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How to Lie with Bad Data
Richard D. De Veaux and David J. Hand

Abstract. As Huff’s landmark book made clear, lying with statistics can be
accomplished in many ways. Distorting graphics, manipulating data or using
biased samples are just a few of the tried and true methods. Failing to use the
correct statistical procedure or failing to check the conditions for when the
selected method is appropriate can distort results as well, whether the motives
of the analyst are honorable or not. Even when the statistical procedure and
motives are correct, bad data can produce results that have no validity at all.
This article provides some examples of how bad data can arise, what kinds
of bad data exist, how to detect and measure bad data, and how to improve
the quality of data that have already been collected.
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1. INTRODUCTION

Bad data can ruin any analysis. “Garbage in, garbage
out” is as true today in this era of terabytes of data and
distributed computing as it was in 1954 whenHow to
Lie with Statistics was published (Huff, 1954). Distor-
tions in the data are likely to produce distortions in the
conclusions, to the extent that these may be wildly in-
accurate, completely invalid or useless.

The cost of bad data can be enormous. Estimates
of how much bad data cost U.S. industry permeate
industry publications and the Internet. Pricewater-
houseCoopers (2004), in a recent survey of “Top 500”
corporations, found that most corporations are experi-
encing major impacts to their business as a result of
poor data quality. In their survey, 75% of respondents
reported significant problems as the result of defec-
tive data. David Loshin, author ofEnterprise Knowl-
edge Management: The Data Quality Approach, states
that “scrap and rework attributable to poor data qual-
ity accounts for 20–25% of an organization’s budget”
(Loshin, 2001). An A. T. Kearney study of the retail
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consumer products supply chain concluded that “bad
data costs the electro industry $1.2B annually.” While
the accuracy of these claims is hard to verify, it is clear
that data quality is a concern to business worldwide.
An informal survey of topics in management seminars
shows the prevalence of data quality as an important
topic and concern for top-level executives and man-
agers.

Anyone who has analyzed real data knows that the
majority of their time on a data analysis project will
be spent “cleaning” the data before doing any analysis.
Common wisdom puts the extent of this at 60–95% of
the total project effort, and some studies (Klein, 1998)
suggest that “between one and ten percent of data items
in critical organizational databases are estimated to be
inaccurate” (Laudon, 1986; Madnick and Wang, 1992;
Morey, 1982; Redman, 1992). Somewhat paradoxi-
cally, most statistical training assumes that the data ar-
rive “precleaned.” Students, whether in Ph.D. programs
or in an undergraduate introductory course, are not rou-
tinely taught how to check data for accuracy or even to
worry about it. Exacerbating the problem further are
claims by software vendors that their techniques can
produce valid results no matter what the quality of the
incoming data.

How pervasive are bad data? Not only is industry
concerned with bad data, but examples are ubiqui-
tous in the scientific literature of the past 50 years as
well. In the 1978 Fisher Lecture “Statistics in Soci-
ety: Problems Unsolved and Unformulated (Kruskal,
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1981), Kruskal devoted much of his time to “incon-
sistent or clearly wrong data, especially in large data
sets.” As just one example, he cited a 1960 census
study that showed 62 women, aged 15 to 19 with 12
or more children. Coale and Stephan (1962) pointed
out similar anomalies when they found a large number
of 14-year-old widows. In a classic study by Wolins
(1962), a researcher attempted to obtain raw data from
37 authors of articles appearing in American Psycho-
logical Association journals. Of the seven data sets that
were actually obtained, three contained gross data er-
rors.

A 1986 study by the U.S. Census estimated that be-
tween 3 and 5% of all census enumerators engaged in
some form of fabrication of questionnaire responses
without actually visiting the residence. This practice
was widespread enough to warrant its own term: curb-
stoning, which is the “enumerator jargon for sitting on
the curbstone filling out the forms with made-up infor-
mation” (Wainer, 2004). While curbstoning does not
imply bad data per se, at the very least, such practices
imply that the data set you are analyzing does not de-
scribe the underlying mechanism you think you are de-
scribing.

