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Abstract. Dynamic Vegetation Models (DVMs) are designed to be suitable for simulating
forest succession and species range dynamics under current and future conditions based on
mathematical representations of the three key processes regeneration, growth, and mortality.
However, mortality formulations in DVMs are typically coarse and often lack an empirical
basis, which increases the uncertainty of projections of future forest dynamics and hinders their
use for developing adaptation strategies to climate change. Thus, sound tree mortality models
are highly needed. We developed parsimonious, species-specific mortality models for 18 Euro-
pean tree species using >90,000 records from inventories in Swiss and German strict forest
reserves along a considerable environmental gradient. We comprehensively evaluated model
performance and incorporated the new mortality functions in the dynamic forest model For-
Clim. Tree mortality was successfully predicted by tree size and growth. Only a few species
required additional covariates in their final model to consider aspects of stand structure or cli-
mate. The relationships between mortality and its predictors reflect the indirect influences of
resource availability and tree vitality, which are further shaped by species-specific attributes
such as maximum longevity and shade tolerance. Considering that the behavior of the models
was biologically meaningful, and that their performance was reasonably high and not impacted
by changes in the sampling design, we suggest that the mortality algorithms developed here are
suitable for implementation and evaluation in DVMs. In the DVM ForClim, the new mortality
functions resulted in simulations of stand basal area and species composition that were gener-
ally close to historical observations. However, ForClim performance was poorer than when
using the original, coarse mortality formulation. The difficulties of simulating stand structure
and species composition, which were most evident for Fagus sylvatica L. and in long-term sim-
ulations, resulted from feedbacks between simulated growth and mortality as well as from
extrapolation to very small and very large trees. Growth and mortality processes and their
species-specific differences should thus be revisited jointly, with a particular focus on small
and very large trees in relation to their shade tolerance.

Key words: dynamic vegetation models; empirical mortality models; European tree species; forest inventory
data; forest reserves; generalized logistic regression; individual tree mortality; tree growth.

INTRODUCTION

Tree mortality, one of the key demographic processes

that shape forest ecosystems, has significant short- and

long-term implications for a wide range of forest ecosys-

tem services (Van Mantgem et al. 2009, Millar and

Stephenson 2015). Management for ecosystem services

therefore requires a good understanding of tree death

and of its determinants, in particular since drought-

induced dieback and other mortality hazards are likely

to increase in response to future climate change (Allen

et al. 2010, Steinkamp et al. 2015). Tree mortality is a

highly complex and multifactorial process, and the scien-

tific community still faces difficulties to understand the

underlying mechanisms (Sala et al. 2010) and predict

mortality from the individual to the regional level

(Weiskittel et al. 2011, Adams et al. 2013, McDowell

et al. 2013, Meir et al. 2015).

This difficulty has implications for predictive mortal-

ity functions as an essential component of forest simula-

tion models, which are used for short-term forest

planning (growth-and-yield models; Hasenauer 2006)

and for assessing the long-term consequences of climate

change (Dynamic Vegetation Models DVM; Bugmann

2001, Smith et al. 2001, Friend et al. 2014). While much

effort has been devoted to accurately predicting tree

growth, mortality formulations in DVMs are typically
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coarse and usually lack an empirical basis (Loehle and

LeBlanc 1996, Keane et al. 2001) or robust mechanistic

foundation (Allen et al. 2015). The poor representation

of tree mortality in DVMs has critical consequences for

the accuracy of their predictions, and thus for the

reliability of their projections (Keane et al. 2001, Reyer

et al. 2015), which may impede the timely initiation of

measures that maintain ecosystem services (De Groot

et al. 2002, Temperli et al. 2012).

Besides theoretical (“data-free”) and physiological pro-

cess-based approaches (cf. Wunder et al. 2006, Weiskittel

et al. 2011, Meir et al. 2015 for respective advantages and

drawbacks), empirical mortality models have been sug-

gested as a valid and pragmatic alternative (Adams et al.

2013). Such empirical mortality models are not only

highly valuable for the reliable simulation of future forest

dynamics, but also to improve our understanding of the

mortality process (Cailleret et al. 2016). Among other

approaches, tree size and radial stem growth can be used

as predictors of tree death (Cailleret et al. 2017, H€ulsmann

et al. 2017), which is supported by the assumption that

the dimensions of a tree, typically expressed via its stem

diameter, are a proxy for the access to resources and con-

straints on the hydraulic system (Grote et al. 2016), and

that radial growth provides an indication of individual

tree vitality (Harcombe 1987, Dobbertin 2005).

Growth-based mortality models have been fitted using

forest inventory (Ruiz-Benito et al. 2013) or den-

drochronological data (Gillner et al. 2013) and a variety

of methodological approaches (Hawkes 2000, Weiskittel

et al. 2011, Cailleret et al. 2016). However, most of them

(1) do not adequately consider species differences for a

wide range of species, (2) are not sensitive to the varia-

tion in climate and site conditions, and (3) have not been

implemented in DVMs and validated in this context (cf.

Larocque et al. 2011, Bircher et al. 2015). The obstacles

to achieve this arise from the fact that mortality of indi-

viduals having outgrown the seedling stage is rare and

highly variable in space and time (Eid and Tuhus 2001),

and there is a general scarcity of data for describing

long-term processes (Bugmann 1996b, Hawkes 2000).

In DVMs, tree regeneration, growth, and mortality

are simulated for individual tree species or Plant

Functional Types (PFTs; Bugmann 1996a, Wullschleger

et al. 2014). By grouping species with similar ecological

characteristics to PFTs, mortality models can be cali-

brated and validated even for rare species. Yet, modeling

approaches are mostly limited to one or few species

(Holzwarth et al. 2013, Neuner et al. 2015, but see

Wunder et al. 2008). Thus, there is no comprehensive evi-

dence of how life history traits such as shade tolerance

and longevity (Bugmann 1994) determine the mortality

patterns of tree species, and that PFTs are a useful and

robust concept for mortality predictions.

Moreover, only few studies have accounted for the

spatial and temporal variability in size–mortality and

growth–mortality relationships (Wunder et al. 2008,

Dietze and Moorcroft 2011) by including additional

covariates in mortality models (but see Cond�es and Del

R�ıo 2015). Climate or stand characteristics may be

required as driving factors of mortality under conditions

of drought or high competition, since they are only

partly reflected in size or growth variables (Rowland

et al. 2015). However, data sets with a representative

sampling along major environmental gradients and over

long time periods that allow for a systematic analysis of

environmental influences on the relationship between

tree size, growth, and mortality are rare.

To verify the suitability of growth-based empirical

mortality functions for DVMs, their predictive perfor-

mance, i.e., the accuracy of a model when applied to new

data, should be evaluated using cross-validation

approaches or by validation with independent external

data (cf. H€ulsmann et al. 2016). Subsequently, such mor-

tality models should be incorporated in DVMs, a step

that is made only rarely (but see Wyckoff and Clark

2002, Wernsd€orfer et al. 2008, Larocque et al. 2011,

Bircher et al. 2015). Thus, a comprehensive and sound

assessment of empirical mortality models in DVMs is

still lacking, and it remains unclear whether more empiri-

cism in mortality modeling would actually advance the

quality of simulations from DVMs.

Thus, the overall objectives of this study were to develop

parsimonious mortality models for a large set of European

tree species, to comprehensively evaluate their perfor-

mance, and to incorporate them in a specific DVM (For-

Clim; cf. Bugmann 1996b). To this end, we used extensive

inventory data from strict forest reserves, i.e., areas with-

out forest management, in Switzerland and Germany

along a large environmental gradient. We followed the

approach of model calibration and evaluation that was

established and tested for Fagus sylvatica L. in H€ulsmann

et al. (2016). Specifically, we addressed three main ques-

tions: (1) Can life history traits such as maximum longev-

ity and shade tolerance be used to group tree species into

meaningful PFTs that account for species differences in

mortality? (2) How successful are mortality models that

are based on size and growth alone compared to models

that include further climate or stand characteristics in

accurately predicting tree mortality? (3) How do the new

mortality functions perform when embedded in a DVM?

