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Many problems in the analysis of ecological data have the format where there is an 
observed response that may be predicted by several covariates. Although the response 
can take several forms (e.g. measurements, counts, observations of presence/absence), 
and the covariates can also vary (e.g. be measurements themselves, or be grouped 
according to the treatment applied, the time or location of of sampling, etc.), most of 
these problems can be handled in a single framework, the Generalized Linear Mixed 
Model (GLMM). The framework encompasses regression, ANOVA, generalized linear 
models, and equivalent models with random as well as fi xed effects. Here, the different 
parts of the GLMM are described, building from regression and ANOVA to show how 
the extra components — the wider range of distributions, and random effects — can 
be added into the same framework, and how the parameters of the fi tted model can be 
estimated and interpreted. Being able to handle data with GLMMs helps ecologists to 
analyse the majority of their data.

Introduction

After all the data have been collected for a study 
(Underwood 2009), they have to be decomposed 
into something simpler that can be understood 
and communicated. Doing this is the raison 
d’être of statistics, and the methods used vary 
from plotting and tabulating the data to fi tting 
complex models, from which statistics can be 
extracted to answer the questions we are asking.

Many data analysis problems in biology boil 
down to explaining a response variable by sev-
eral explanatory variables. Because of the ubiq-
uity of these sorts of problem, there is a set of 
very general models that can be used to inves-
tigate them. These models assume that the pre-
dictors have linear effects, i.e. their effects can 
simply be added together. This means that the 

models for the means of the data are relatively 
simple — the complexities are in the random 
component (i.e. the distribution of the data given 
the predictors’ effects), and in the model fi tting. 
These can, to a large extent, be swept under the 
table when doing any actual analysis, and instead 
the focus can be kept on the way the models are 
built and interpreted.

My purpose here is to review these models, 
and to outline what they look like and how they 
can be used. A full explanation of their use can 
(and does) take up many volumes, so this should 
be seen as a primer for these models rather than 
a full explanation. The intent is to help the reader 
to understand what their fi nal model actually 
says, rather than to explain how to build the 
model, and test between different alternative 
models that may fi t the data. Throughout, exam-
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ples will be used from data analysed by Kotze 
et al. (2003), on abundances and range sizes in 
Danish carabid beetles. The analyses here are 
used as examples of the different types of analy-
sis, rather than to provide defi nitive answers to 
the questions posed, and hence are sometimes 
simplifi ed.

Linear models: regression

We begin with a simple linear regression. The 
purpose of a regression is to fi t a model for how 
a response (y) can be predicted from a covariate 
(x). The model is:

 y
i
 ~ N(m

i
,s2) (1)

 m
i
 = b

0
 + b

1
x

i
 (2)

and is shown for some fake data in Fig. 1. Equa-
tion 1 describes the random part of the model: y

i
 

(the data) is normally distributed (the N()) nota-
tion with mean m

i
 and variance s2. The systematic 

part of the model is described by Eq. 2. The mean 
is a function of the covariate (x

i
), and two param-

eters, the intercept (b
0
) and slope (b

1
): these give 

a straight line, shown as the dotted line in Fig. 1. 
This second part of the model is deterministic, so 
we have separated the model into the stochastic 
(Eq. 1) and deterministic (Eq. 2) parts.

More generally, if there are several covari-
ates, then multiple regression can be used. If 
there are s covariates, then Eq. 2 is extended:

  (3)

the x
ij
’s are covariates, and the b

j
’s are the slopes 

associated with the covariates. It is thus just the 
sum of the product of the covariates and their 
regression parameters. In two dimensions this 
would form a plane, and in more dimensions 
a hyper-plane. The relationships are therefore 
all based on straight lines. Critical here is the 
assumption that the relationship between x

i
 and m

i
 

is a straight line. In reality few things are linear, 
so this may appear to be an arbitrary assumption 
made for statistical convenience. Indeed in many 
ways it is, although it often works well in prac-
tice. But there is also a justifi cation for using the 
straight line as an approximation (e.g. Venables 

2000). If, in general, we have a relationship m
i
 

= f(x
i
), where f() is some suitably well behaved 

function (i.e. a smooth curve that relates x
i
 to m

i
), 

then we can write this approximately as
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which is called an nth order Taylor series expan-
sion around x

