to the atypical clusters of type B.

The cross-validation tests have shown (Table 5),
that the models derived from atypical clusters were
sufficient to identify, almost all ORFs in these clus-
ters as protein-coding sequences.Therefore, typical
and atypical models together covered an over-
whelming majority of long ORFs in a given bacterial
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genome. Therefore, assuming no compositional dif-
ference between sets of longer and shorter genes
there was no practical need, from the gene finding
standpoint, to continue sub-clustering any of the
atypical clusters.

Note that the outcome of the clustering proce-
dure could vary depending on the procedure param-
eters. Because clustering is essentially an optimiza-
tion process, the final division of the initial set into
clusters corresponds to a local minimum of the dis-
tance function. To prove that the minimum is the
global one is rarely computationally feasible. Nev-
ertheless, it was observed that significant variations
of the ORF cluster seeds did not influence the result
of the clustering. For instance, for a genome such as
E. coli a random assignment of long ORFs into
“seed” clusters for two- or three-means clustering
still resulted in essentially the same set of clusters.

For each genome, the accuracy of models de-
rived from ORF clusters was assessed by the ““short
fragment identification method”. This analysis is il-
lustrated in Figure 5, below for the E. coli genome
case. The three left panels of Figure 3 show the false-
negative error rates observed in application of the
Root model (top), the typical model (middle), and
the atypical model (bottom) obtained by two-means
clustering. The three curves in each panel corre-
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Table 4. GC Content for the Typical and Atypical Clusters of Types A, B,
and C
2-means 3-means
Cluster
Species name type AT T AT T HT
A. fulgidus A 43.8 50.6 43.4 50.4 51.3
B 43.8 50.6 43.4 50.4 51.3
C 43.8 50.6 43.4 50.4 51.3
B. subtilis A 41.7 46.1 41.3 46.2 45.6
B 42.7 45.2 42.3 451 45.6
C 40.5 45.6 40.4 45.7 45.6
E. coli A 47.7 53.8 47.3 53.6 54.0
B 48.6 52.8 48.0 52.5 54.0
C 46.2 53.4 46.1 53.2 54.0
H. influenzae A 36.0 39.8 359 39.2 40.7
B 36.6 39.4 36.3 38.9 40.7
C 35.9 39.6 35.9 39.1 40.7
H. pylori A 37.2 40.5 37.5 39.4 42.0
B 37.2 40.2 37.6 39.2 42.0
C 37.3 40.3 37.6 39.3 42.0
M. genitalium A 32.2 31.7 33.0 30.7 33.6
B 32.1 31.8 32.2 31.2 33.6
C 32.7 31.6 33.8 30.8 33.6
M. jannaschii A 29.6 32.9 29.8 31.3 35.6
B 29.2 32.8 29.4 31.3 35.6
C 29.6 32.8 29.8 31.2 35.6
M. pneumoniae A 40.9 41.2 41.2 39.9 43.0
B 39.5 41.2 39.6 40.6 43.0
C 44.1 40.5 44.7 39.5 43.0
M. thermoautotrophicum A 44.0 521 43.9 51.9 525
B 44.0 52.1 43.9 51.9 52.5
C 44.0 52.1 43.9 51.9 52.5
Synechocystis A 42.0 50.7 41.9 50.1 51.8
B 42.2 49.9 41.9 49.3 51.8
C 41.6 50.4 41.5 49.8 51.8

spond to the three control sets of short protein-
coding fragments derived from the Root cluster
(solid line), typical cluster (dotted line), and atypical
cluster (broken line), respectively. The error rates
observed in application of the models derived by
three-means clustering are shown in the right pan-
els (Fig. 3) devoted to typical (top), highly typical
(middle), and atypical model (bottom). The three
curves in each panel correspond to the control sets
of short sequences derived from typical cluster
(solid line), highly typical cluster (dotted line), and
atypical cluster (broken line). A lighter gray curve is
seen in all panels except for the top left one. This
curve, which is attributable to the graphical design
might occlude the solid line underneath it, repre-
sents the cross-validation error rate obtained for the
model derived from the preclustering procedure.

This curve appears only in the tests where the test
set could overlap with the training set and where
cross-validation was used, such as the typical model
versus typical ORF cluster test, etc. It was observed
that in most instances the preclustering cross-
validation false-negative error rates are practically
the same as the postclustering cross-validation error
rates.

The graphs of the error rates produced by the
models obtained by the three-means clustering (Fig.
3) well resemble the results of the previous work
(Fig. 1 in Borodovsky et al. 1995). In that study, the
protein-coding sequence models were derived from
the three classes of E. coli genes described by
Medigue et al. (1991). Classification presented in
that study was based on the clustering of 61 dimen-
sional vectors of codon frequencies by correspon-
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Table 5. Fraction of Atypical Long ORFs Predicted by the GeneMark Program
using the Atypical Model

Type of AT cluster used as a training set
Species name 2A 2B 2C 3A 3B 3C
A. fulgidus 0.892 0.883
B. subtilis 0.978 0.991 0.967 0.980 0.982 0.967
E. coli 0.907 0.982 0.863 0.904 0.982 0.863
H. influenzae 0.990 0.993 0.986 0.988 0.980 0.980
H. pylori 0.985 0.985 0.978 0.982 0.985 0.978
M. genitalium 1.000 1.000 0.978 1.000 1.000 0.957
M. jannaschii 0.980 1.000 0.977 0.978 0.992 0.977
M. pneumoniae 0.963 1.000 0.855 0.949 1.000 0.855
M. thermoautotrophicum 0.949 0.947
Synechocystis 0.977 0.982 0.974 0.979 0.982 0.974

dence analysis. Genes assigned to class | included
the majority of the E. coli genes with neither an
optimal codon usage pattern nor an unusual one.
Class Il included genes highly expressed under ex-
ponential growth conditions. DNA sequences of