What exactly are bad data? The quality of data is
relative both to the context and to the question one
is trying to answer. If data are wrong, then they are
obviously bad, but context can make the distinction
more subtle. In a regression analysis, errors in the pre-
dictor variables may bias the estimates of the regres-
sion coefficients and this will matter if the aim hinges
on interpreting these values, but it will not matter if
the aim is predicting response values for new cases
drawn from the same distribution. Likewise, whether
data are “good” also depends on the aims: precise, ac-
curate measurements are useless if one is measuring
the wrong thing. Increasingly in the modern world, es-
pecially in data mining, we are confronted with sec-
ondary data analysis: the analysis of data that have
been collected for some other purpose (e.g., analyz-
ing billing data for transaction patterns). The data may
have been perfect for the original aim, but could have
serious deficiencies for the new analysis.

For this paper, we will take a rather narrow view
of data quality. In particular, we are concerned with
data accuracy, so that, for us, “poor quality data are
defined as erroneous values assigned to attributes of
some entity,” as in Pierce (1997). A broader perspective
might also take account of relevance, timeliness, exis-
tence, coherence, completeness, accessibility, security

and other data attributes. For many problems, for ex-
ample, data gradually become less and less relevant—
a phenomenon sometimes termed data decay or pop-
ulation drift (Hand, 2004a). Thus the characteristics
collected on mortgage applicants 25 years ago would
probably not be of much use for developing a pre-
dictive risk model for new applicants, no matter how
accurately they were measured at the time. In some en-
vironments, the time scale that renders a model useless
can become frighteningly short. A model of customer
behavior on a web site may quickly become out of date.
Sometimes different aspects of this broader interpre-
tation of data quality work in opposition. Timeliness
and accuracy provide an obvious example (and, in-
deed, one which is often seen when economic time se-
ries are revised as more accurate information becomes
available).

From the perspective of the statistical analyst, there
are three phases in data evolution: collection, prelimi-
nary analysis and modeling. Of course, the easiest way
to deal with bad data is to prevent poor data from be-
ing collected in the first place. Much of sample survey
methodology and experimental design is devoted to
this subject, and many famous stories of analysis gone
wrong are based on faulty survey designs or experi-
ments. TheLiterary Digest poll proclaiming Landon’s
win over Roosevelt in 1936 that starred in Chapter 1 of
Huff (1954) is just one of the more famous examples.
At the other end of the process, we have resistant and
robust statistical procedures explicitly designed to per-
form adequately even when a percentage of the data do
not conform or are inaccurate, or when the assumptions
of the underlying model are violated.

In this article we will concentrate on the “middle”
phase of bad data evolution—that is, on its discovery
and correction. Of course, no analysis proceeds lin-
early through the process of initial collection to final
report. The discoveries in one phase can impact the
entire analysis. Our purpose will be to discuss how to
recognize and discover these bad data using a variety
of examples, and to discuss their impact on subsequent
statistical analysis. In the next section we discuss the
causes of bad data. Section 3 discusses the ways in
which data can be bad. In Section 4 we turn to the prob-
lem of detecting bad data and in Section 5 we provide
some guidelines for improving data quality. We sum-
marize and present our conclusions in Section 6.

2. WHAT ARE THE CAUSES OF BAD DATA?

There is an infinite variety to the ways in which data
can go bad, and the specifics depend on the underlying
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process that generate the data. Data may be distorted
from the outset during the initial collection phase or
they may be distorted when the data are transcribed,
transferred, merged or copied. Finally, they may deteri-
orate, change definition or otherwise go through trans-
formations that render them less representative of the
original underlying process they were designed to mea-
sure.