0
. f() is being approximated by a 

polynomial curve, and the higher n, the closer 
the polynomial to f(). This approximation is 
centred at x

0
, which might be the mean of x, but 

could also be some other sensible value: this is 
equivalent to placing the origin at x

0
. The linear 

regression (Eq. 2) corresponds to the fi rst order 
expansion:

 m
i
 = b

0
* + b

1
*(x

i
 – x

0
) (5)

so we have b
0
 = b

0
* + b

1
*x

0
 and b

1
 = b

1
*. If we felt 

that this was not good enough (e.g. if we thought 
that the relationship was curved), then we could 
fi t a second order polynomial:
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 = b

0
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)2 (6)

and obviously higher orders as well. By expand-
ing the parentheses and rearranging the terms, 
we see that b

0
 = b

0
* – b

1
*x

0
 + b

2
*x

0
2 and b

1
 = b

1
* 

– 2b
2

*x
0
. In other words, the curve is the same 

whether we place the origin at 0 or x
0
, it is just 

being written in a different way.
The values of b

0
* and b

1
* vary with x

0
, and 

in particular whether they are zero depends on 
where the origin is placed. So a test of whether 
the intercept or linear slope is zero depends on 
the value of x

0
. In this sense they are arbitrary: 
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Fig. 1. A regression slope applied to fake data.
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for example, the results of such a test for a tem-
perature scale might depend on whether it was 
measured in Celsius or Kelvin. The practical 
consequence is the advice that, for any model, if 
a higher order term is included (e.g. a quadratic 
term), the lower order terms (e.g. the intercept 
and linear terms) must also be in the model. This 
is known as the “principle of marginality”.

Example

Kotze et al. (2003) were interested in explaining 
the relationship between abundance (defi ned as 
the average number of records per grid cell) and 
range size (defi ned as the number grids where 
each species had been observed) in species of 
Danish carabid beetles. The simplest model for 
this would be to let y

i
 be the abundance and x

i
 

be the range size of the ith species. Fitting this 
model to the data gives us the following equa-
tion:

 m
i
 = 0.22 + 0.00087x

i
 (7)

and then y
i
 ~ N(m

i
,0.030). So, an increase of one 

grid cell in range size would increase the (log) 
abundance by 8.7 ¥ 10–4. This may sound insig-
nifi cant, but the size of the effect will depend on 
the variables measured. In this case, the abun-
dance has a standard deviation of 0.19, and the 
standard deviation of the range size is 77, so y

i
 

has a relatively small range, and x
i
 has a large 

range. We can get some feel for the size of the 
effect of range size by comparing the effect of 
changing the range by one standard deviation to 
the standard deviation of the abundance. This is 
simply 77 ¥ 8.7 ¥ 10–4 = 0.067. This is about one 
third of the standard deviation of the abundance, 
so the change is not huge. If we look at the R2 
for the model (i.e. the proportion of the variance 
explained by the covariate), we fi nd that it is 
fairly small at 13%.

The size of the beetles may also affect the 
abundance. If we call the size (the length in mm) 
of the ith species z

i
, and fi t the model with range 

size and body size, we get the following equa-
tion:

 m
i
 = 0.22 + 0.00087x

i
 – 0.00012z

i
. (8)

The coeffi cient for the effect of body size is 
of the same order of magnitude as the range size 
coeffi cient. But the standard deviation of body 
size is about 5 mm, which is much smaller. A 
change in 1 SD in body size would decrease the 
log(abundance) by 0.00059, or the actual abun-
dance to 0.9994 times of what it was, which is 
of no practical signifi cance. The R2 of the model 
is 13%, so there is no increase in the amount of 
variation explained.

The question of whether the sizes of the 
effects of the variables are meaningful has been 
approached here in an unusual way. R2 is a useful 
summary of the explanatory power of the model, 
but of the full model rather than specifi c com-
ponents. Calculating the change in the response 
when a covariate is increased by one standard 
deviation is a simple (if crude) device for getting 
some feel for the size of an effect. It may not 
always work, for example if covariates are corre-
lated, so that a change in the covariate of interest 
would be related to changes in other covariates, 
then the effect of the change in the ensemble 
could be very different.