MATERIAL AND METHODS

Study areas and inventory data

We used inventory data from 54 strict forest reserves

in Switzerland and Lower Saxony/Germany to develop

the mortality models (cf. Meyer et al. 2006, 2015, Brang

et al. 2011). Measurements had been conducted repeat-

edly on up to 14 permanent plots per reserve for up to

60 yr with remeasurement intervals of 4–27 yr. The

permanent plots vary in size between 0.03 and 3.47 ha.

The inventories provide diameter measurements at

breast height (DBH) and information on the species and

status (alive or dead) of trees with DBH ≥ 4 cm for
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Switzerland and ≥7 cm for Germany. As ForClim does

not explicitly simulate natural large-scale disturbances,

only plots without substantial fire or bark beetle events

at the stand scale were used to derive the mortality mod-

els. To this end, we excluded three permanent plots

where at least 80% of the trees died during an interval of

10 yr, and mortality could be clearly assigned to a dis-

turbance agent. Mortality in the remaining stands was

rather low, with a mean annual mortality rate of 1.5%

and strong variation between plots from 0% to 6.5%

(assessed for trees of all species with DBH ≥ 7 cm).

We only used data from permanent plots with at least

20 trees per species to obtain reliable plot-level mortality

rates even for species with low mortality rates (about 5%

during 10 yr), and selected tree species occurring on at

least 10 plots to cover sufficient ecological gradients.

This led to a data set of 197 permanent plots and 18 tree

or shrub species: Abies alba Mill., Acer campestre L.,

Acer pseudoplatanus L., Alnus incana Moench., Betula

pendula Roth, Carpinus betulus L., Cornus mas L., Cory-

lus avellana L., Fagus sylvatica L., Fraxinus excelsior L.,

Picea abies (L.) Karst, Pinus mugo Turra, Pinus sylvestris

L., Quercus pubescens Willd., Quercus spp. (Q. petraea

Liebl. and Q. robur L.; not properly differentiated in the

Swiss inventories), Sorbus aria Crantz, Tilia cordata

Mill., and Ulmus glabra Huds. (Table 1).

Mortality information and tree characteristics

We considered tree size and growth as key indicators

for mortality risk (Monserud 1976). Radial stem growth

between the first and second inventory and DBH (mm)

at the second inventory were used to predict tree status

(alive or dead) at the third inventory. To this end, the

annual relative basal area increment (relBAIi; cf. Bigler

and Bugmann 2004) was calculated as the compound

annual growth rate of the trees’ basal area (BAi) using

relBAIi ¼
BAi;2nd

BAi;1st

� � 1
Dt

� 1 (1)

with ∆t denoting the number of years of the growth per-

iod. Several sets of three inventories per tree were used if

more than three inventories were available. Thus, 26.5%

of the trees appeared more than once in the data set (for

verification cf. H€ulsmann et al. 2016).

To improve the relationship between the explanatory

variables and mortality, suitable transformations were

applied (cf. Mosteller and Tukey 1977), i.e., ln(DBH)

and log10(relBAI). The latter is a modified transforma-

tion based on the common logarithm that is applicable

even to those 8.8% of the records with relBAI = 0

(Stahel 2015; cf. Appendix S2).

Climate and stand characteristics

We included additional climate and stand characteris-

tics in the mortality models to address spatial and tempo-

ral differences in mortality rates between permanent plots

and inventories that cannot be explained by changes in

growth rates alone (cf. Table S1, see Appendix S1 for

all additional tables and figures). To this end, mean

annual precipitation sum (P) and mean annual air

temperature (mT) were calculated between the second

and the third inventory (for their derivation cf.

Appendix S2).

TABLE 1. Number of records per tree species.

Species Total Germany Switzerland Dead Reserves Permanent plots

Abies alba 7,140 0 7,140 1,147 7 31

Acer campestre 1,183 0 1,183 256 5 19

Acer pseudoplatanus 1,399 24 1,375 255 12 26

Alnus incana 1,252 0 1,252 734 5 11

Betula pendula 1,847 300 1,547 723 7 14

Carpinus betulus 5,789 1,637 4,152 1,283 19 28

Cornus mas 1,123 0 1,123 215 1 10

Corylus avellana 1,427 0 1,427 739 8 14

Fagus sylvatica 26,645 6,899 19,746 4,018 40 118

Fraxinus excelsior 7,645 142 7,503 1,715 19 52

Picea abies 12,965 458 12,507 2,209 20 59

Pinus mugo 7,376 0 7,376 1,250 4 21

Pinus sylvestris 2,925 317 2,608 519 10 24

Quercus pubescens 2,968 0 2,968 429 2 15

Quercus spp. 7,250 832 6,418 1,536 22 48

Sorbus aria 1,546 0 1,546 492 8 23

Tilia cordata 1,911 0 1,911 344 8 16

Ulmus glabra 631 20 611 137 4 11

All 93,022 10,629 82,393 18,001 54 197

Notes: Numbers are given for the total data set, per country and for those that resulted in tree death. Additionally, the number of
reserves and permanent plots that are covered in the data of each species are indicated. Quercus spp. refers to both Q. petraea and
Q. robur.
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As a proxy for stand age and structural complexity, the

mean and the interquartile range of DBH were calculated

at the permanent plot level (mDBH, iqrDBH). To account

for stand density, basal area (BA) and the number of trees

(N) per hectare were considered. These stand characteris-

tics were calculated for the second inventory based on all

living trees ≥7 cm. We did not further expand the set of

climate and stand characteristics considered to keep the

models simple and thus also applicable in DVMs.

Mortality models

Generalized logistic regression (Monserud 1976,

Weiskittel et al. 2011, Yang and Huang 2013) was used

to model mortality probability. This was necessary to

account for the unequal remeasurement intervals in the

inventory data. The annual mortality probability of tree

i (pi,∆t = 1) was defined as

pi;Dt¼1 ¼ logit�1 Xibð Þ ¼
exp Xibð Þ

1þ exp Xibð Þ
(2)

with Xi denoting the design matrix of the linear predic-

tor and b the respective parameter vector. The annual

probability was scaled to the length of the respective

mortality period of ∆t years using

pi;Dt ¼ 1� 1� pi;Dt¼1

� �Dt
(3)

and then fitted against the observed status of the tree (yi;

1 = dead, 0 = alive) using maximum-likelihood estimation

for the parameters of b. Standard errors, confidence inter-

vals, and P values of the parameter estimates were derived

using the Fisher information based on the Hessian matrix

(cf. H€ulsmann et al. 2016).

Model selection and performance criteria

In a first step, the most promising climate or stand

characteristic and its most suitable transformation (log,

square root, or none) were identified for each species. To

this end, covariates were included in highly flexible mod-

els to capture linear, non-linear, and interacting influences

of ln(DBH) and log10(relBAI) on mortality (cf. Table 2,

Formula C12 with different transformations of the cli-

mate and stand characteristics). We selected the covariate

that resulted in the smallest Brier Score (BS). BS corre-

sponds to the mean squared error of the model defined as

BS ¼
1

n

X

n

i¼1

pi;Dt � yi
� �2

(4)

and ranges between 0 and 1, with low values indicating

good model calibration and discrimination, i.e., correct

mortality rates and attribution of dead/alive status (cf.

Harrell 2015). BS does, however, not allow for the com-

parison of models based on different data sets since it

depends on the overall mortality rate that varies between

species (Steyerberg et al. 2010).

In a second step, the final model was selected from a

large set of model formulae (cf. Table 2) with varying

complexity and flexibility that are based on the terms ln

(DBH), log10(relBAI), their interaction and the respective

quadratic terms (Formulae 1–12). These models were ana-

lyzed without an additional covariate (Formulae A1–12),

with the most promising climate or stand characteristic

TABLE 2. Model formulae considered during model selection and their degree of complexity.