Error Rate
Error Rate

Error Rate
Error Rate

Error Rate
Error Rate

Y0 1 2 3 4 s 0 1 2 3 4 5
Markov chain order Markov chain order

Figure 3 The accuracy graphs for the E. coli genome
analysis(see text). Average false-positive error rates
were 0.055 for the Root model; 0.43 for the typical and
0.060 for the atypical models, respectively, obtained
by two-means clustering; 0.055 for the typical, 0.036
for the highly typical, and 0.071 for the atypical model
obtained by three-means clustering.
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class Il genes show a strong bias toward the “‘opti-
mal” E. coli codons. Class 11l genes mainly included
genes horizontally transferred into the E. coli ge-
nome during the course of evolution. These gene
sequences might keep remnants of the codon usage
strategies of their prehistoric hosts. In the current
study, we observed clear correlations (Figs. 4 and 5)
between typical, highly typical, and atypical clusters
of long ORFs and the updated sets of class I, class I,
and class 11 sets of genes (A. Danchin, pers. comm.).
Correlation was also observed between codon usage
patterns of the class I, class I, and class 11l genes and
the ones of typical, highly typical, and atypical
ORFs (data not shown). These observations gave the
motivation to name the ORF clusters as typical,
atypical, and highly typical.

The atypical gene clusters derived for the E. coli
genome were also compared with the set of 756 E.
coli horizontally transferred genes classified as such
in the earlier work (Lawrence and Ochman 1997)
and kindly provided by J.G. Lawrence. Only 410 of
756 genes were longer than 500 nucleotides. These

ATYPICAL TYPICAL

Class 1 Class 3 Class 1 Class 3

Class 2

Class 2

Figure 4 Venn diagrams representing overlaps be-
tween the E. coli gene classes (Medigue et al. 1991)
and ORF clusters obtained by two-means clustering.
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Figure 5 Venn diagrams representing overlaps be-

tween the E. coli gene classes (Medingue et al. 1991)
and ORF clusters obtained by three-means clustering.

410 genes were compared with the A-, B-, and C-
type clusters of ORFs obtained by two- or three-
means clustering procedure applied to the E. coli set
of ORFs longer than 500 nucleotides. It is seen
(Table 5) that the type-A cluster is more than twice
as large as the designated set of 410 genes and in-
cludes either 324 or 321 of them, clusters 2A and 3A,
respectively. Cluster C with 470 ORFs demonstrated
a much stronger relative overlap with the set of 410
genes, 257 to 260 genes in 2C and 3C clusters, re-
spectively. Cluster B with 470 ORFs had only 132
and 152 overlapping items for 2C and 3C, respec-
tively. Interestingly, the cluster B-type construction
rule somehow discriminated against longer ORFs.
The vast majority of the discussed above E. coli A-
and C-type clusters, from 92% to 99%, were the
ORFs >700 nucleotides (Table 6), whereas in cluster
C the ORFs >700 nucleotides constituted only
[(178%.
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The relatively small overlap of >500 nucleo-
tides, genes of class Il with clusters A, B, and C
(Table 6) is explained by the fact that the class 1l
list, updated as of 1995, did not include full infor-
mation on the E. coli genome completed in 1997.
Classification of genes in genomes other than E. coli
was not available in terms of the names horizontally
transferred genes. It seems plausible, however, that
many long ORFs assigned to the atypical gene clus-
ters obtained for the other nine genomes, particu-
larly to the clusters of type C, are the genes hori-
zontally transferred into these genomes in the
course of evolution. Application of the Gen-
eMark.hmm program has demonstrated that some
of these genes are still absent in the 10 publicly
available genome annotations (see below).

Many long ORFs used as initial material in Gen-
eMark-Genesis have been annotated as genes in
GenBank and their properties were indicated. This
allowed us to analyze the features of the typical and
atypical ORFs as follows. Figure 4 shows distribution
of the E. coli typical and atypical long ORFs with
regard to the functional categories defined by
Monica Riley (1993) and annotated in the GenBank
record (Blattner et al. 1997). The Atypical ORFs have
a majority among ‘‘phage, transposon, or plasmid”
category and constitute a significant fraction of cell
structure genes, genes of putative regulatory pro-
teins, and genes of hypothetical proteins and genes
of proteins with unknown function.

In Figure 3 that when the E. coli typical model
was used, protein-coding function was easily iden-
tified in the highly typical protein-coding se-
quences (dotted line in the top right panel showing
low error rate) but not in the atypical protein-
coding sequences (dashed line in the same panel).
Actually, the typical model recognized the highly
typical segments even better than the typical ones.