The discussion above has focussed on the 
interpretation of the coeffi cients, and has ignored 
issues of the precision of these estimates. In the 
second model, the standard error for the range 
size coeffi cient is 1.4 ¥ 10–4, and for the body 
size effect is 2.1 ¥ 10–3. The body size coeffi cient 
is therefore well within the range that might be 
expected if the effect was actually zero (the t sta-
tistic is –0.057, which gives a p value of 0.96). In 
contrast, if the range size coeffi cient were zero, 
it would be very unlikely that a value this large 
would have been observed (p << 10–5). Although 
p values are often quoted, all they show is 
whether a statistic of that magnitude is likely if 
the true value were zero. They say nothing about 
the size of the effect (Läärä 2009) — it may be 
statistically signifi cant, but does an R2 below 
13% mean that it is practically signifi cant? That 
is a question of biology, not statistics.

Linear models: ANOVA

Another major type of analysis is the Analysis of 
Variance (ANOVA). In ANOVA, the covariates 
are discrete factors. Starting with a simple bal-
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anced one-way ANOVA, with a groups, and n 
observations in each group, the model is

 y
ij
 ~ N(m

ij
,s2) (9)

 m
ij
 = a

j
 (10)

where i = 1, ..., n and j = 1, ..., a. Hence, every 
individual in the same group has the same 
expected value. This is shown in Fig. 2. For a 
balanced two-way ANOVA, the model for the 
mean is this:

 m
ijk

 = a
j
 + g

k
. (11)

But there is a problem here: an arbitrary value 
can be added to every value of a

j
, and sub-

tracted from every value of g
k
, and still give the 

same value of m
ijk

. The problem is a general one 
which can be found in any complex design. The 
solution is to constrain the parameters in some 
fashion. This can be done in many ways, the one 
that is most common in computer packages is the 
cornerpoint constraint. This has the model

 m
ijk

 = b
0
 + a

j
 + g

k
 (12)

with the constraint a
1
 = g

1
 = 0, so that observa-

tions with j = 1 and k = 1 have m
i11

 = b
0
, i.e. this 

is the intercept. Observations with j = 1 have m
i1k

 
= b

0
 + g

k
, so g

k
 is the difference between the kth 

level and the fi rst level of g. The same pattern 
holds for a. The a’s and g ’s are therefore the dif-
ferences between the mean of the level and the 
mean of the intercept. This would be particularly 
useful if the intercept were a control treatment, 
and the other levels were experimental manipu-
lations.

An alternative constraint is to mean-centre 
the parameters, so the model is the same as in 
Eq. 12, but the constraints are ∑a

j
 = 0 and ∑g

k
 

= 0. The ∑a’s and ∑g ’s are therefore the differ-

ences from the mean. Technically they are called 
contrasts (or at least one type of contrast). Whilst 
these contrasts have an intuitive interpretation, 
they are less useful in practice because the grand 
mean of the data will depend on how the obser-
vations have been allocated to the different levels 
— allocate more to a level with a high effect, and 
the mean increases. It is therefore harder to make 
comparisons between studies.

Although it may not be immediately obvi-
ous, ANOVA is actually a regression. This can 
be seen by setting up the ANOVA using dummy 
variables (which is also how it is done by the 
computer). For example, consider a one-way 
classifi cation with 3 levels. The variables can 
be set up using a corner-point constraint (Table 
1). If an observation is at, for example, level 2 
of a factor, then for that parameter the dummy 
variable is set to 1, and is set to 0 for all other 
levels of the factor. The regression is then done 
on the dummy variables. Whilst this may appear 
obscure, it has two consequences. The fi rst is that 
it unifi es the two approaches, so that we can talk 
about regression and ANOVA (and ANCOVA 
too!) as being linear models: the distinction 
between them disappears, and we can focus on 
how to build the models, rather than learning 
each type of model as a separate entity. The 
second consequence is that the models can be 
fi tted to the data in the same way, so we only 
need a single set of tools to do this. Indeed, this 
means that computer packages can provide a 
single command to fi t the models.

The models that are fi tted can be more com-
plex than outlined above. In particular, variables 

Group

y
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a2

a3

1 3
–2

–1

0

1

2

3

2

Fig. 2. An ANOVA applied to fake data.

Table 1. Dummy variables for a model with a single 
factor with three levels.