Number

Use of additional climate or stand characteristics

Formula A B C

1 ln(DBH) 1 11

2 ln(DBH) + (ln(DBH))2 2 12

3 log10(relBAI) 1 11 21

4 log10(relBAI) + (log10(relBAI))2 2 12 22

5 ln(DBH) + log10(relBAI) 3 13 23

6 ln(DBH) + (ln(DBH))2 + log10(relBAI) 4 14 24

7 ln(DBH) + log10(relBAI) + (log10(relBAI))2 4 14 24

8 ln(DBH) + (ln(DBH))2 + log10(relBAI) + (log10(relBAI))2 5 15 25

9 ln(DBH) 9 log10(relBAI) 6 16 26

10 ln(DBH) 9 log10(relBAI) + (ln(DBH))2 7 17 27

11 ln(DBH) 9 log10(relBAI) + (log10(relBAI))2 7 17 27

12 ln(DBH) 9 log10(relBAI) + (ln(DBH))2 + (log10(relBAI))2 8 18 28

Notes: Model numbers 1–12 in the first column refer to formulae with increasing flexibility of the influence of the tree covariates
diameter at breast height (DBH, mm, log-transformed) and annual relative basal area increment (relBAI, dimensionless, log10-
transformed). The letters A–C refer to the use of additional climate or stand characteristics: A, without an additional characteris-
tic; B, with an additional characteristic; C, with an additional characteristic and its interaction with log10(relBAI). The numbers of
1–28 in columns A–C indicate increasing complexity of the formulae and were used to select the most parsimonious models during
10-fold cross-validation (cf. Appendix S2). For instance, model B3 in line 3 and column B stands for the formula “log10(relBAI)”
plus an additional climate or stand characteristic and has a complexity of 11. The complexity of a model was assigned considering
the number of predictors and their flexibility (quadratic terms, interactions). Note that the additional characteristic was selected
separately for each species (cf. Appendix S1: Table S4).
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(B1–12), and in interaction with log10(relBAI) (C3–12). To

this end, we calculated BS in repeated 10-fold cross-valida-

tion and applied the “one standard error rule” to avoid

overfitting and overly complex models (cf. Appendix S2

for details; Breiman et al. 1984, Hastie et al. 2001). For

models that included an additional climate or stand char-

acteristic, an alternative model without that covariate was

derived to compare its performance with the respective full

model. These were selected by applying the “one standard

error rule” to Formulae A1–12 only.

Several performance criteria were reported to take into

account that calibration and discrimination are not neces-

sarily correlated (Bravo-Oviedo et al. 2006). In addition

to BS, the Area under the receiver operating characteristic

Curve (AUC) was calculated, which is a threshold-inde-

pendent measure of classification accuracy. Following

Hosmer and Lemeshow (2000), the discriminative ability

is rated as acceptable (0.7 ≤ AUC < 0.8), excellent

(0.8 ≤ AUC < 0.9), or outstanding (AUC ≥ 0.9).

Since all data were used for model development, no

external validation of the models using independent data

could be carried out. However, to correct for overfitting

and assess the predictive behavior in external application,

i.e., when applied to new data from the same domain,

BS and AUC from cross-validation were reported (cf.

Appendix S2). Furthermore, AUC was calculated for

diameter classes to assess the calibration success of the

models with respect to tree size.

Commonly, performance criteria used in mortality

studies do not convey an intuitive expectation of the pre-

dictive behavior of mortality models at the level of forest

stands. Therefore, we selected an additional performance

criterion that facilitates the evaluation of model perfor-

mance with respect to the application in DVMs. We

defined the prediction bias pbias as the difference of the

mean predicted annual mortality probability (simulated

mortality) �pDt¼1 and the mean annual mortality rate (ob-

served mortality) �yDt¼1 calculated at the level of single

inventories of permanent plots (cf. Appendix S2) and

reported the mean absolute deviation (mad) of pbias. This

allowed us to quantify the variation in prediction accu-

racy, i.e., how well the models can deal with the high

variability of mortality rates and patterns in space and

time (Wunder et al. 2008, Dietze and Moorcroft 2011).

Observed variability and mad pbias increase with increas-

ing mortality rates. Therefore, we additionally calculated

the respective relative value (rmad pbias), i.e., the ratio of

mad pbias and the observed annual mortality rate �yDt¼1.

Both values were used to evaluate the models with

respect to their ability to predict correct mortality rates

in space and time.

Model calibration and evaluation was performed with

R (R Core Team 2015). The function log10() from the

package regr0 (Version 1.0-4/r46, 2015) was used for

the relBAI transformation. The function optim() and the

BFGS method were applied for maximum-likelihood esti-

mation. AUC was calculated using a modified version of

the auc() function from the package SDMTools (Version

1.1-221, 2014) to allow for values below 0.5, which is nec-

essary to calculate AUC in cross-validation.

Implementation of inventory-based mortality models

in ForClim

Model description.—To examine the performance and

behavior of the new mortality functions in DVMs, we

used the climate-sensitive forest gap model ForClim,

which simulates the dynamics of forest stands on short

and long time scales (Bugmann 1996b). Establishment,

growth and mortality for cohorts of individual trees

are simulated on independent patches (~800 m2) at an

annual resolution based on species-specific parameters

(e.g., shade and drought tolerance), environmental con-

ditions (light availability, temperature, soil nitrogen, and

water availability), and tree characteristics (cf. Bugmann

1996b, Didion et al. 2011, Rasche et al. 2012).

In the latest model version, ForClim 3.3 (Mina et al.

2015), tree mortality is modeled as a combination of a

constant ‘background’ mortality that depends on the

species-specific maximum age and a stress-induced mor-

tality that is activated if the annual diameter increment

is lower than an absolute or relative growth threshold

(3 mm or 10% of the species-specific maximum growth

rate at a given tree size, respectively) for more than two

consecutive years. Mortality is modeled individually for

each tree of a cohort based on a stochastic approach

that results in tree death if a uniformly distributed ran-

dom number between 0 and 1 is below the annual mor-

tality probability. A more detailed description of the

mortality function is provided in Bircher et al. (2015).

This mortality formulation was replaced by the new

inventory-based models (IM) without environmental

covariates, i.e., alternative models, based on tree size and

growth only. The models were implemented following

two approaches: (1) with mean parameter estimates

(IM_mean) and (2) by randomly sampling the parame-

ters using their mean and standard error to account for

the uncertainty in model estimates (IM_sd, assuming a

normal distribution of the parameters).

The mortality functions were applied to all trees irre-

spective of their DBH although this led to extrapolation at

least for the small trees (initial DBH of trees in ForClim is

1.27 cm whereas the calipering threshold in the inventories

is 4 cm or more). Since no mortality function could be

developed for some species in the validation data, we used

the models from species of the same genus: the model of

Acer pseudoplatanus for A. platanoides, Alnus incana for

A. glutinosa and A. viridis, Sorbus aria for S. aucuparia,

and Tilia cordata for T. platyphyllos. Simulation results for

these species were jointly reported (e.g., Tilia spp.). Species

for which no mortality model could be developed and that

were present in minor abundance were excluded from the

simulations (e.g., Populus nigra, Taxus baccata).

Simulation setup and model validation.—We ran short-

and long-term simulations to assess the performance
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and behavior of the two new mortality functions

(IM_mean, IM_sd) and to compare them with the origi-

nal model version (ForClim 3.3), as follows.

Short-term simulations.—To validate the new mortality

functions in ForClim, we simulated historical forest

dynamics based on past climate data (cf. Appendix S2)

and compared the results against inventory measure-

ments. To this end, permanent plots were selected from

the Swiss forest reserves according to the following crite-

ria: (1) inventory data should cover at least a period of

35 yr, (2) plot size had to exceed 0.2 ha to ensure a rep-

resentative structure and composition of the forest, and

(3) recent dynamics had to be unaffected by severe natu-

ral disturbances, which are not accounted for in the

model. We ended up with 28 permanent plots located in

13 forest reserves (Appendix S1: Table S2) that were all

part of the calibration data set. ForClim was initialized

with single-tree data (species, DBH) from the first avail-

able inventory of each permanent plot. As spatial infor-

mation about tree positions on the plots was not

available, trees were allocated randomly and evenly to an

initial set of patches, each with a size of 800 m2 (Wehrli

et al. 2005). Depending on the ratio of permanent plot

area and patch size (Appendix S1: Table S2), this

resulted in the direct initialization of 2–44 patches. To

average over the stochasticity across patches, the initial

set of patches was replicated to 200. For evaluating the

goodness-of-fit of the historical runs, we compared sim-

ulated and measured stand- and species-specific BA at

the last inventory and the cumulative number of dead

trees (Ndead) over the whole period. The root mean

square error (RMSE) as well as the relative bias (rbias)

were reported for both criteria separately per species and

permanent plot.