The breakdown in the collection phase can occur
whether the data are collected by instrument or di-
rectly recorded by human beings. Examples of break-
downs at the instrument level include instrument drift,
initial miscalibration, or a large random or otherwise
unpredictable variation in measurement. As an exam-
ple of instrument level data collection, consider the
measurement of the concentration of a particular chem-
ical compound by gas chromatography, as used in rou-
tine drug testing. When reading the results of such a
test, it is easy to think that a machine measures the
amount of the compound in an automatic and straight-
forward way, and thus that the resulting data are mea-
suring some quantity directly. It turns out to be a bit
more complicated. At the outset, a sample of the ma-
terial of interest is injected into a stream of carrier
gas where it travels down a silica column heated by
an oven. The column then separates the mixture of
compounds according to their relative attraction to a
material called the adsorbent. This stream of different
compounds travels “far enough” (via choices of col-
umn length and gas flow rates) so that by the time they
pass by the detector, they are well separated (at least in
theory). At this point, both the arrival time and the con-
centration of the compound are recorded by an electro-
mechanical device (depending on the type of detector
used). The drifts inherent in the oven temperature, gas
flow, detector sensitivity and a myriad of other environ-
mental conditions can affect the recorded numbers. To
determine actual amounts of material present, a known
quantity must be tested at about the same time and the
machine must be calibrated. Thus the number reported
as a simple percentage of compound present has not
only been subjected to many potential sources of error
in its raw form, but is actually the output of a calibra-
tion model.

Examples of data distortion at the human level
include misreading of a scale, incorrect copying of
values from an instrument, transposition of digits and
misplaced decimal points. Of course, such mistakes are
not always easy to detect. Even if every data value is
checked for plausibility, it often takes expert knowl-
edge to know if a data value is reasonable or ab-
surd. Consider the report inThe Times of London

that some surviving examples of the greater mouse-
eared bat, previously thought to be extinct, had been
discovered hibernating in West Sussex. It went on to
assert that “they can weigh up to 30 kg” (see Hand,
2004b, Chapter 4). A considerable amount of enter-
taining correspondence resulted from the fact that they
had misstated the weight by three decimal places.

Sometimes data are distorted from the source itself,
either knowingly or not. Examples occur in survey
work and tax returns, just to name two. It is well known
to researchers of sexual behavior that men tend to re-
port more lifetime sexual partners than women, a sit-
uation that is highly unlikely sociologically (National
Statistics website: www.statistics.gov.uk). Some data
are deliberately distorted to prevent disclosure of con-
fidential information collected by governments in, for
example, censuses (e.g., Willenborg and de Waal,
2001) and health care data.

Even if the data are initially recorded accurately, data
can be compromised by data integration, data ware-
housing and record linkage. Often a wide range of
sources of different types are involved (e.g., in the
pharmaceutical sector, data from clinical trials, ani-
mal trials, manufacturers, marketing, insurance claims
and postmarketing surveillance might be merged).
At a more mundane level, records that describe dif-
ferent individuals might be inappropriately merged be-
cause they are described by the same key. When going
through his medical records for insurance purposes,
one of the authors discovered that he was recorded as
having had his tonsils removed as a child. A subse-
quent search revealed the fact that the records of some-
one else with the same name (but a different address)
had been mixed in with his. More generally, what is
good quality for (the limited demands made of ) an op-
erational data base may not be good quality for (poten-
tially unlimited demands made of ) a data warehouse.

In a data warehouse, the definitions, sources and
other information for the variables are contained in
a dictionary, often referred to as metadata. In a large
corporation it is often the IT (information technology)
group that has responsibility for maintaining both the
data warehouse and metadata. Merging sources and
checking for consistent definitions form a large part of
their duties.

A recent example in bioinformatics shows that data
problems are not limited to business and economics.
In a recent issue ofThe Lancet, Petricoin et al. (2002)
reported an ability to distinguish between serum sam-
ples from healthy women, those with ovarian cancers
and women with a benign ovarian disease. It was so
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exciting that it prompted the “U.S. Congress to pass
a resolution urging continued funding to drive a new
diagnostic test toward the clinic” (Check, 2004). The
researchers trained an algorithm on 50 cancer spectra
and 50 normals, and then predicted 116 new spectra.
The results were impressive with the algorithm cor-
rectly identifying all 50 of the cancers, 47 out of 50 nor-
mals, and classifying the 16 benign disease spectra as
“other.” Statisticians Baggerly, Morris and Coombes
(2004) attempted to reproduce the Petricoin et al. re-
sults, but were unable to do so. Finally, they concluded
that the three types of spectra had been preprocessed
differently, so that the algorithm correctly identified
differences in the data, much of which that had noth-
ing to do with the underlying biology of cancer.