Level b0 b2 b3 mij

1 1 0 0 b0

2 1 1 0 b0 + b2

3 1 0 1 b0 + b3
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are allowed to interact. In the two-way ANOVA 
above, the effect of the second factor (g

k
) is the 

same regardless of the value of j. This is not 
always realistic: sometimes we might expect the 
value to differ (e.g. the effect of habitat prefer-
ence on abundance may depend on whether a 
species is a specialist or generalist). In this case, 
we can simply add more variables, so that the 
model is

 m
ijk

 = b
0
 + a

j
 + g

k
 + f

jk
. (13)

This can be coded using dummy variables 
(Table 2). Now the differences in the second 
factor depend on the value of the fi rst factor. 
The model can be coded in the same way as the 
simpler model, by making the parameters either 
contrasts to the mean or to an intercept level of 
the factors.

Regression and ANOVA are both linear 
models, so when both discrete factors and con-
tinuous covariates are being used, it is natural 
to combine them in a single model. This can be 
viewed as a regression with several intercepts 
(i.e. each combination of levels of the factors is 
a different intercept), and with different regres-
sion slopes for levels of the factors. The same 
machinery can then be used to fi t the model.

Writing a linear model

Using equations to write a linear model can 
become complex when there are many factors 
and covariates. A simpler notation was devel-
oped by Wilkinson and Rogers (1973), and 
forms the basis of the way they are written in 
statistics packages.

An explanatory variable (whether continu-

ous or a discrete factor) can be represented by 
its name, e.g. Date, Length. A simple model can 
then be written like this:

 Weight ~ Date + Length

so Weight is the response, and Date and Length 
are the explanatory variables. Here they appear 
as separate main effects, with no interaction. 
The interaction can be written using the ‘dot 
operator’, for example Date.Length. When fac-
tors in a model are crossed, the interaction 
will have the main effects in it too, so a model 
might be Date + Length + Date.Length. Rather 
than write this out in full, it can be simplifi ed 
by writing it as Date * Length. The * then says 
that this should be expanded out as the main 
effect, and lower order interactions. A term like 
Date * Length * Height would then be

 Date + Length + Height + Date.Length
 + Date.Height + Length.Height
 + Date.Length.Height.

We will also need to denote nested terms. For 
example, if several samples are taken from and 
individual, then Sample would be nested within 
Individual. There would be no point in having 
a Sample main effect, as they vary between 
individuals — sample 4 in individual 2 has no 
relation to sample 4 in individual 7, so a sample 
4 parameter is not needed. We therefore only 
have the Individual main effect and the Individ-
ual.Sample interaction. This can be represented 
conveniently as Individual/Sample. Further 
nesting can also be done, e.g. Population/Indi-
vidual/Sample, and could also be crossed with 
other effects, e.g. Date * Population/Individual/
Sample.

Table 2. Dummy variables for a model with two factor with three and two levels, and their interaction.

Level b0 b2 b3 g2 f21 f31 f12 f22 f32 mij

1,1 1 0 0 0 0 0 0 0 0 b0

2,1 1 1 0 0 1 0 0 0 0 b0 + b2 + f21

3,1 1 0 1 0 0 1 0 0 0 b0 + b3 + f31

1,2 1 0 0 1 0 0 1 0 0 b0 + g2
2,2 1 1 0 1 0 0 0 1 0 b0 + b2 + g2 + f22

3,3 1 0 1 1 0 0 0 0 1 b0 + b3 + g2 + f32
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Example

Using the same data as before, we can fi rst look 
at a model to see if the type of wing has an effect 
on abundance. The Wing variable is a factor 
with three levels, macropterous (i.e. long wings), 
brachypterous (only short wings), and dimorphic 
(both long and short wings). The model is

 Abundance ~ Wings,

and the estimates are given in Table 3. The model 
is set up using a corner-point contrast, with 
brachypterous species as the intercept, so that the 
estimated difference in abundance between these 
and the the dimorphic species is 0.092. The esti-
mated abundance of dimorphic species would 
therefore be 0.28 + 0.092 = 0.37 (or e0.37= 1.45 
individuals/grid cell).

We might want to add the effects of whether 
a species in Denmark is at the edge of its species 
range, so the factor has two levels, Yes and No. 
Including the interaction, the model is

 Abundance ~ Wings * Edge.

The estimated parameters are shown in Table 
4. The intercept is for brachypterous species not 
at the edge of their range. The “main effects” 
are contrasts to this, so for example the differ-
ence between brachypterous and macropterous 
species not at the edge of their range is 0.026. 