Long-term simulations.—As model validation is con-

strained by the short length of the empirical data series, we

also simulated Potential Natural Vegetation (PNV), i.e.,

the species composition expected in a pseudo-equilibrium

state in the absence of anthropogenic influences (Ellenberg

2009), at seven sites along a well-studied environmental

gradient in Switzerland (cf. Bugmann and Solomon 2000).

Note that we could not apply the models at the sites

Grande Dixence and Bever, since we were not able to cali-

brate a mortality model for Pinus cembra L. Starting from

bare ground, forest dynamics were simulated for 1,500 yr

without any large-scale disturbances, and forest structure

and composition at the end of the simulation were exam-

ined qualitatively for their plausibility (Rasche et al. 2012).

RESULTS

Size and growth influences on mortality

Formulae of the final models varied between tree species

with respect to the flexibility of the covariates DBH and

relBAI (Appendix S1: Table S3). Nevertheless, all models

except for those of Cornus mas, Pinus mugo, and Ulmus

glabra, which were based on tree growth alone (Formulae

3 and 4), included both explanatory variables. Most com-

mon was Formula 7 with medium complexity and the

terms ln(DBH) + log10(relBAI) + (log10(relBAI))2, which

was selected for 10 species. Mortality of three species was

best predicted using Formula 5, including only DBH and

relBAI without any quadratic term or interaction. Only

for Tilia cordata (Formula 9) and Fraxinus excelsior (For-

mula 11), models were more complex and included also

the interaction between ln(DBH) and log10(relBAI).

In spite of the different model formulae, the overall pat-

tern of simulated mortality with respect to the main pre-

dictors was very similar for most species, i.e., mortality

risk decreased with increasing tree size and growth result-

ing in reverse J-shaped mortality over DBH and relBAI

(Fig. 1). However, the models differed concerning (1) the

respective influence of size and growth as characterized

by the steepness of the slope of mortality over DBH and

relBAI, and (2) the overall level of mortality probabilities.

Based on these two criteria, each species could be visually

assigned to one of four main patterns: (1) low overall

mortality and a slight effect of DBH and relBAI (Abies

alba, Cornus mas, Fagus sylvatica, Picea abies, Pinus

mugo, Tilia cordata and Ulmus glabra), (2) high overall

mortality, also in large trees, and a strong growth influ-

ence on mortality (Alnus incana, Betula pendula, Corylus

avellana and Sorbus aria), (3) strong impacts of DBH and

relBAI on mortality (Acer pseudoplatanus, Pinus sylves-

tris, Quercus pubescens and Quercus spp.), and (4) inter-

mediate impacts of DBH and relBAI on mortality (Acer

campestre, Carpinus betulus and Fraxinus excelsior).

None of the species-specific models included a quadra-

tic term for DBH, which would suggest a U-shaped mor-

tality pattern, i.e., higher mortality for both small and

larger trees. The quadratic term of log10(relBAI), which

was included in 12 of the 18 final models, dominantly

resulted in a pronounced decrease of mortality probability

FIG. 1. Prediction maps of 10-yr mortality probability as a function of diameter at breast height (DBH, mm) and relative basal
area increment (relBAI). In accordance with the variable transformations applied in the models, logarithmic scales are used for plot-
ting, i.e., natural logarithm for DBH and the base 10 logarithm for relBAI (cf. log10 transformation; Stahel 2015). The interval
∆t = 10 yr for the mortality probability was selected to increase the contrast of the typically very low annual mortality probabilities.
Predictions of models that included an additional climate or stand characteristic are shown for the additional covariate fixed at its
mean value as indicated in the plot. Additional covariates are BA, stand basal area (m2/ha); P, mean annual precipitation sum
(mm); mDBH, arithmetic mean DBH (mm); mT, mean annual air temperature (�C); or none. Observations of DBH and relBAI
are shown with black triangles. No-growth observations are located at the lower limit of the predictive map defined by back-
transformed log10(0), i.e., 0.0008029.
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with increasing growth. For Alnus incana, Fraxinus excel-

sior, and Sorbus aria, the quadratic growth term decreased

the predicted mortality probability of trees with very slow

growth (relBAI < 0.002), but did not modify the overall

positive effect of growth on survival.

Climate and stand influences on mortality

From the set of the most promising climate or stand

characteristics selected for each species (cf. Appendix S1:

Table S4), only a few remained in the final models

(Appendix S1: Table S3). Additional covariates consider-

ably improved the models of Alnus incana (improved by

BA), Corylus avellana (P), Picea abies (mDBH), Pinus

mugo (P), Quercus pubescens (mT), and Quercus spp.

(BA). The two stand variables (BA and mDBH) were

positively correlated with mortality (cf. Appendix S1:

Fig. S1). The effect of precipitation (P) was inconsistent.

At high P, mortality probability was lower for Pinus

mugo but higher for Corylus avellana. Higher mean tem-

perature (mT) increased mortality of Quercus pubescens.

None of the additional covariates that remained in the

models required an interaction term with tree growth.

Thus, the general relationship between relBAI and mor-

tality was not altered.

Alternative models without the additional covariate

were based on the same or a similar formula as the full

model (cf. Appendix S1: Table S5). Thus, they indicate a

similar complexity and shape of the relationship between

DBH, relBAI, and mortality (cf. Appendix S1: Fig. S2).

For Corylus avellana, Picea abies, and Quercus pubes-

cens, a formula with lower flexibility was selected for the

alternative model, which resulted in size-independent

mortality for Picea abies.

Calibration performance

Discrimination accuracy (AUC) was high for most

species (Table 3). While the ability of the models to cor-

rectly identify tree status was acceptable for seven species

(0.7 ≤ AUC < 0.8), it was even excellent for nine species

(0.8 ≤ AUC < 0.9). Only the models of Picea abies

TABLE 3. Performance criteria of the calibrated models.

Species Formula Covariate BS BS CV AUC
AUC
CV �yDt¼1 (%) mad pbias (%) rmad pbias

Abies alba A7 – 0.1233 0.1235 0.721 0.720 1.3 0.7 0.53

Acer campestre A7 – 0.1310 0.1323 0.815 0.813 2.2 1.5 0.68

Acer pseudoplatanus A5 – 0.1114 0.1121 0.847 0.846 1.7 0.8 0.48

Alnus incana B7 BA 0.1828 0.1843 0.790 0.788 9.1 2.7 0.30

Alnus incana A7 – 0.1869 0.1881 0.778 0.777 9.1 4.6 0.51

Betula pendula A7 – 0.1878 0.1886 0.766 0.765 4.5 2.3 0.51

Carpinus betulus A7 – 0.1335 0.1337 0.806 0.806 2.2 1.3 0.59

Cornus mas A4 – 0.1270 0.1280 0.790 0.789 1.8 0.6 0.32

Corylus avellana B7 P 0.2024 0.2037 0.753 0.751 6.7 1.6 0.24

Corylus avellana A5 – 0.2144 0.2152 0.725 0.724 6.7 3.2 0.48

Fagus sylvatica A7 – 0.1032 0.1032 0.814 0.814 1.4 0.5 0.36

Fraxinus excelsior A11 – 0.1326 0.1328 0.813 0.813 2.2 1.1 0.48

Picea abies B5 mDBH 0.1348 0.1349 0.659 0.658 1.5 1.1 0.72

Picea abies A3 – 0.1371 0.1372 0.616 0.616 1.5 1.0 0.68

Pinus mugo B3 P 0.1217 0.1218 0.766 0.766 1.2 0.5 0.44

Pinus mugo A3 – 0.1266 0.1267 0.720 0.720 1.2 1.0 0.84

Pinus sylvestris A5 – 0.1128 0.1132 0.815 0.814 1.7 0.6 0.36

Quercus pubescens B7 mT 0.0777 0.0782 0.892 0.891 1.6 0.4 0.22

Quercus pubescens A5 – 0.0840 0.0843 0.884 0.884 1.6 0.7 0.46

Quercus spp. B7 BA 0.1123 0.1125 0.842 0.842 2.0 1.0 0.51

Quercus spp. A7 – 0.1150 0.1152 0.838 0.838 2.0 1.1 0.56

Sorbus aria A7 – 0.1563 0.1573 0.821 0.821 3.3 1.8 0.55

Tilia cordata A9 – 0.1233 0.1240 0.798 0.796 1.5 1.3 0.89

Ulmus glabra A3 – 0.1658 0.1672 0.616 0.614 1.8 1.0 0.53

Notes: For model formulae, refer to Table 2. Brier Score (BS) and Area Under the receiver operating characteristic curve (AUC)
were calculated for the entire calibration data set and during repeated 10-fold cross-validation (CV) to assess the predictive ability
of the mortality models. To quantify the variation in prediction accuracy, the mean absolute deviation (mad) of the prediction bias
pbias defined as the difference of the mean predicted annual mortality probability �pDt¼1 and the mean annual mortality rate �yDt¼1