Long (=500 Nucleotide) ORFs

Table 6. Compositional Features of Atypical Clusters 2A and 3A of E. coli

Clustering A B C

2-means no. of AT ORFs 952 470 470
no. of horizontally transferred genes in the overlap 324 132 257
no. of class Ill genes in the overlap 68 32 42

3-means no. of AT ORFs 863 470 470

no. of horizontally transferred genes in the overlap 321 152 260
no. of class Il genes in the overlap 65 36 42

Note that the number of horizontally transferred genes with a length = 500 nucleotides is 410 (Lawrence and
Ochman 1998). The number of class Ill genes with a length = 500 nucleotides is 99 (Medigue et al. 1991).
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This is the reason why the highly typical gene
model appeared to be redundant for gene-finding
purposes as far as the E. coli genome is concerned.
On the other hand, the E. coli atypical gene model,
which worked fairly well for all types of genes,
seems to be a necessary tool for identifying atypical
genes. The similar pattern of error rate dependence
on the model type and the model order was ob-
served for the other nine genomes (data not
shown). These results support the idea that three
gene classes exist in the other nine bacterial ge-
nomes. This possibility had already been proven
true in the case of the B. subtilis genome (Kunst et al.
1997).

Sn and Sp Characteristics

The Sn and Sp values, as defined in Methods, indi-
cate both the ability of GeneMark employing a par-
ticular model to predict true (annotated) genes and
to avoid false-positive predictions. Predictions that
do not match the GenBank annotation reduce the
value of specificity. Some newly predicted genes,
however, might be correct. There have been many
instances where genes predicted by a computer
method in presumably noncoding sequence, as de-
termined from the GenBank annotation, were ex-
perimentally confirmed at a later time (Robison et
al. 1994; Borodovsky et al. 1995; Mclninch et al.
1996).

In terms of Sn and Sp, none of the cluster types,
A, B, or C, was found to be superior in terms of
producing better models. For the 10 genomes, the
performance of GeneMark, measured by Sn and Sp,
was studied for various combinations of the models.
For the E. coli case, the comparison of predictive
accuracy of single models and combinations of
models is presented in Table 7. It is seen that the
combination of typical and atypical cluster models
generally performed very well. A concise list of the
averaged Sn and Sp values obtained in similar ex-
periments for all 10 genomes is given in Table 8.
Here, the averaged Sn and Sp values for pre-
clustering cross validation are displayed in italics
and parentheses. Karlin et al. (1998) reported differ-
ences in codon usage pattern between short (100-
300 codons) and long genes (>500 codons). It was
indicated that up to 5% increase in G+C content of
codon site 3 was observed for long genes of the E.
coli genome, whereas in the H. influenzae genome
this increase was <1%. Would the observed differ-
ence in codon usage between long and short genes
affect the prediction accuray? The results of the ac-
curay assessment (Table 8) showed that Avg(Sn,Sp)
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values for E. coli and H. influenzae were as close as
0.1%. This result provides indirect evidence that the
difference in codon usage for long versus short
genes, changing G+C content of codon site 3,
should not contribute significantly to prediction er-
ror rate.

Gene Clusters in the Kullback-Liebler Distance
Space—Accuracy of the Gene Prediction

The observation (Fig. 3, top right) that the typical
gene model was able to correctly identify function
of a highly typical gene fragment more reliably than
the function of a typical gene fragment is intrigu-
ing. The quantitative nature of this observation
could be explained in terms of the Kullback-Liebler
(KL) distance that measures the “contrast” between
two competing statistical models involved in the
pattern recognition procedure. KL distance, or rela-
tive entropy, is a convenient distance measure for
clustering procedure dealing with sequence objects
that are targets of some pattern recognition process.
In such a case, it is desirable that the distance mea-
sure is proportional to the “ease” to discriminate
between two objects. Classical determination proce-
dure is based on likelihood ratio. Relative entropy is
an expected logarithm of the likelihood ratio (Cover
and Thomas 1991). On the intuitive level, the larger
the contrast between models, the KL distance, the
easier the task to classify an object, a sequence frag-
ment, into one of two classes, coding or noncoding.
For ordinary first-order Markov models P and Q with
initial and transitional probabilities designated as p;
and py;, d;, and g, respectively, the KL distance is
defined as

D(PIQ) = 2, pip; log q—” @

This definition is applied under the assumption that
model P actually fits the real sequence of events.
This assumption, however, may not always be a true
one. For instance, let us consider the short DNA
fragment identification procedure where competing
models of coding and noncoding regions are inv-
loved. In this case, the KL distance is defined by the
slightly different equation (Borodovsky et al.
1986a):

k
EE pl plj IOg — (2)

klljl

D(PIQ) =

Here P and Q represent coding and noncoding mod-
els, respectively. Index k defines the phase (frame)
of the three-periodic model, indices i and j define
nucleotides in adjacent positions, p¥ and p*i are ini-
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Table 7. Characteristics of Gene Prediction Accuracy for the E. coli Genome with 4289
Annotated Genes