Similarly the difference between brachypterous 
species not at the edge of their range and those 
at the edge is –0.031, i.e. those at the edge have 
a slightly smaller estimated abundance (although 
not signifi cantly smaller than might be expected 
if there was no actual effect). The interactions 
are slightly more complicated, but again are just 
sums of the estimates. For example, for macrop-
terous species at the edge of their range, the esti-
mated (log) abundance is 0.30 + 0.026 – 0.031 – 
0.25 = 0.045. It is clear that being macropterous 
at the edge of the range means that the species’ 
abundance is reduced (at least in Denmark).

The analyses above can be combined to dem-
onstrate models with both factors and covariates. 
A simple model might be

 Abundance ~ Range Size + Wings,

where the effect of range size would be the same 
for each wing type: essentially this would be 
fi tting a different intercept for each wing type. 
A more complex model would be to allow the 
slope to vary between different wing morpholo-
gies, i.e. the model

 Abundance ~ Range Size * Wings.

The estimates from this model are shown in 
Table 5. The Range Size effect is for brachypter-
ous species, so the effect for dimorphic species, 
for example, is 8.7 ¥ 10–4 + 7.7 ¥ 10–5 = 9.5 ¥ 10–4. 

Table 3. Estimates of parameters from the model Abundance ~ Wings.

Coeffi cient Estimate SE t Pr(> |t|)

(Intercept) 0.28 0.013 22.3 < 10–5

Wings, macropterous 0.0011 0.030 0.037 0.97
Wings, dimorphic 0.092 0.037 2.48 0.014

Table 4. Estimates of parameters from the model Abundance ~ Wings * Edge.

Coeffi cient Estimate SE t Pr(> |t|)

(Intercept) 0.30 0.016 19.0 < 10–5

Wings, macropterous 0.026 0.033 0.79 0.43
Wings, dimorphic 0.087 0.041 2.139 0.033
EdgeYes –0.031 0.027 –1.17 0.24
WingsM.EdgeYes –0.25 0.085 –2.9 0.0039
WingsD.EdgeYes –0.0032 0.094 –0.034 0.97
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The slopes are perhaps best understood by exam-
ining them in a plot (Fig. 3). For example, the line 
for dimorphic species is

 m
i
 = 0.23 + 0.055 + (8.7 + 0.77) ¥ 10–4x

i
. (14)

All of the lines increase, but the increase for 
brachypterous species is slower.

We can see from these examples that the 
estimated effects of different predictors are easy 
to calculate, as they are just sums of different 
terms. The diffi culty at this point comes from 
extracting the correct terms from the output of 
the analysis, i.e. understanding what the statisti-
cal software has outputted.

Generalized Linear Models: 
building on distributions

The linear model outlined above is the basis for 
many analyses. However, it has the shortcom-

ing that it assumes that the variance is constant, 
and that the data are not constrained. This is not 
always the case. For example, in the example 
above the number of records of each species 
in each grid cell might be better modelled as a 
count. These must obviously be an integer, and 
cannot be negative.

A variety of methods were developed to deal 
with non-normal data (McCullagh & Nelder 
1989: pp. 8–17). Eventually it was realised that 
these all have a common structure, and could be 
fi tted to data using a single approach (iterated 
weighted least squares, Nelder & Wedderburn 
1972).

Taking the carabid data as an example, the 
linear model described above would generally not 
be appropriate for the number of records (unless 
the counts were large), because it assumes that 
any value is possible. Another problem is that 
the variance of count data generally increases 
with the mean — an increase of 10 individuals 
is more likely when the mean is 1000 than when 
the mean is 3. A classical solution to this prob-
lem is to log-transform the data fi rst. In effect, 
this makes the model multiplicative (i.e. additive 
on the log scale), so the covariates say whether 
the counts double (for example). This solution 
runs into a problem when there are zero counts, 
as the log of this is –∞. An ad hoc solution is to 
add 1 to every count, but there is no reason why 
1, as opposed to 0.5 or 27, should be added.

There is an alternative approach, which we 
can explain mechanistically. Count data can gen-
erally be viewed as being generated from some-
thing like a Poisson process. We can imagine 
that there is a constant rate at which beetles are 
observed and recorded. If the rate is l, and the 
records are over a time t, then the mean number 
of individuals recorded is lt. We can actually go 
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Fig. 3. Fitted regression lines for effects of range size 
and wing morphology on the abundance of Danish 
beetles.