was calculated at the level of single inventories of permanent plots (cf. Appendix S2). Observed variability and mad pbias increase
with increasing mortality rates. Therefore, we additionally calculated the respective relative value (rmad pbias), i.e., the ratio of mad
pbias and the observed annual mortality rate �yDt¼1. Both values were used to evaluate the models with respect to their ability to pre-
dict correct mortality rates in space and time. For species for which the final model included an additional covariate (highlighted in
boldface type), the performance of the best model without an additional covariate (A1–12) is also given (alternative models). Addi-
tional covariates are BA, stand basal area (m2/ha); P, mean annual precipitation sum (mm); mDBH, arithmetic mean DBH (mm);
mT, mean annual air temperature (°C).
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and Ulmus glabra had no discriminative ability. The

over-optimism assessed via cross-validation was low for

all species, i.e., the relative difference between cross-vali-

dation BS and apparent BS was <1% of apparent BS,

and cross-validation AUC was only <0.003 lower than

apparent AUC (Table 3).

AUC plotted as a function of DBH revealed that dis-

crimination was not equally successful across tree size

(Appendix S1: Fig. S3). Mostly, AUC decreased with

increasing DBH, indicating that the models had less or even

no discriminative power for larger trees (cf. Acer pseudopla-

tanus, Fagus sylvatica, Picea abies, Pinus mugo, Quercus

pubescens, Quercus spp., and Ulmus glabra). In contrast, an

increasing AUC trend with tree size was identified for Cor-

nus mas and Corylus avellana. The models of the remaining

species either had the best AUC for medium-sized trees (cf.

Acer campestre and Fraxinus excelsior) or achieved a con-

stant discrimination over the considered DBH range.

The variation of the prediction accuracy between sites

and inventory periods, assessed as rmad pbias, ranged

between 0.22 and 0.89 (Table 3). Fairly large values

resulted for Acer campestre, Picea abies, Pinus mugo, and

Tilia cordata (rmad pbias ≥ 0.68), while models of Alnus

incana, Cornus mas, Corylus avellana, and Quercus pub-

escens achieved lowest rmad pbias (≤0.32) and hence the

most accurate prediction of mortality rates at the level

of single inventories. The underlying values of mad pbias
indicate that the models estimate annual mortality rates

at the level of single inventories with an average absolute

bias of 0.4–4.6% per year.

The alternative models that did not include additional

covariates had reduced discriminative power, i.e., lower

AUC, when compared to the corresponding full model

(Table 3). Nevertheless, the reduction in AUC was small

(<0.03 except for Picea abies and Pinus mugo) and did not

change the discriminative ability, as rated following Hos-

mer and Lemeshow (2000). However, the models’ ability

to accurately predict mortality rates in space and time

was more severely affected when additional covariates

were omitted. Models that included an additional covari-

ate typically had a substantially lower rmad pbias than the

alternative models for the respective species. Only for

Picea abies was rmad pbias not reduced by the additional

covariate, which was in accordance with the poor discrim-

inative ability of both model formulations of this species.

Implementation of inventory-based mortality models

in ForClim

Short-term simulations.—Compared with forest inven-

tory data, the new model versions ForClim IM_mean and

IM_sd performed slightly worse than ForClim 3.3 in pre-

dicting stand- and species-specific BA at the end of the

historical runs (Fig. 2, Table 4; Appendix S1: Table S6).

Overall, the inventory-based models overestimated BA.

Although BA of several species was too high, overestima-

tion was particularly driven by Fagus sylvatica (RMSE >

11 m2/ha, rbias > 30%) and occurred especially at

permanent plots where this species dominates (e.g.,

F€urstenhalde and Weidwald; cf. Fig. 2; Appendix S1:

Table S6). BA was underestimated by the new mortality

functions for Alnus spp., Betula pendula, Corylus avellana,

Fraxinus excelsior, and Tilia spp. (cf. Table 4). Account-

ing for uncertainty in model parameters resulted in pro-

nounced underestimation of BA, so that the IM_mean

approach achieved better BA performance than ForClim

IM_sd. The reduction of BA caused by the random sam-

pling of the parameters of the mortality formulation was

especially strong for Acer campestre, Carpinus betulus,

Sorbus spp., and Tilia spp. but negligible in the case of

Fagus sylvatica (cf. Fig. 2, Table 4).

In contrast, IM_sd was superior to ForClim 3.3 in pre-

dicting accurate numbers of dead trees for most of the

species (cf. Table 4), but the performance of ForClim 3.3

in predicting Ndead was better in the majority of the per-

manent plots (cf. Appendix S1: Table S6) since most of

them were dominated by Fagus sylvatica. For this spe-

cies, mortality rates were strongly underestimated by

both inventory-based mortality functions (cf. Table 4).

Based on the simulation results with the new mortality

functions, three main types of disagreement between

observed and simulated BA and Ndead could be distin-

guished. For their interpretation, the number of observed

versus simulated Ndead as a function of DBH (cf.

Appendix S1: Fig. S6) must be considered, as follows.

First, simulated BA for Fagus sylvatica, Pinus mugo,

and Pinus sylvestris was overestimated since mortality

was considerably underestimated, most markedly for

Fagus sylvatica trees with DBH < 20 cm. Second, the

opposite was found for Acer campestre, Carpinus betulus,

Fraxinus excelsior, and Tilia spp. simulated by IM_sd

since too many trees died, in particular between 16 and

40 cm DBH (e.g., Tariche Haute Côte, Weidwald).

Finally, BA and Ndead were jointly underestimated for

several other species including Picea abies, which is the

result of considerably underestimated mortality of small

trees (DBH < 8 cm) and overestimated mortality of large

trees (e.g., Scatl�e). However, the prediction accuracy

of trees with large DBH varied among sites. In contrast

to mortality patterns in the inventory data, simulated

mortality overDBHofAcer pseudoplatanus,Fagus sylvatica,

and Picea abies, was not reverse J-shaped but clearly

hump-shaped (cf. Appendix S1: Fig. S6).

Long-term simulations.—Species composition and BA

predicted after 1,500 yr differed considerably between

ForClim 3.3 and ForClim including the new mortality

functions. In the center of the Swiss environmental gradi-

ent, the dominance of Fagus sylvatica as simulated by For-

Clim IM_mean and IM_sd was even more evident than in

short-term simulations (Fig. 3). High BA of Fagus sylvat-

ica was fostered by trees reaching very large DBH (e.g.,

>280 cm in Bern). At the sites dominated by Fagus sylvat-

ica, Carpinus betulus also established in small numbers,

but those trees reached great size and thus contributed

strongly to total BA. In comparison, the BA of other
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species was negligible. This is in contrast to ForClim 3.3

and expected PNV under these conditions (Bugmann and

Solomon 2000). The consideration of uncertainty in

model parameters (IM_sd) reduced BA of Carpinus betu-

lus and increased the presence of Picea abies but did not

change the strong prevalence of Fagus sylvatica.

In contrast to expectations and outputs from ForClim

3.3 (Rasche et al. 2012), PNV in Sion simulated by For-

Clim IM_mean and IM_sd was not dominated by Pinus

sylvestris but by Pinus mugo, and BAwas comparably low.

In addition, simulations of ForClim IM_mean resulted in

an unexpected large presence of Acer campestre. The

simulated biomass of Picea abies in Davos was lower than

expected and suggested by ForClim 3.3, in particular for

DBH > 115 cm.