No. of
AT correctly

cluster Average predicted No. of
Models type Sn Sp (Sn, Sp) genes predictions
GB 0.908 0.978 0.943 3895 3981
R 0.851 0.988 0.919 3651 3696
AT 2A 0.925 (0.923) 0.982 (0.983) 0.954 3968 4039
AT, T 2A 0.931 (0.929) 0.981 (0.982) 0.956 3995 4073
R,AT,T 2A 0.932 0.978 0.955 3999 4087
T 2A 0.835 (0.834) 0.991(0.991) 0.913 3580 3614
AT 2B 0.916 (0.911) 0.985 (0.985) 0.951 3930 3991
AT,T 2B 0.922 (0.917) 0.983 (0.983) 0.953 3954 4023
R,AT,T 2B 0.922 0.983 0.953 3954 4023
T 2B 0.859 (0.857) 0.990 (0.990) 0.924 3683 3719
AT 2C 0.924 (0.924) 0.980 (0.981) 0.952 3964 4043
AT,T 2C 0.939 (0.938) 0.979 (0.979) 0.959 4027 4113
R,AT, T 2C 0.939 0.979 0.959 4027 4113
T 2C 0.848 (0.845) 0.990 (0.990) 0.919 3639 3674
AT 3A 0.927 (0.924) 0.982 (0.983) 0.955 3975 4048
AT, HT, T 3A 0.936 0.978 0.957 4014 4103
AT,T 3A 0.934 (0.930) 0.980 (0.981) 0.957 4004 4085
HT 3A 0.716 (0.715) 0.989 (0.991) 0.853 3070 3103
RAT,T 3A 0.934 0.980 0.957 4004 4085
R,AT, T HT 3A 0.936 0.978 0.957 4014 4103
T 3A 0.852 (0.850) 0.990 (0.990) 0.921 3653 3689
AT 3B 0.922 (0.916) 0.984 (0.984) 0.953 3956 4022
AT HT,T 3B 0.931 0.980 0.956 3993 4076
AT,T 3B 0.929 (0.922) 0.982 (0.982) 0.956 3983 4058
HT 3B 0.713 (0.715) 0.990 (0.991) 0.851 3057 3089
RAT,T 3B 0.929 0.982 0.956 3983 4058
R,AT,T,HT 3B 0.931 0.980 0.956 3993 4076
T 3B 0.872 (0.869) 0.989 (0.989) 0.930 3741 3781
AT 3C 0.926 (0.922) 0.980 (0.980) 0.953 3971 4052
AT HT,T 3C 0.943 0.976 0.960 4046 4146
AT,T 3C 0.941 (0.938) 0.977 (0.978) 0.959 4035 4128
HT 3C 0.713 (0.717) 0.990 (0.992) 0.851 3057 3089
RAT,T 3C 0.941 0.977 0.959 4035 4128
R,AT,T,HT 3C 0.943 0.976 0.960 4046 4146
T 3C 0.863 (0.860) 0.989 (0.990) 0.926 3701 3741

The results obtained by using preclustering cross validation are shown in parentheses (italics). Boldface numbers show the maximum
postclustering value of Avg(Sn, Sp) for a given species.

tial and transitional probabilities of the three- It was observed for several genomes (Table 9),
periodic model, g; are transitional probabilities for that when the model P fits the tested sequence, such
the ordinary first order Markov model of noncoding as a true gene sequence, the likelihood of misiden-

region.

tification of a protein-coding fragment correlates
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Table 8. Gene Prediction Accuracy in Terms of Avg(Sn,Sp) Observed for the 10 Genomes

Type of atypical model (cluster)

Species name 2A 2B 2C 3A 3B 3C

A. fulgidus 0.953 (0.952) 0.953 (0.954

B. subtilis 0.949 (0.942) 0.943 (0.936) 0.951 (0.945) 0.950 (0.943) 0.943 (0.933) 0.951 (0.947)
E. coli 0.956 (0.956) 0.953 (0.950) 0.959 (0.958) 0.957 (0.956) 0.956 (0.952) 0.959 (0.058)
H. influenzae 0.955 (0.954) 0.953 (0.953) 0.953 (0.954) 0.955 (0.956) 0.954 (0.954) 0.955 (0.955)
H. pylori 0.950 (0.950) 0.950 (0.951) 0.949 (0.948) 0.948 (0.950) 0.950 (0.950) 0.948 (0.948)
M. genitalium 0.924 (0.931) 0.927 (0.931) 0.924 (0.927) 0.925 (0.929) 0.928 (0.932) 0.922 (0.925)
M. jannaschii 0.974 (0.974) 0.974 (0.974) 0.974 (0.974) 0.975 (0.973) 0.974 (0.974) 0.975 (0.972)

M. pneumoniae

M. thermoauto-
trophicum

Synechocystis

0.925 (0.921)
0.972 (0.969)

0.968 (0.967)

0.925 (0.927)

0.965 (0.966)

0.917 (0.913)

0.968 (0.968)

0.923 (0.921)
0.970 (0.970)

0.968 (0.968)

0.927 (0.927)

0.966 (0.966)

0.924 (0.922)

0.969 (0.969)

The gene-finding program GeneMark included models derived from typical and atypical clusters. The results obtained by using
preclustering cross-validation are shown in parenetheses (in italics). All other data were obtained by using postclustering cross-
validation. See Table 7 for explanation of boldface numbers.

negatively with the KL distance between the models
P and Q as determined by equation 2.

It may happen, however, that the model P does
not fit the sequence data. Under the assumption
that the input sequence fits another model, P*, it
was shown (M. Borodovsky, unpubl.), that the mi-
sidentification error rate should correlate negatively
with the value of the “efficient” KL distance deter-
mined by the formula

Here D(P*||P) is defined as

1 3 m o pl*l
D(PHIP) =5 >, > pi' pyf log @)

I=1i,j=1 Pij

Particularly, if the typical model P is used to iden-
tify a highly typical gene segment that actually fits
the highly typical model P*, the “efficient” KL dis-
tance, computed by equation 3 is larger than the KL

D(P&P*|Q) = D(P*|Q) — D(P*||P) 3) distance between the models P and Q determined by

Table 9. Negative Correlation of KL distances and False-Negative Prediction
Error Rates Produced by GeneMark in Short Fragment Identification
Model
(order 3)  B. subtilis E. coli M. genitalium M. jannaschii M. pneumoniae
False-negative error rate