Table 5. Estimates of parameters from the model Abundance ~ Range Size * Wings.

Coeffi cient Estimate SE t Pr(> |t|)

(Intercept) 0.23 1.7 ¥ 10–2 13.2 < 10–5

Range Size (cells–1) 8.7 ¥ 10–4 1.7 ¥ 10–4 5.1 < 10–5

WingsM –8.6 ¥ 10–2 5.0 ¥ 10–2 –1.7 0.09
WingsD 5.5 ¥ 10–2 6.2 ¥ 10–2 0.88 0.38
Range Size:WingsM (cells–1) 2.3 ¥ 10–4 3.4 ¥ 10–4 0.67 0.51
Range Size:WingsD (cells–1) 7.7 ¥ 10–5 5.2 ¥ 10–4 0.15 0.88
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further, and say that if the beetles behave inde-
pendently, then n, the number of beetles caught 
is Poisson distributed, with mean lt; i.e.

 . (15)

Now, imagine that there are two similar spe-
cies. For each individual of either species, assume 
there is a (small) probability p that it is recorded 
in a unit time interval. Also assume that there 
are n

1
 and n

2
 individuals of each species. The 

expected number of records of species 1 would 
be ptn

1
, and ptn

2
 for species 2. Assuming inde-

pendence between individuals would then imply 
that the actual number would be Poisson dis-
tributed. On the log scale the expected numbers 
are log(p) + log(t) + log(n

1
), and log(p) + log(t) 

+ log(n
2
). In other words, the model is linear on 

the log scale, and the difference between the rate 
of capture is simply log(n

2
) – log(n

1
). The linear 

models described above could therefore be used 
for the log of the mean number of individuals. 
Notice that here it is the expected value that is 
log transformed, not the data.

Generalized linear models (GLMs) build on 
this approach. In general, they can be written as

 y
i
 ~ Dist(m

i
,f) (16)

 g(m
i
) = n

i
 (17)

  (18)

where Dist() is a distribution (technically, this 
has to be from the exponential family of distribu-
tions), with mean m

i
 and the variance depending 

on f. Sometimes, for example for the Poisson 
distribution, f will be a constant, at other times 
it will have to be estimated (e.g. for the normal 
distribution, f = s2).

Equation 18 is the linear part of the model — 
this is just the same as Eq. 3. So, the covariates 
affect n

i
, rather than m

i
, in a linear way. Equation 

18 is therefore the systematic part of the model, 
and Eq. 16 is the random part. Between these we 
have Eq. 17, which links the two together. This is 
done using g(), which is a function. For the Pois-
son distribution, this would be the log function, 
i.e. log(m

i
) = n

i
. For the normal distribution, g() 

is the identity function, i.e. the trivial m
i
 = n

i
.

Generalized linear models come in several 
forms, and many common analyses are GLMs, 
or extensions of them. A list of some common 
examples is given in Table 6.

Example

If we model the records using a Poisson distribu-
tion (we will ignore the problem that there are no 
zeroes in the data), it is clear that the more grid 
cells a species is observed in, the more records 
there are likely to be. Indeed, a naïve expecta-
tion is that they should be proportional. If r

i
 is 

the number of records of the ith species, with l
i
 

the expected number, and x
i
 is again the range 

size (i.e. the number of grids), then we would 
expect l

i
 = Cx

i
, where C is some constant (pos-

sible depending on other predictors). On the 
log scale this is log(l

i
) = log(C) + log(x

i
), i.e. a 

regression equation with a coeffi cient for Range 
Size of 1. We can fi t the following model (from 
Eqs. 16–18):

 r
i
 ~ Poisson(l

i
) (19)

 log(l
i
) = n

i
 (20)

 n
i
 = b

0
 + b

1
x

i
 (21)

so that we would expect that b
1
 = 1. If we fi t 

the model we fi nd that the coeffi cient is 1.057, 
which is close to 1. However the standard error 
is 0.0091, so the estimate is about 6 standard 
deviations away from 1, and hence is statistically 
signifi cantly different from zero. Is it practically 
signifi cant? To get some idea about this, imagine 
doubling the number of grid cells, say from 10 
to 20. The difference in the expected log number 
of records would be 1.057 ¥ [log(20) – log(10)] 
= 1.057 ¥ log(2). The number of records would 
therefore be expected to increase by a factor of 

Table 6. Examples of common generalized linear 
models.