DISCUSSION

The development of new inventory-based mortality

models provided novel insights with respect to (1) species-

specific differences of mortality patterns, (2) potential

advances of growth-based mortality models that include

climate and stand characteristics, and (3) the suitability of

empirical mortality models for implementation in DVMs.
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Species-specific patterns of mortality

Tree mortality over DBH and relBAI was reverse

J-shaped for nearly all species in our study. This is con-

gruent with ecological theory of stress and vigor (Waring

1987), which suggests that individuals with restricted

access to resources, i.e., those that have a small rooting

and crown system (small trees; Harcombe 1987), and

individuals that show reduced vitality (slow-growing

trees; cf. Manion 1981, Stephenson et al. 2011), are

exposed to higher stress and thus usually have a higher

probability to die.

This general relationship between DBH, relBAI, and

mortality is modified by species-specific traits that are

related to life history strategies (cf. Fig. 4; Grime 1977,

Brzeziecki and Kienast 1994). Specifically, species that can

reach high age show lower mortality rates than typical

pioneers. In addition, species with high shade tolerance

are expected to have a good ability to survive in the sub-

canopy (Givnish 1988), i.e., when being small, and to resist

low-growth periods (cf. storage hypothesis; Valladares and

Niinemets 2008). Conversely, less shade-tolerant species

are more likely to show increased mortality at low DBH

and relBAI and thus a pronounced effect of size and

growth on mortality (Kobe and Coates 1997). The four

patterns that we identified for the influences of size and

growth on mortality represent different expressions of

these two traits, as discussed in the following.

The first group features low overall mortality and

weak impacts of DBH and relBAI. It is dominated by

relatively long-lived species with high shade tolerance

(cf. Bugmann 1994 for specifications of maximum age

and shade tolerance). While this applies to Abies alba,

Fagus sylvatica, Picea abies, and Tilia cordata, the lifes-

pan of Ulmus glabra is shorter, and thus the overall mor-

tality rate we found appears low. However, the model for

Ulmus glabra had only low discriminative ability, and

thus this pattern is not necessarily reliable. In turn, Cor-

nus mas and Pinus mugo are less shade-tolerant than the

other species in this group, and the influences of DBH

and relBAI arising from their models appear rather

weak. Bearing in mind the shrubby shape and small size

of Cornus mas, a maximum age of 300 yr can be

regarded as long living (San-Miguel-Ayanz et al. 2016).

When taking into account the narrow DBH range of this

species covered in the data, this may have led to weaker

effects of DBH and relBAI than expected from species

attributes. In contrast, Pinus mugo may not feature par-

ticularly high mortality rates for small and slow-growing

trees due to its occurrence in relatively open stands

under quite stressful conditions with respect to water

and nutrient availability (Ellenberg 2009, Brang et al.

2014). As more competitive species are missing in these

stands, the mortality patterns of Pinus mugo do not indi-

cate high shade tolerance, but rather high tolerance of

drought and lack of nutrients.

TABLE 4. Species-specific root mean square error (RMSE, m2/ha or ha�1, respectively) and relative bias (rbias, %) of BA and
Ndead simulated by the three ForClim versions: latest model version (3.3), ForClim with new inventory-based mortality models
using mean parameter estimates (IM_mean), and using randomly sampled parameters (IM_sd).

Species

Basal area (BA) Number of dead stems (Ndead)

3.3 IM_mean IM_sd 3.3 IM_ mean IM_sd

RMSE rbias RMSE rbias RMSE rbias RMSE rbias RMSE rbias RMSE rbias

Abies alba 4.6 7.2 4.2 7.6 5.8 �14.3 4.0 �44.0 4.9 �56.3 3.1 �33.9

Acer campestre 0.1 241.5 0.1 311.7 0.0 148.8 0.1 33.7 0.2 �48.2 0.1 40.0

Acer pseudoplatanus 3.2 �31.2 1.8 �16.0 2.0 �23.5 1.3 �24.2 1.2 �32.9 0.9 �16.0

Alnus spp. 0.3 �2.7 0.5 �88.6 0.5 �97.2 0.6 2.0 0.2 �8.1 0.2 �10.4

Betula pendula 1.4 �50.1 1.8 �74.1 2.2 �99.0 1.5 �19.4 1.5 �16.3 1.6 �12.5

Carpinus betulus 3.0 �43.1 1.3 9.3 2.5 �38.2 1.1 29.0 1.3 �37.9 1.4 26.3

Corylus avellana 0.1 �94.4 0.1 �94.3 0.1 �97.8 0.6 �30.4 0.6 �31.9 0.6 �28.6

Fagus sylvatica 6.4 5.7 11.5 33.1 11.2 32.5 3.0 �24.3 5.2 �62.5 4.9 �58.3

Fraxinus excelsior 2.8 �52.1 3.6 �69.2 5.0 �95.1 1.0 �25.7 0.9 �0.5 1.4 44.0

Picea abies 3.0 2.5 3.2 �19.7 2.9 �17.4 1.6 �41.1 1.4 �33.6 1.4 �34.6

Pinus mugo 2.1 171.9 3.0 240.2 3.1 251.0 3.1 �61.8 3.7 �74.0 3.7 �74.2

Pinus sylvestris 3.4 10.5 2.2 24.3 2.3 17.7 0.5 �23.2 0.6 �30.2 0.5 �24.9

Quercus pubescens 0.4 �95.9 0.4 �100.0 0.4 �100.0 0.1 �22.8 0.0 �21.0 0.0 �21.0

Quercus spp. 2.7 24.3 2.0 10.3 2.8 �17.7 1.7 �66.3 1.0 �38.0 0.4 �4.9

Sorbus spp. 0.3 �53.1 0.5 11.4 0.4 �58.7 0.4 �18.4 0.7 �36.1 0.4 �18.3

Tilia spp. 0.5 �17.6 0.8 �32.2 2.7 �99.2 0.4 �45.5 0.3 �16.5 1.4 132.0

Ulmus glabra 0.4 262.8 0.2 122.5 0.3 172.5 0.1 �36.8 0.1 �30.6 0.1 2.1

Number of
species with
best performance

9 10 7 6 1 1 7 5 4 4 9 10

Notes: Results are shown for the last inventory of every permanent plot. For each species and variable of interest, the lowest
RMSE and the rbias closest to zero were highlighted in bold. Trees with DBH < 4 cm were not considered.
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In contrast, high overall mortality was identified for

the second group that consists mainly of short-living

pioneers, i.e., Alnus incana, Betula pendula, Corylus avel-

lana, and Sorbus aria. The high mortality of slow-grow-

ing trees of these species is due to their low shade

tolerance (for similar patterns cf. Wunder et al. 2008,

Moustakas and Evans 2015). Given their low competi-

tiveness, even large trees of these species experience high

mortality risk (Brzeziecki and Kienast 1994).

Species of the third group show a similarly strong influ-

ence of relBAI on mortality, as Pinus sylvestris, Quercus

pubescens, and Quercus spp. feature low shade tolerance

as well. However, due to a higher maximum age, more

large trees survive compared to the second group. In con-

trast, Acer pseudoplatanus is typically considered a shade-

tolerant species, and its seedlings achieve high survival

and low but sustained growth under low light conditions

(Ammer 1996). Nevertheless, shade tolerance consider-

ably decreases when Acer seedlings become taller, which

may explain why mortality decreased strongly with size

and growth for this species (Hein et al. 2008).

The fourth group of Acer campestre, Carpinus betulus,

and Fraxinus excelsior is characterized by medium life

expectancy and medium to high shade tolerance. This is

reflected in mortality patterns with average mortality

effects of tree size and growth, which bridge between the

other groups.