AT 0.186 0.223 0.171 0.118 0.165
T 0.098 0.083 0.093 0.044 0.078
HT 0.054 0.045 0.067 0.017 0.052

KL distance (coding vs. noncoding model)
AT 0.0648 0.0619 0.0837 0.0999 0.0883
T 0.0930 0.1102 0.0893 0.1299 0.1149
HT 0.1318 0.1687 0.1289 0.1909 0.1587
R= —-0.961 —-0.931 —-0.770 —0.896 —0.905
For five genomes the error rates are shown along with the KL distance between corresponding coding and
noncoding models of the third order. The correlation coefficients (bottom row) for A. fulgidus, H. influenzae,
H. pylori, M. thermoautotrophicum, and Synechocystis, averaged with regard to A-, B-, and C-type models, were
equal to —0.97, —0.91, —0.96, —0.96, and —0.99, respectively.
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Figure 6 Schematic representation of the genomic sequence
space with the KL distance metrics. The elements of the space are

protein-coding and noncoding sequences.

equation 2. This leads to the expectation that the
typical model will identify the function of a highly
typical segment with a misidentification rate lower
than one produced by the same model for a typical
gene segment. This effect has indeed been observed.

The geometry of the KL distance space of long
ORF sequences and noncoding sequences is illus-
trated in Figure 6. This figure emphasizes the idea
that the set of long ORFs is inhomogeneous and
should be represented rather by a cloud of points,
contrary to the set of noncoding sequences that
should be represented by one point. The noncoding
point also represents the model of the noncoding
region. The sequences from the atypical cluster, lo-
cated within the cloud (big circle), are shown to be
closer to the point representing the noncoding re-
gion than the sequences from highly typical cluster.
The centers of the clusters (circles) represent the
typical, atypical, and highly typical models. Note

~—

s

-~ 1080

Figure 7 Schematic representation of actual KL distances, as de-
fined by the order 3 Markov models, between the E. coli gene classes
(Medigue et al. 1991) and ORF clusters obtained by three-means

clustering.
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that the points are connected by curves
reminding one that the KL distance is not
a regular Euclidean distance and does not
satisfy the triangle inequality.
A more elaborate picture, Figure 7,
Q shows the cluster relationships in terms of
KL distances for the typical, highly typi-
cal, and atypical clusters, type A, and class
I, class Il, and class Ill gene sets. The B-
type atypical cluster was slightly closer to
the other clusters and classes, with the ex-
ception of class Ill. The C-type atypical
cluster was located further away from the
other sets with the exception of class Ill.

New Gene Predictions by Atypical Models

The GeneMark.hmm analysis of the 10 genomes us-
ing 2A cluster derived typical and atypical models
allowed the identification of 683 new putative
genes, each longer than 96 nucleotides. These genes
were identified as atypical model predictions, there-
fore, indicating the atypical model fits better to the
composition of these sequences than the typical
model. These findings deserve special attention be-
cause the genes with atypical composition are
harder to detect and therefore thus predicted genes
are good candidates for being horizontally trans-
ferred genes delivering special adaptive advantages
for microorganisms that carry these genes. For 176
predictions, the gapped BLAST analysis (Altschul et
al. 1997) corroborated the predictions with statisti-
cally significant similarity to known proteins in the
NCBI nonredundant sequence database (Table 10).
In a majority of cases, the similarity was
with hypothetical proteins whereas in
11 cases the similarity was detected with
proteins related to insertion elements.
Full lists of the results can be found at
ftp://genmark.biology.gatech.edu/pub/
gmgen.ghmAT.blast ftp://genmark.
biology.gatech.edu/pub/gmgen.
ghmAT .best.

The differences in distribution of
proteins tranlated from typical and
atypical long ORFs into functional cat-
egories (Riley 1993) can be seen in Figure
8. The proteins translated from atypical
ORFs were represented more strongly
than the transposon, or plasmid catego-
ries. The relative abundance of atypical
ORF-derived proteins was observed
among hypothetical and unknown pro-

0096
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Table 10. New Atypical Gene Predictions for the 10 Genomes Made by the
GeneMark.hmm program

No. of GeneMark.hmm
new predictions characterized
as atypical [corroborated
by gapped BLASP search

Species name Total (P <1e — 5)]
A. fulgidus 111 25
B. subtilis 86 14
E. coli 135 22
H.influenzae 44 24
H. pylori 16 5
M. genitalium 37 25
M. jannaschii 80 26
M. pneumoniae 20 14
M. thermoautotrophicum 39 4
Synechocystis 115 17

The GeneMark.hmm program (Lukashin and Borodovsky 1998) shows typical and atypical models in parallel.
Numbers of new predictions, as compared with the GenBank records, are shown along with the numbers of
cases when the gene prediction was corroborated by similarity search by gapped BLASTP (Altschul et. al.

1997).

teins as well as in cell structure proteins, putative
enzymes, and putative regulatory proteins.