Names Distribution Link function

Regression, ANOVA Normal Identity
Logistic Regression Binomial logit
Probit Analysis Binomial probit
Log-linear model Poisson log
Ordinal Regression Multinomial logit
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21.057 = 2.08, or about 8% more than would have 
been expected. This increase is perhaps moder-
ate, although I should demur in this assessment 
to any carabidologist.

Why make things so complicated? The 
reason is generality — many models can be writ-
ten in this way. Generalized linear models there-
fore provide a single platform for the analysis of 
many data sets, integrating many types of analy-
sis together. For example, we may sample 100 
beetles, and ask how many of those are wingless. 
If we think that each beetle has the same prob-
ability of having wings, and that they are all 
independent, then the number that are observed 
to have wings follows a binomial distribution:

  (22)

After some manipulation we fi nd that this is 
a generalized linear model with a logit link func-
tion, i.e.

 n
i
 = Bin(p

i
, N–1), (23)

 , (24)

 . (25)

The model has the same general structure as Eqs. 
19–21, and can be fi tted in the same way. A prob-
lem is the interpretation of the parameters — for 
the Poisson example they are relatively simple 
(being multiplicative), the logit scale is trickier. 
To help, notice that , and that O

i
 

= p
i 
/(1 – p

i
) is the odds of and event. That is, for 

every “failure”, when the event does not happen, 
there are on average O

i
 successes when it does. 

The logit is then the log of the odds. Although 

slightly more obscure, using the log scale has 
the advantages that (1) the scale goes between 
–∞ and +∞ (i.e. it is not constrained), and (2) it 
is symmetrical in the following sense. If we have 
a probability p of a success, then the probability 
of a failure is 1 – p. The odds for a success are 
o = p/(1 – p) and 1/o. On the log scale, this is 
log(o) and –log(o). In other words, to fl ip the 
event of interest from “success” to “failure”, 
we just refl ect the log odds around zero. Or, less 
mathematically, we just change all the signs of 
the terms.

Example

Continuing with the beetles, one problem is 
whether we can infer which traits affect whether 
a species is declining. Here we use a simplifi ca-
tion of the analysis carried out by Kotze and 
O’Hara (2003). For our purposes, we use a simple 
binary true/false factor denote whether the spe-
cies is declining or not. We then ask whether this 
depends on the size of the beetles, or how special-
ised they are. Specialisation has been coded as a 
factor with fi ve levels: level 1 means an extreme 
specialist, level 5 an extreme generalist.

The model is the same as Eqs. 23–25, and the 
linear part can be written as

 Decline ~ Size + Specialisation.

After fi tting the model, the estimates are 
obtained (Table 7). Specialisation class 1 is used 
as the intercept, and the others are contrasts 
to that. So, for example, the species Carabus 
problematicus is in specialisation class 4, and is 
24.5 mm long. The probability that it would be 
declining can be calculated from

Table 7. Estimates of parameters from the model Decline ~ Size + Specialisation.

Coeffi cient Estimate SE t Pr(> |t|)

(Intercept) –1.35 0.35 –3.9 10–4

Specialisation 2 0.074 0.34 0.22 0.83
Specialisation 3 –0.63 0.37 –1.7 0.09
Specialisation 4 –2.52 0.67 –3.7 0.0002
Specialisation 5 –17.3 726 –0.024 0.98
Size (mm–1) 0.13 0.03 4.14 < 10–5



ANN. ZOOL. FENNICI Vol. 46 • How to make models add up 133

 log[p
i 
/(1 – p

i
)] = –1.35 – 2.52 + 0.13 ¥ 24.5

 = –0.61, (26)

so the probability is (solving for p
i
) e–0.61/(1 + e–0.61) 

= 0.35. In reality, C. problematicus is declining. 
We can look at the effects of it being, say, 1mm 
smaller. It is simplest to do this directly on the 
logit scale. The effect is to change the log odds 
of declining by 0.13 ¥ (–1 mm) = –0.13. Note 
that this is the same, regardless of the size, or 
the specialisation class. This is equivalent to a 
reduction in the odds of 0.88, i.e. approximately 
1 – 0.13. If we were to shrink C. problematicus 
by 1 mm, the probability of declining would 
become 0.32, i.e. a change of 3%. In contrast, 
if we were to take a species of the same size but 
in specialisation class 1, the probability would 
change from 87.0% to 85.5%, i.e. a difference of 
1.5%. The point here is that what is constant on 
the logit scale is not constant on the probability 
scale.