A more subtle source of data distortion is a change
in the measurement or collection procedure. When the
cause of the change is explicit and recognized, this can
be adjusted for, at least to some extent. Common exam-
ples include a change in the structure of the Dow Jones
Industrial Average or the recent U.K. change from the
Retail Price Index to the European Union standard Har-
monized Index of Consumer Prices. In other cases,
one might not be aware of the change. Some of the
changes can be subtle. In looking at historical records
to assess long-term temperature changes, Jones and
Wigley (1990) noted “changing landscapes affect tem-
perature readings in ways that may produce spurious
temperature trends.” In particular, the location of the
weather station assigned to a city may have changed.
During the 19th century, most cities and towns were
too small to impact temperature readings. As urbaniza-
tion increased, urban heat islands directly affected tem-
perature readings, creating bias in the regional trends.
While global warming may be a contributor, the dom-
inant factor is the placement of the weather station,
which moved several times. As it became more and
more surrounded by the city, the temperature increased,
mainly because the environment itself had changed.

A problem related to changes in the collection pro-
cedure is not knowing the true source of the data.
In scientific analysis, data are often preprocessed by
technicians and scientists before being analyzed. The
statistician may be unaware (or uninterested) in the
details of the processing. To create accurate models,
however, it can be important to know the source and
therefore the accuracy of the measurements. Consider
a study of the effect of ocean bottom topography on
sea ice formation in the southern oceans (De Veaux,
Gordon, Comiso and Bacherer, 1993). After learning
that wind can have a strong effect on sea ice formation,

the statistician, wanting to incorporate this predictor
into a model, asked one of the physicists whether any
wind data existed. It was difficult to imagine very
many Antarctic stations with anemometers and so he
was very surprised when the physicist replied, “Sure,
there’s plenty of it.” Excitedly he asked what spatial
resolution he could provide. When the physicist coun-
tered with “what resolution do you want?” the statisti-
cian became suspicious. He probed further and asked
if they really had anemometers set up on a 5 km grid
on the sea ice? He said, “Of course not. The wind
data come from a global weather model—I can gen-
erate them at any resolution you want!” It turned out
thatall the other satellite data had gone through some
sort of preprocessing before it was given to the sta-
tistician. Some were processed actual direct measure-
ments, some were processed through models and some,
like the wind, were producedsolely from models. Of
course, this (as with curbstoning) does not necessarily
imply that the resulting data are bad, but it should at
least serve to warn the analyst that the data may not be
what they were thought to be.

Each of these different mechanisms for data distor-
tions has its own set of detection and correction chal-
lenges. Ensuring good data collection through survey
and/or experimental design is certainly an important
first step. A bad design that results in data that are not
representative of the phenomenon being studied can
render even the best analysis worthless. At the next
step, detecting errors can be attempted in a variety of
ways, a topic to which we will return in Section 4.

3. IN HOW MANY WAYS?

Data can be bad in an infinite variety of ways, and
some authors have attempted to construct taxonomies
of data distortion (e.g., Kim et al., 2003). An important
simple categorization is into missing data and distorted
values.

3.1 Missing Data

Data can be missing at two levels: entire records
might be absent, or one or more individual fields may
be missing. If entire records are missing, any analysis
may well be describing or making inferences about a
population different from that intended. The possibility
that entire records may be missing is particularly prob-
lematic, since there will often be no way of knowing
this. Individual fields can be missing for a huge vari-
ety of reasons, and the mechanism by which they are
missing is likely to influence their distribution over the
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data, but at least when individual fields are missing one
can see that this is the case.

If the missingness of a particular value is unrelated
either to the response or predictor variables (miss-
ing completely at random—Little and Rubin, 1987,
give technical definitions), then case deletion can be
employed. However, even ignoring the potential bias
problems, complete case deletion can severely reduce
the effective sample size. In many data mining situa-
tions with a large number of variables, even though
each field has only a relatively small proportion of
missing values, all of the records may have some val-
ues missing, so that the case deletion strategy leaves
one with no data at all.