METHODS
Materials

To test the GeneMark-Genesis program, we used the complete
genomic sequences of the following bacterial species: Archaeo-
globus fulgidus (Klenk et al. 1997; GenBank accession no.
AEO000782), B. subtilis (Kunst et al. 1997; AL009126), E. coli
(Blattner et al. 1997; U00096), H. influenzae (Fleischmann et
al. 1995; L42023), H. pylori (Tomb et al. 1997; AE000511), M.
genitalium (Fraser et al. 1995; L43967), M. jannacshii (Bult et al.
1996; L77117), M. pneumoniae (Himmelreich et al. 1996;
U00089), M. thermoautotrophicum (Smith et al. 1997;
AEO000782), and Synechocystis PCC6803 (Kaneko et al. 1996;
SYNECO). The size of each sequence, the number of anno-
tated genes, and the average GC content are given in Table 11.
The GeneMark-Genesis clustering results were compared with
the results of earlier studies by Medigue et al. (1991) and by
Lawrence and Ochman (1997). The updated versions of the
three E. coli gene classes were kindly provided by A. Danchin
(Institute Pasteur, Paris, France). Dr. J. Lawrence (University of
Pittsburgh, PA) provided us with the DNA sequences of 756 E.
coli genes, classified as horizontally transferred genes.

Generating the Root Model

The GeneMark-Genesis algorithm presented here makes sub-
stantial use of the GeneMark algorithm (Borodovsky and
Mclninch 1993) and can be viewed as an extension of Gen-
eMark. GeneMark-Genesis does not require experimentally
validated sets of training sequences to obtain the crucial set of
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parameters used in GeneMark, initial and transition prob-
abilities of Markov models of coding and noncoding regions.
The Markov model of DNA gene sequence is a machine-
learned model that reflects the pattern of correlation between
adjacent nucleotides, the pattern evolutionary developed un-
der restrictions intrinsic to coding region (amino acid com-
position, codon usage pattern, etc.) or noncoding region (di-
nucleotide composition, etc.).

Given an anonymous bacterial sequence, the parameters
of the initial model of protein-coding region were obtained
from the set of ORFs identified in the sequence, such as one of
the 10 complete genomic sequences with annotation as-
sumed unknown. An ORF starts with a start codon and ends
with the in frame stop codon. Whereas the ORF’s 3’ end is
unique, there is an ambiguity in the position of its 5’ end.
This ambiguity is eliminated by specifying an ORF as the long-
est possible ORF (with the start codon being the furthest pos-
sible from the given stop codon).

As Figure 9 shows that an ORF >500 nucleotides found in
the B. subtilis genome is unlikely to be a noncoding random
ORF. This is also true for the nine other bacterial genomes.
Therefore, by selecting ORFs >500 nucleotides in anonymous
bacterial DNA sequence one has a high likelihood of selecting
only true coding regions.

A note of caution should be made concerning the initial
part of a long ORF. If the true start codon is located inside the
ORF, the sequence upstream to the start codon is noncoding.
The average length of this noncoding sequence is small, how-
ever. For instance, according to the GenBank annotation of
the B. subtilis genome this length is equal to 18 nucleotides.
Therefore, if the selected ORFs are long enough, the bias in
estimated model parameters should be negligibly small. In
this work, a threshold of 700 nucleotides was used. This
choice made the relative amount of erroneously included
noncoding region even smaller than the choice of a 500-
nucleotide threshold. If two long ORFs overlapped by >30
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protein-coding regions were combined
into a new training sequence. The rest of

Amino acid biosynthesis and 1
metabolism

the sequence, considered noncoding, was
included into the noncoding training set.

Biosynthesis of cofactors,
prosthetic groups and carriers |

The Markov models, coding and noncod-
ing, whose parameters were defined using

Carbon compound catabolism

these training sets, were called the Root

Cell processes (incl. adaptation,
protection)

models. For comparison purposes, the
GenBank annotation of a given genome

Cell structure

was used to compile training sets of cod-
ing/noncoding sequence. The models de-

Central intermediary metabolism

fined by training on these sets were called

DNA replication, recombination,
modification and repair

the GenBank models.
Note that the Root models were gen-

Energy metabolism

erated as described above for complete ge-
nomic sequences of M. jannaschii and H.

Fatty acid and phospholipid
metabolism

pylori and used in the GeneMark program

Hypothetical, unclassified,
unknown

to identify protein-coding regions in these
genomes (Bult et al. 1996; Tomb et al.

Membrane proteins §:

1997). Recently Salzberg et al. (1998) have
used sets of ORFs >500 nucleotides to de-

Nucleotide biosynthesis and
metabolism

rive the interpolated Markov models of

Other known genes 1

bacterial protein-coding regions that were
used in the GLIMMER gene-finding pro-

Putative chaperones ¥

gram.

Putative enzymes }

Putative regulatory proteins

Generating ORF Clusters

Putative transport proteins

The general goal of clustering was to ob-
tain several compositionally homoge-

Regulatory function

neous training sets for class-specific gene
models that would enhance the gene-

Structural proteins

finding ability of the GeneMark program.

Transcription, RNA processing
and degradation

This goal dictated the choice of seed clus-
ters as well as the choice of the distance

Translation, post-transiational
modification

definition in the space of ORF sequences.

Transport and binding proteins

The k-means clustering algorithm, with k
equal to two or three (see below), was em-

phage, transposon, or plasmid £

ployed:

Figure 8 Distribution of functional categories of the E. coli genes in the 1. Sortn objects (ORFs) into c clusters.

typical and atypical (type A) ORF clusters obtained by two-means cluster-

ing. (solid bars) Atypical; (shaded bars) typical.

nucleotides, the longer ORF was kept in the training set. By
combining a number of long ORFs detected in bacterial
genomic DNA one could obtain an amount of presumably
protein-coding sequence sufficient to derive Markov mod-
els of high order. For instance, it was estimated that 1029
Mb of combined protein-coding sequence is generally suffi-
cient to derive accurately enough parameters for the three-
periodic Markov model of order five (M. Borodovsky, un-
publ.).