In contrast to the often proposed U-shaped mortality

over tree size (Buchman et al. 1983, Lorimer and Frelich

1984), we did not find any evidence of a positive quadra-

tic term for DBH in the models. This agrees with the

results of Ruiz-Benito et al. (2013) and a recent assess-

ment of inventory-based mortality models that revealed

U-shaped mortality in four out of 58 cases only

(H€ulsmann et al. 2017). Higher background mortality of

large trees is typically associated with a number of addi-

tional mortality agents such as insect attacks, drought,

rot, or mechanical instability (Franklin et al. 1987, Das

et al. 2016, Grote et al. 2016). In the forest reserves

studied here, the lack of U-shaped mortality is most

likely related to the relatively short time without forest

management (approximately 60 yr, with the exception of

>200 yr in Derborence and Scatl�e; cf. Heiri et al. 2011,

Meyer and Schmidt 2011). Consequently, a large popu-

lation of big trees that would show the right tail of

the U-shaped mortality is not present yet, in contrast to
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true old-growth forests (H€ulsmann et al. 2016; cf.

Appendix S3 for an extended discussion on U-shaped

mortality over tree size and growth).

Climate and stand influences on mortality

The infrequency of additional covariates for climate

or stand properties in the final models does not necessar-

ily disprove any direct long- or short-term environmental

effects on mortality. Rather, this suggests that they are

considered, at least to a large degree, via tree size and

growth. Our study provides ample evidence across a

large number of tree species that size (DBH) and growth

(relBAI) sufficiently capture the influences of climatic

and stand conditions on mortality probability, and tree

size and growth can thus be used as integrative indica-

tors of vitality (cf. Dobbertin 2005). In a previous study,

we showed that not only precipitation and temperature

but also a large variety of drought indices did not sub-

stantially improve mortality predictions for Fagus sylvat-

ica (H€ulsmann et al. 2016), a result supported by the

findings of this study. Nevertheless, we were unable to

test the influence of drought on mortality for all species

due to limited data on soil water conditions. In addition,

intense drought or bark beetle attacks may lead to sud-

den tree death (Peterken and Mountford 1996, Meddens

et al. 2012) that cannot be elucidated with multi-annual

remeasurements and would require a higher temporal

resolution via annual inventories (e.g., Neuner et al.

2015) or dendrochronological data (e.g., Cailleret et al.

2017). Similarly, information on climate and stand prop-

erties was available at the level of the permanent plots

only rather than for the local tree neighborhood, which

may have impeded the identification of such effects on

the mortality probability of individual trees.

Species that had additional covariates in the final

model belong to different groups with respect to mortal-

ity patterns as a function of DBH and relBAI, and thus

feature different life history strategies. In addition, these

models included different covariates and effect directions

(cf. influence of precipitation). Accordingly, the covari-

ates do not reflect universal but rather species-specific

environmental influences that may additionally depend

on the available data set, as discussed in more detail in

Appendix S3. Finally, none of the covariates interacted

with relBAI, suggesting that the growth influence on

mortality is constant across different environments.

Although we restricted our analysis to species with a

minimum data coverage of 20 trees per plot and at least

10 permanent plots, the results indicate that the estimation

of environmental effects on mortality critically depends on

sufficiently wide and well supported environmental gra-

dients. Otherwise, questionable effects (Pinus mugo and

Quercus pubescens, cf. Appendix S3) are likely to occur.

In turn, this may have prevented additional covariates to

be retained in the models of other species, because many

reserves are near the center of a species’ range. Thus they

do not encompass marginal populations with truly

FIG. 4. Influence of maximum longevity and shade tolerance on mortality patterns. For each group, mortality for one example
species is shown as a function of tree size (DBH) and growth (relBAI). Species that can reach high age show lower mortality rates
than typical pioneers. In addition, species with high shade tolerance are expected to have a good ability to survive in the sub-canopy,
i.e., when being small, and to resist low-growth periods. Conversely, less shade-tolerant species are more likely to show increased
mortality at low DBH and relBAI and thus a pronounced effect of size and growth on mortality. Axes have the same scales as in
Fig. 1.
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extreme conditions, which however is key for establish-

ing the relationship between environmental effects and

ecological processes.

Suitability of empirical mortality models for

incorporation in DVMs

Calibration performance.—Mortality models for imple-

mentation in DVMs need to predict accurate mortality

rates (Bircher et al. 2015, Cailleret et al. 2016). We

therefore reported the relative variation in prediction

accuracy between inventories (rmad pbias), revealing con-

siderable differences between species. On the one hand,

the high accuracy in predicting mortality rates was often

related to homogeneity of the underlying data (few per-

manent plots from one reserve only, cf. Cornus mas).

The mortality model for this species is thus not necessar-

ily better than the others, but it was fitted to rather

homogeneous stand and site conditions. On the other

hand, low rmad pbias values were identified for three

models that included additional covariates (Alnus

incana, Corylus avellana, and Quercus pubescens). Thus,

the covariates improved the representation of variability

in mortality between inventories in these data sets. Nev-

ertheless, prediction accuracy was considerably lower for

other species, even if their model included a climate or

stand characteristic (e.g., Picea abies). This means that

observed and predicted mortality rates deviated consid-

erably for several species and that the models under- or

overestimated annual mortality by up to 2.7% (quanti-

fied as the absolute value mad pbias; cf. Table 3, Alnus

incana) when applied in the calibration domain.

These findings confirm that the mortality process is

highly variable in space and time (cf. Hawkes 2000,

Wunder 2007), and it remains challenging to explain this

variability with climate and/or stand characteristics

using inventory data with a low temporal resolution.

After all, mortality processes are likely to always be sub-

ject to pronounced stochasticity due to the complexity

of biological, mechanical and competitive influences on

mortality (Allen et al. 2015, Anderegg et al. 2015).

Thus, it may be exceedingly hard to include these pro-

cesses in any mortality functions, even in the most

“mechanistic” approaches (Meir et al. 2015). This sug-

gests that more emphasis should be placed on the ade-

quate representation of the uncertainty in parameter

estimates of empirical-based mortality functions. Param-

eter combinations can be sampled within their confi-

dence intervals in a stochastic way as we did here, but we

acknowledge that an even more beneficial approach

would be to consider the cross-correlations between

parameter values, which can be quantified, e.g., using

Bayesian methods (Hartig et al. 2012).

The differences in AUC between species and trees of

different size and the related uncertainty must be consid-

ered when empirically based mortality models are used

to simulate forest dynamics in DVMs. Nevertheless, low

AUC is less crucial for the implementation of mortality

functions in DVMs. Poor discriminative ability can be

the result of mortality agents that impair the relationship

between mortality and the predictors chosen, or it can

be due to poor data sources. For example, the unsatisfac-

tory discrimination of Ulmus glabra may be caused by

the rapid decline in response to infection with Ophios-

toma novo-ulmi (Dutch elm disease; Brasier 2000) or by

the small sample size used to calibrate its mortality func-

tion (cf. Table 1). In turn, the poor discrimination

between living and dead trees of Picea abies was most

likely caused by the impacts of small-scale windthrow,

wet snow, or insect attacks that often result in sudden

death irrespective of tree growth (Svoboda et al. 2010).

In a previous study, AUC patterns over DBH provided

novel insights into the mortality processes of Fagus

sylvatica that are changing during a tree’s lifetime

(H€ulsmann et al. 2016). Our results for a much extended

set of species confirm that the models’ discriminative abil-

ity is decreasing with tree size also for several other tree

species. This supports the conclusion that competition,

which disproportionally affects smaller trees (Das et al.

2016), is the dominant mortality process reflected in the

models. As competition becomes lower with increasing

size and other mortality agents gain importance (cf.

Holzwarth et al. 2013), the discriminative ability of the

models is reduced. This is supported by the finding that

Cornus mas and Corylus avellana, which reach small

DBH only, show an increase of AUC with size. However,

models of other species also retained good discriminative

ability for larger DBH, and except for Abies alba, all these

species feature low shade tolerance. This suggests that in

shade-intolerant species even large trees may die due to

competition, or due to mortality agents affecting the

same trees as competition, which confers mortality

models a good discrimination also in large individuals.

Considering that the behavior of parsimonious empiri-

cal models based on tree size and growth was biologi-

cally meaningful for most species, and that their

performance was quite high and not impacted by

changes in the sampling design (as supported by cross-

validation), we propose that the mortality algorithms

developed here are suitable for implementation and eval-

uation in DVMs. Since covariates for climate and stand

were only rarely included and partly revealed ecologi-

cally questionable relationships, we only implemented

models without environmental covariates in ForClim.