Complications arise when the pattern of missing
data does depend on the values that would have been
recorded. If, for example, there are no records for pa-
tients who experience severe pain, inferences to the
entire pain distribution will be impossible (at least,
without making some pretty strong distributional as-
sumptions). Likewise, poor choice of a missing value
code (e.g., 0 or 99 for age) or accidental inclusion of
a missing value code in the analysis (e.g., 99,999 for
age) has been known to lead to mistaken conclusions.

Sometimes missingness arises because of the nature
of the problem, and presents real theoretical and practi-
cal issues. For example, in personal banking, banks ac-
cept those loan applicants whom they expect to repay
the loans. For such people, the bank eventually discov-
ers the true outcome (repay, do not repay), but for those
rejected for a loan, the true outcome is unknown: it is
a missing value. This poses difficulties when the bank
wants to construct new predictive models (Hand and
Henley, 1993; Hand, 2001). If a loan application asks
for household income, replacing a missing value by a
mean or even by a model based imputation may lead to
a highly optimistic assessment of risk.

When the missingness in a predictor is related di-
rectly to the response, it may be useful for exploratory
and prediction purposes to create indicator variables
for each predictor, where the variable is a binary in-
dictor of whether the variable is missing or not. For
categorical predictor variables, missing values can be
treated simply as a new category. In a study of dropout
rates from a clinical trial for a depression drug, it was
found that the single most important indicator of ul-
timately dropping out from the study was not the de-
pression score on the second week’s test as indicated
from complete case analysis, but simply the indicator
of whether the patient showed up to take it (De Veaux,
Donahue and Small, 2002).

3.2 Distorted Data

Although there are an unlimited number of pos-
sible causes of distortion, a first split can be made
into those attributable to instrumentation and those at-
tributed to human agency. Floor and ceiling effects are
examples of the first kind (instruments here can be
mechanical or electronic, but also questionnaires), al-
though in this case it is sometimes possible to fore-
see that such things might occur and take account of
this in the statistical modeling. Human distortions can
arise from misreading instruments or misrecording val-
ues at any level. Brunskill (1990) gave an illustration
from public records of birth weights, where ounces are
commonly confused with pounds, the number 1 is con-
fused with 11 and errors in decimal placements pro-
duce order of magnitude errors. In such cases, using
ancillary information such as gestation times or new-
born heights can help to spot gross errors. Some data
collection procedures, in an attempt to avoid missing
data, actually introduce distortions. A data set we ana-
lyzed had a striking number of doctors born on Novem-
ber 11, 1911. It turned out that most doctors (or their
secretaries) wanted to avoid typing in age information,
but because the program insisted on a value and the
choice of 00/00/00 was invalid, the easiest way to by-
pass the system was simply to type 11/11/11. Such er-
rors might not seem of much consequence, but they
can be crucial. Confusion between English and metric
units was responsible for the loss of the $125 million
Martian Climate Orbiter space probe (The New York
Times, October 1, 1999). Jet Propulsion Laboratory
engineers mistook acceleration readings measured in
English units of pound-seconds for the metric mea-
sure of force in newton-seconds. In 1985, in a prece-
dence setting case, the Supreme Court ruled that Dun
& Bradstreet had to pay $350,000 in libel damages to a
small Vermont construction company. A part-time stu-
dent worker had apparently entered the wrong data into
the Dun & Bradstreet data base. As a result, Dun &
Bradstreet issued a credit report that mistakenly iden-
tified the construction company as bankrupt (Percy,
1986).

4. HOW TO DETECT DATA ERRORS

While it may be obvious that a value is missing from
a record, it is often less obvious that a value is in er-
ror. The presence of errors can (sometimes) be proven,
but the absence of errors cannot. There is no guaran-
tee that a data set that looks perfect will not contain
mistakes. Some of these mistakes may be intrinsically
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undetectable: they might be values that are well within
the range of the data and could easily have occurred.
Moreover, since errors can occur in an unlimited num-
ber of ways, there is no end to the list of possible tests
for detecting errors. On the other hand, strategic choice
of tests can help to pinpoint the root causes that lead to
errors and, hence, to the identification of changes in
the data collection process that will lead to the greatest
improvement in data quality.