The set of long ORFs identified in a given complete
genomic sequence was used to determine parameters of
the Markov model of the protein-coding region, the “‘pre-
Root” model of orders zero to five. For a pre-Root Markov
model of a noncoding sequence, we used the zero order model
with four probability parameters estimated by genome spe-
cific frequencies of mononucleotides. The pre-Root models
were employed in the GeneMark program for predicting
coding regions in the original genomic sequence. Predicted

. Compute m, ... m. cluster centers.

3. Classify the n objects by assigning them
to the cluster with the closest center
cluster.

4. If any object was assigned to a new clus-
ter, go to 2; otherwise stop.

The initial step of the algorithm was to prepare the ORF clus-
ter “‘seeds”. The GeneMark program employing the Root
models was used to score all long ORFs identified in a given
genomic sequence. The long ORFs with a GeneMark score of
<0.5 were assigned to the atypical seed cluster. All other long
ORFs, in the two-means clustering procedure, were assigned
to the typical seed cluster. In the case of the three-means
clustering, the atypical seed cluster was selected as described
above, then 15% of the long ORFs with the highest scores
were assigned to the highly typical seed cluster, and all other
ORFs were assigned to the typical seed cluster.

Each ORF was characterized by a vector of 61 codon
frequencies. The ORF cluster center was defined by the vec-
tor of cumulative codon frequencies observed in all ORFs in
the cluster. The distance between codon frequency vectors
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Table 11. Information on Genomic Sequences Used in this Study

Genome length No. of GC
Species name Accession no. (nucleotides) annotated genes (%)
A. fulgidus AE000782 2,178,400 2407 48.6
B. subtilis ALO09126 4,214,814 4100 43.5
E. coli U00096 4,639,221 4290 50.8
H. influenzae L42023 1,830,419 1717 38.1
H. pylori AE000511 1,667,877 1566 38.9
M. genitalium L43967 580,073 476 31.7
M. jannaschii L77117 1,664,987 1680 314
M. pneumoniae Uo0o089 816,394 678 40.0
M. thermoautotrophicum  AE000666 1,751,377 1839 49.5
Synechocystis AB001339 3,573,470 3169 47.7

could be defined by a symmetrical Kullback-Liebler-type
formula

1 fi i
D00 =33 109 -+, log ©)

Here x is an ORF’s codon frequency vector, and c is a cluster’s
cumulative codon frequency vector. f;, represents the fre-
quency of the ith codon in the ORF, and g; represents the
frequency of the ith codon in the ORF cluster. In the actual
formula used in the clustering procedure, the codon fre-
quency values f; (g;) were normalized by the frequency of the
encoded amino acid and multiplied by the size of the group of
synonymous codons

Ci+1 N
=it 2t Nisyn
fi=7 : (6)

codons aa—i

Here, T.o4ons 1S the count of all codons for a particular ORF or
cluster. N;q,, is the number of synonymous codons for the ith
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Figure 9 Length distribution for B. subtilis annotated
genes and random ORFs. Data from the University of
Wisconsin, Madison (http://www.genetics.wisc.edu).
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codon. f . is the frequency of the amino acid in an ORF, or
OREF cluster, corresponding to the ith codon. C; is the count of
all codons of the ith type. To ward off the zero frequency
numerical problem, the codon counts were initialized to one.
Substitution of defined frequencies into formula (5) trans-
formed it into a weighted sum of symmetricized KL-distances
Dy (x||c) defined for each group of synonymous codons.

D(xlle) = = Ny—syn Di(x]c) ™

The weights N;,,, were equal to the size of each synonymous
group, and D,(x||c) was defined as

1 LUK
D (o) =52, | ulflog = + vilog — ®)
1 1
where u¥ and VN are relative codon usage frequencies in the
kth group of synonymous codons. Note, that in formula 7 the
terms relating to the methionine and tryptophan amino acids
have disappeared.

The final clusters of ORFs to which the k-means cluster-
ing algorithm converged were used as training sets for the
specific Markov models of protein-coding regions. The re-
gions that were predicted as coding by at least one cluster
specific model were eliminated from the set of noncoding
sequences used for training the Root model. The sequence left
was used for training the Markov model of noncoding se-
quence. The differences in noncoding models obtained by
slightly different clustering processes were not found to be
critical for the gene prediction results. Therefore, in what fol-
lows, we do not discuss the minor differences between the
models of noncoding sequence.

The training set for the atypical gene model could be
obtained in several ways. As was indicated earlier, the set of
horizontally transferred E. coli genes constitutes about 15% of
the whole gene pool (Medigue et al. 1991; Lawrence and
Ochman 1997). The clustering method described above, how-
ever, when applied to a complete bacterial genomic sequence
produced the atypical gene cluster, cluster A as it is called
below, which usually consisted of [(130% of the total number
of genes. We modified the atypical gene cluster content to
make its size closer to the size of the horizontally transferred
gene set as was estimated in previous studies. For instance,
only 15% of all long ORFs that were closest to the center of



the cluster produced by method A, were included into an-
other version of the atypical cluster, cluster B. All other ORFs
were included into the typical cluster. In yet another modifi-
cation, only 15% of all of the long ORFs, those produced by
method A that were furthest from the typical cluster center
were assigned to the atypical cluster, cluster C.