This appears appropriate since, from the species con-

cerned, only Picea abies and Quercus spp. are of impor-

tance in the simulated permanent plots.

Implementation of the inventory-based mortality models

in ForClim.—Although the predictions of stand basal

area and species composition based on the new ForClim

versions were generally close to historical observations,

their performance was lower than with ForClim 3.3, espe-

cially for two major tree species of Central Europe, Fagus

sylvatica and Picea abies. In the long term, PNV could

not be simulated adequately and showed a strong
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overestimation of Fagus sylvatica (and Carpinus betulus in

case of ForClim IM_mean). This was much to the

detriment of other species such as Picea abies or Tilia

spp., whose growth was excessively reduced by low light

availability. For Picea abies, the new empirical mortal-

ity formulations prevented trees with DBH > 115 cm,

although Picea abies in old-growth, subalpine forests

clearly can attain larger size (Hillgarter 1971). The simula-

tion performance differed considerably among species, and

poor results could be attributed to over- and underestima-

tion of mortality rates for different tree sizes. Overall, the

calibration performance of the inventory-based models was

not necessarily a good predictor for the accuracy of the

simulation of species-specific BA andNdead by ForClim.

Since growth is one of the main predictors of tree death,

the parameters determining growth and survival are highly

correlated (Bircher 2015). Hence differences between sim-

ulated and observed growth rates may partly explain dif-

ferences between simulated and observed mortality rates.

For instance, underestimated mortality rates of Fagus syl-

vatica, especially for trees with DBH < 20 cm, can be

related to the overestimation of their simulated relative

growth rates (see Appendix S1: Fig. S4). This systematic

bias, which was also observed for Picea abies and Pinus

sylvestris (albeit to a lower extent), can originate from

multiple sources such as an inaccurate simulation of the

effect of light availability or crown size on tree growth

(Mina et al. 2015), difficulties in the growth equation that

is used to simulate diameter increment (Moore 1989), or

an unrealistic stand initialization in ForClim. Because of

the random and even allocation of trees to an initial set of

patches, which are then replicated to obtain 200 patches

per simulation, the diversity in stand structure among

patches at initialization is much lower than observed in

the field. Similarly, as ForClim does not track tree posi-

tion, the variability in competition intensity among trees

may not be represented accurately enough.

Mortality predictions appeared particularly problematic

for trees with DBH < 10 cm and > 60 cm (cf. Larocque

et al. 2011, Bircher et al. 2015). These difficulties are

likely to result from extrapolation since the inventory

data set is truncated for small DBH (calipering limit of 4

and 7 cm, cf. Material and Methods), and contains fewer

large trees than would occur in true old-growth forests.

In addition, different agents affect the mortality of large

individuals that may not be reflected well in the empiri-

cal mortality models (cf. AUC patterns over DBH).

When implemented in DVMs, U-shaped DBH–mortal-

ity functions may be preferable over J-shaped functions

to avoid the persistence of very large trees in long-term

simulations, as observed here with Fagus sylvatica. To

implement this U-shape in spite of the poor data avail-

ability of large trees, semi-empirical models that com-

bine empirically derived formulations with theoretical

adjustments (e.g., assuming a maximum DBH; Manusch

et al. 2012) may be required. In turn, mortality formula-

tions for small trees should be refined using regeneration

surveys, inventories without calipering limit, stem cross-

sections, or experiments (Wernsd€orfer et al. 2008, Can-

ham and Murphy 2016, Evans and Moustakas 2016). At

the same time, the representation of tree regeneration

and establishment that similarly suffer from a poor

empirical foundation could be improved by extending

mortality models to seedlings (Wehrli et al. 2007).

Due to the non-linearity between the predictors and

the mortality probability (cf. logit link function), which is

then transposed into a binary variable (tree death or sur-

vival) based on a stochastic approach (see Bircher et al.

2015), accounting for uncertainty in model estimates typi-

cally increases mortality rates. Although this approach

can reduce systematic underestimations of tree mortality

rates and thus improve simulation accuracy (unpublished

manuscript), it did not considerably increase mortality

rates of Fagus sylvatica. This may be related to the large

number of records in the calibration data set of this spe-

cies, which resulted in low parameter uncertainty. Never-

theless, accounting for uncertainty appears promising for

species for which inventory sample size is small and diver-

sity in mortality patterns among sites and individuals is

high, and we therefore advocate evaluating this approach

further (Cressie et al. 2009).

CONCLUSION

We identified dominantly reverse J-shaped mortality

over tree size and growth across 18 tree species, using

inventory data from forest reserves. These patterns

reflect the indirect influences of resource availability and

tree vitality on mortality but rebut the assumption of a

general substantial instability of large trees. Further-

more, the patterns confirmed that size- and growth-

dependent mortality relationships are modulated by

species-specific attributes.

If species-specific models are unfeasible due to data lim-

itations, we propose that maximum longevity and shade

tolerance should be used for the classification of tree spe-

cies into PFTs to predict mortality, but we think that this

approach should be tested further (cf. Bircher 2015).

Species with intermediate behavior may be misrepresented

if the continuous traits of lifespan and shade tolerance

are used to build categories, and species are accordingly

assigned to the resulting groups. The same applies if

additional attributes modify the mortality patterns (e.g.,

Cornus mas, Pinus mugo, Ulmus glabra). Therefore,

species-specific mortality models should be favored over

parameterizations for PFTs, so as to obtain DVMs with

an appropriate representation of demographic diversity.

Based on our analysis of the role of environmental

covariates in mortality models, we conclude that tree size

and growth alone are well suited to predict tree death of

most species. These models consider environmental

effects indirectly, i.e., via integrative indicators of tree

vitality such as size and growth. Nevertheless, the cli-

matic sensitivity of growth-based mortality functions

should be verified using data with higher temporal reso-

lution, followed by an in-depth evaluation in DVMs.
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Additionally, the predictive ability of tree size and

growth is restricted to mortality associated with particu-

lar size and growth levels. Thus, processes such as short-

term intense drought, mechanical damage or insect

attacks may not be fully reflected by these models

(Larson and Franklin 2010, Cailleret et al. 2017).

Finally, we emphasize that caution is required when

additional covariates are considered in mortality models.

Their effects may appear erratically if the environmental

gradient underlying the observational data is insuffi-

cient. Applying such models means leaving the domain

of calibration, which can result in unwarranted extrapo-

lation and misleading inference (Hawkes 2000, Woolley

et al. 2012, Kuhn and Johnson 2013). Therefore, the

selection of environmental covariates in mortality mod-

els should be based on the principle of parsimony (Sims

et al. 2009, Burkhart and Tom�e 2012).

When incorporated in a DVM, the new inventory-

based mortality models successfully simulated short-

term dynamics but showed weaknesses in simulating

stand structure and species composition in the long

term. These difficulties were the result of feedbacks

between simulated growth and mortality as well as of

extrapolation to small and very large trees. Thus, both,

growth and mortality processes and their species-specific

differences should be revisited jointly, with a particular

focus on small and very large trees, e.g., using a Bayesian

calibration approach (Hartig et al. 2012, Bircher 2015).

Yet, we conclude that inventory-based mortality formu-

lations can replace theoretical concepts of mortality in

DVMs since they provide species-specific mortality rela-

tionships that are not based on single parameters such

as maximum age and growth but on empirical relation-

ships over a tree’s lifetime.

The benefit of empirical mortality models in DVMs

and the accuracy of long-term predictions of PNV could

be enhanced further if disturbance-related mortality was

incorporated more explicitly (Seidl et al. 2011, Temperli

et al. 2013). To this end, the identification and quantifi-

cation of the respective mortality agents under field con-

ditions using at least annual mortality assessments is

necessary (Holzwarth et al. 2013, Lutz 2015), which is

usually not done in data sets with high spatial coverage

(but see Das et al. 2016).

Considering the need to better simulate forest ecosys-

tems and their response to climate change, implementing

accurate mortality functions in DVMs is of utmost

importance due to their cascading effects on recruit-

ment, growth and mortality of the remaining trees, and

consequently on forest structure and species composi-

tion. We strongly recommend inventory-based mortality

formulations, in particular those that consider species-

specific differences, as a promising element to enhance

the robustness and reliability of DVM projections.
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