When the data collection can be repeated, the re-
sults of the duplicate measurements, recordings or
transcriptions (e.g., the double entry system used in
clinical trials) can be compared by automatic methods.
In this “duplicate performance method,” a machine
checks for any differences in the two data records.
All discrepancies are noted and the only remaining er-
rors are whenboth collectors made the same mistake.
Strayhorn (1990) and West and Winkler (1991) pro-
vided statistical methods for estimating that propor-
tion. In another quality control method, known errors
are added to a data set whose integrity is then assessed
by an external observer. The “known errors” method
devised statistical methods for estimating how many
errors remain based on the success of the observer in
discovering the known errors (Strayhorn, 1990; West
and Winkler, 1991). Taking this further, one can build
models (similar to those developed for software relia-
bility) that estimate how many errors are likely to re-
main in a data set based on extrapolation from the rate
of discovery of errors. At some point one decides that
the impact of remaining errors on the conclusions is
likely to be sufficiently small that one can ignore them.

Automatic methods of data collection use metadata
information to check for consistency across multiple
records or variables, integrity (e.g., correct data type),
plausibility (within the possible range of the data) and
coherence between related variables (e.g., number of
sons plus number of daughters equals number of chil-
dren). Sometimes redundant data can be collected with
such checks in mind. However, one cannot rely on soft-
ware to protect one from mistakes. Even when such au-
tomatic methods are in place, the analyst should spend
some time looking for errors in the data prior to any
modeling effort.

Data profiling is the use of exploratory and data min-
ing tools aimed at identifying errors, rather than at the
substantive questions of interest. When the number of
predictor variables is manageable, simple plots such
as bar charts, histograms, scatterplots and time series
plots can be invaluable. The human eye has evolved to
detect anomalies, and this should be taken advantage

of by presenting the data in a form whereby advantage
can be taken of these abilities. Such plots have become
prevalent in statistical packages for examining missing
data patterns. Hand, Blunt, Kelly and Adams (2000)
gave the illustration of a plot showing a point for each
missing value in a rectangular array of 1012 potential
sufferers from osteoporosis measured on 45 variables.
It is immediately clear which cases and which variables
account for most of the problems.

Unfortunately, as we face larger and larger data
sets, so we are also faced with increasing difficulty in
data profiling. The missing value plot described above
works for a thousand cases, but would probably not be
so effective for 10 million. Even in this case, however,
a Pareto chart of percent missing for each variable may
be useful for deciding where to spend data preparation
effort. Knowing that a variable is 96% missing makes
one think pretty hard about including it in a model. On
the other hand, separate manual examination of each
of 30,000 gene expression variables is not to be recom-
mended.

When even simple summaries of all the variables in
a data base are not feasible, some methods for reducing
the number of potential predictors in the models might
be warranted. We see an important role for data mining
tools here. It may be wise to reverse the usual para-
digm of explore the data first, then model. Instead, ex-
ploratory models of the data can be useful as afirst step
and can serve two purposes (De Veaux, 2002). First,
models such as tree models and clustering can high-
light groups of anomalous cases. Second, the models
can be used to reduce the number of potential predictor
variables and enable the analyst to examine the remain-
ing predictors in more detail. The resulting process is
a circular one, with more examination possible at each
subsequent modeling phase. Simply checking whether
500 numerical predictor variables are categorical or
quantitative without the aid of metadata is a daunt-
ing (and tedious) task. In one analysis, we were asked
to develop a fraud detection model for a large credit
card bank. In the data set was one potential predic-
tor variable that ranged from around 2000 to 9000,
roughly symmetric and unimodal, which was selected
as a highly significant predictor for fraud in a stepwise
logistic regression model. It turned out that this predic-
tor was a categorical variable (SIC code) used to spec-
ify the industry from which the product purchases in
the transaction came. Useless as a predictor in a logis-
tic regression model, it had escaped detection as a cat-
egorical variable among the several hundred potential
candidates. Once the preliminary model whittled the
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candidate predictors down to a few dozen, it was easy
to use standard data analysis techniques and to detect
which were appropriate for the final model.