Note that a different approach to obtain homogeneous
sets of protein coding regions and eventually to derive class-
specific GeneMark models for anonymous bacterial genomic
sequences was suggested by Hirosawa et al. (1997). In this
approach, tested on the Synechocystis PCC6803 genome, itera-
tive runs of GeneMark were used instead of iterative k-means
clustering. Recently, clustering of Arabidopsis thaliana genes
was performed (Peresetsky et al. 1998). In this project, several
types of gene sequence characterization were used—by pa-
rameters of the Markov models of zero and first order as well
as by codon usage vector. The variant of k-means clusteriza-
tion procedure employed as a distance function the Euclidean
distance between parameter vectors.

Prediction Accuracy Evaluation using Sets
of Short DNA Fragments

The GeneMark program prediction accuracy was character-
ized by the false-negative and false-positive error rates ob-
served in identification of short DNA fragments, either coding
or noncoding. To obtain the test set of presumably coding
short sequences, the long ORFs from a designated set were cut
into a number, N, of nonoverlapping 96-nucleotide se-
quences. Each individual fragment was then identified as cod-
ing or noncoding. If the output GeneMark score was lower
than the threshold, 0.5, the fragment was interpreted as non-
coding and, therefore, misidentified. The total number of
false-negative predictions, FN, was recorded and the ratio FN/
N, defined the observed false-negative error rate. Note that
the uncertainty in the position of the true start codon in a
long ORF might slightly elevate the false-negative error rate as
a few true noncoding fragments could be generated by chop-
ping a long ORF. To define the false-positive error rate, pre-
sumably noncoding sequences were cut into a number, N,,, of
short 96-nucleotide sequences. Now if the output GeneMark
score for a given fragment was higher than the threshold, 0.5,
the fragment was interpreted as protein-coding, therefore mi-
sidentified. The observed false-positive error rate was defined
as the ratio FP/N,,, where FP was the total number of false-
positive predictions. When a Markov model of protein-coding
regions was tested on protein-coding DNA sequence from the
same gene class as one the model was derived from, the above
accuracy evaluation procedure was used in cross-validation
mode.

Sensitivity and Specificity

The sensitivity, Sn, and specificity, Sp, parameters, formulas 9
and 10, were used to characterize the accuracy of the models
and the algorithm in terms of whole gene prediction. Here, as
a control, we used the GenBank annotation, assuming it is
correct on the whole gene location but might be off in terms
of the start codon position. Sn is defined as the ratio of the
number of correctly located genes to the number of genes
annotated in the GenBank record for this sequence. Sp is the
ratio of the number of correctly located genes to the total
number of genes predicted by the algorithm in the given se-
quence.
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no._of_correct_predictions
n= total_no._of annotated_genes

©

S _ no._of_correct_predictions
p= total_no._of predictions

(10)

When the performance of a combination of models was
evaluated, the GeneMark program was used to analyze a given
sequence once for each model being considered. An ORF was
counted as a predicted gene if the ORF was predicted as a
coding one by at least one model. If the same ORF was pre-
dicted as protein-coding one by several models, however,
these coinciding predictions were considered as one item for
counting the total numbers of predictions.

Postclustering and Preclustering Accuracy
Evaluation Procedures

When the basic cross validation procedure was used for an
accuracy evaluation of the Markov model of a protein-coding
region, this model was derived from 6/7 of a particular long
ORF cluster and the other 1/7 of the ORF cluster was used as
a test set. Such an evaluation was done 7 times by testing each
1/7 of the ORF cluster with the model trained on the other 6/7
part of the cluster. The resulting false-negative rate was an
average of the seven observed rates. Notably, the accuracy
evaluation using the whole set of long ORFs was performed
posterior to the clustering of long ORFs identified in a given
sequence. This procedure was called postclustering cross-
validation.

Additional accuracy evaluation was made to make sure
that clustering does not introduce a systematic bias into the
model derivation. To perform this preclustering cross-
validation procedure, the initial sequence was divided into
seven parts. The 6/7 of the whole sequence was used for the
k-means clustering (see above) and deriving models. The 1/7
of the sequence was used to test the models on the long ORFs
assigned to specific, typical or atypical, ORF clusters by the
initial k-means clustering (with the same parameter k) that
had been performed initially with the whole sequence. The
resulting false negative error rate was obtained as an average
of the seven observed outcomes. Both the postclustering and
the preclustering cross-validation procedures were performed
only for testing the particular model on the sequence cluster
with the same name (i.e., typical model vs. typical ORFs, etc.).
The postclustering and the preclustering Markov models were
also assessed using the Sn and Sp parameters.

Gene Prediction by Atypical Model

Contrary to using different models in GeneMark in a consecu-
tive manner, the GeneMark.hmm program uses the models,
particularly typical and atypical, in parallel; therefore, for
each identified gene the program indicated the model that fits
best in terms of maximum likelihood to the gene sequence
(Lukashin and Borodovsky 1998). Genes predicted by the
atypical model were of special interest since these genes were
potentially horizontally transferred genes as well as genes that
are difficult to spot by the typical model. We analyzed all 10
bacterial genomes using the GeneMark.hmm program, with
the models derived from A-type clusters obtained by k-means
(k = 2) clustering. The regions predicted as genes by the atypi-
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cal model, >96 nucleotides, were selected, translated, and
searched against the nonredundant protein sequence data-
base supported by NCBI using the gapped BLAST program
(Altschul et al. 1997). The BLAST hits with P values smaller
than 1e~° were considered as statistically significant evidence
for nonrandom similarity to an earlier discovered protein.
These findings indicated that the current predictions are most
likely functional genes rather than the false positives.
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