5. IMPROVING DATA QUALITY

The best way to improve the quality of data is to
improve things in the data collection phase. The ideal
would be to prevent errors from arising in the first
place. Prevention and detection have a reciprocal role
to play here. Once one has detected data errors, one
can investigate why they occurred and prevent them
from happening in the future. Once it has been recog-
nized (detected) that the question “How many miles
do you commute to work each day?” permits more
than one interpretation, mistakes can be prevented by
rewording. Progress toward direct keyboard or other
electronic data entry systems means that error detec-
tion tools can be applied in real time at data entry—
when there is still an opportunity to correct the data.
At the data base phase, metadata can be used to ensure
that the data conform to expected forms, and relation-
ships between variables can be used to cross-check en-
tries. If the data can be collected more than once, the
rate of discovery of errors can be used as the basis for a
statistical model to reveal how many undetected errors
are likely to remain in the data base.

Various other principles also come into play when
considering how to improve data quality. For exam-
ple, a Pareto principle often applies: most of the er-
rors are attributable to just a few variables. This may
happen simply because some variables are intrinsically
less reliable (and important) than others. Sometimes it
is possible to improve the overall level of quality sig-
nificantly by removing just a few of these low quality
variables. This has a complementary corollary: a law
of diminishing returns applies that suggests that suc-
cessive attempts to improve the quality of the data are
likely to lead to less improvement. If one has a partic-
ular analytic aim in mind, then one might reasonably
assert that data errors that do not affect the conclusions
do not matter. Moreover, for those that do matter, per-
haps the ease with which they can be corrected should
have some bearing on the effort that goes into detect-
ing them—although the overriding criterion should be
the loss consequent on the error being made. This is al-
lied with the point that the base rate of errors should be
taken into account: if one expects to find many errors,
then it is worth attempting to find them, since the likely
rewards, in terms of an improved data base, are likely
to be large. In a well-understood environment, it might

even be possible to devise useful error detection and
correction resource allocation strategies.

Sometimes an entirely different approach to improv-
ing data quality can be used. This is simply to hide the
poor quality by coarsening or aggregating the data. In
fact, a simple example of this implicitly occurs all the
time: rather than reporting uncertain and error-prone fi-
nal digits of measured variables, researchers round to
the nearest digit.

6. CONCLUSIONS AND FURTHER DISCUSSION

This article has been about data quality from the
perspective of an analyst called upon to extract some
meaning from it. We have already remarked that there
are also other aspects to data quality, and these are of
equal importance when action is to be taken or deci-
sions made on the basis of the data. These include such
aspects as timeliness (the most sophisticated analysis
applied to out-of-date data will be of limited value),
completeness and, of central importance, fitness for
purpose. Data quality, in the abstract, is all very well,
but what may be perfectly fine for one use may be
woefully inadequate for another. Thus ISO 8402 de-
fines quality as “The totality of characteristics of an
entity that bare on its ability to satisfy stated and im-
plied needs.”

It is also important to maintain a sense of propor-
tion in assessing and deciding how to cope with data
distortions. In one large quality control problem in
polymer viscosity, each 1% improvement was worth
about $1,000,000 a year, but viscosity itself could be
measured only to a standard deviation of around 8%.
Before bothering about the accuracy of the predictor
variables, it was first necessary to find improved ways
to measure the response. In an entirely different con-
text, much work in the personal banking sector concen-
trates on improved models for predicting risk—where,
again, a slight improvement translates into millions of
dollars of increased profit. In general, however, these
models are based on retrospective data—data drawn
from distributions that are unlikely still to apply. We
need to be sure that the inaccuracies induced by this
population drift do not swamp the apparent improve-
ments we have made.

Data quality is a key issue throughout science, com-
merce, and industry, and entire disciplines have grown
up to address particular aspects of the problem. In man-
ufacturing and, to a lesser extent, the service industries,
we have schools for quality control and total quality
management (Six Sigma, Kaizen, etc.). In large part,
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these are concerned with reducing random variation.
In official statistics, strict data collection protocols are
typically used.

Of course, ensuring high quality data does not come
without a cost. The bottom line is that one must weigh
up the potential gains to be made from capturing and
recording better quality data against the costs of en-
suring that quality. No matter how much money one
spends, and how much resource one consumes in at-
tempting to detect and prevent bad data, the unfortu-
nate fact is that bad data will always be with us.
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