One fi nal point can be made from this anal-
ysis. The estimate for specialisation class 5 
(extreme generalist) is –17.3, with a standard 
error of 726. This might suggest that the effect is 
poorly estimated. But if we examine the data, we 
get a different story. None of the extreme gen-
eralists are declining. The best estimated prob-
ability of declining is therefore 0, which equates 
to –∞ on the logit scale. In reality, the software 
used for the estimation stopped at –17.3, and left 
the estimate as that (–17.3 is evidently almost 
infi nite). These cases are not rare, but are also 
easy to spot, as they have large estimated values 
and even larger standard errors.

For distributions like the Poisson and bino-
mial, the mean also determines the variance. In 
reality, the variance (i.e. the dispersion) is often 
larger than that assumed, and this is described 
as over-dispersion. Several methods exist for 
dealing with this, the most straightforward is to 
estimate it as a constant from the residual devi-
ance (e.g. McCullagh & Nelder 1989). Some 
more specifi c alternatives exist, for example for 
the Poisson distribution one can model the over-
dispersion as following a gamma distribution, 
in which case one can use a negative binomial 
distribution in place of the Poisson (e.g. Ver 
Hoef & Boveng 2007). An alternative is to use a 
quasi-likelihood approach (McCullagh & Nelder 

1989: chapter 9). Only the mean and the variance 
of the distribution are specifi ed, and the variance 
is allowed to depend on the mean. This can be 
particularly useful for the Poisson (Ver Hoef & 
Boveng 2007) and binomial distributions. Over-
dispersion occurs at the level of the individual 
observation, but extra random effects may be 
found at different levels of the analysis, and 
these have to be modelled. Recognition of this 
lead to the extension of GLMs to GLMMs.

Generalised Linear Mixed Models

A general approach to adding random terms into 
GLMs had to wait until the technical problem of 
how to fi t the models to data was solved, and was 
only accomplished in the early 1990s (Breslow 
& Clayton 1993). This lead to the development 
of Generalized Linear Mixed Models (GLMMs).

Random effects can be understood in several 
ways. For example, take the case where beetles 
have been sampled from several islands in an 
archipelago. There is a distribution of abun-
dances of the beetles over the whole archipelago, 
and when we sample beetles from a random 
selection of these islands, we are sampling from 
this distribution. Just as a simple regression can 
be used to model the distribution of abundances, 
so the distribution of abundances on different 
islands can also modelled. For example, the vari-
ance of the distribution can be estimated.

Mathematically, the random effects are 
parameters. The interpretation of a random 
effect as representing the distribution of the 
abundances (say) is equivalent to modelling the 
parameters as being drawn from a distribution, in 
contrast to generalized linear models where the 
parameters are allowed to be estimated freely. In 
generalized linear mixed models, the assumption 
is that the parameters are normally distributed. 
This implies that a sample from (say) 10 islands 
will tell us something about the 11th island. This 
is sensible — if from the fi rst 10 islands around 
5 to 10 individuals are captured, it would seem 
unlikely that 250 individuals would be caught on 
the 11th.

It is not always obvious when precisely a 
factor should be set as a random effect. For 
example, if there are 1000 islands in the archi-
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pelago, and 10 are sampled, it makes sense to 
think that we are sampling from a distribution. 
But what if there are only 50 islands? Or 20? 
Or 10? Even with 10 islands, if we sample 9 of 
them, it may still make sense to think that these 
tell us something about the 10th island. This sort 
of argument has been used to suggest that the use 
of random effects could be expanded (Gelman 
& Hill 2007). The decision to treat a factor as 
random can therefore be subjective with grey 
areas where there is no defi nite right approach, 
something not unusual in statistical modelling.

Random effects are typically used for two 
reasons. Firstly, they may be nuisance variable, 
i.e. something that causes variation in the data 
but which is not of direct interest. In this case, 
the attitude taken towards them is that they are 
not of direct interest, and may not have to be 
reported. However, they should still be examined 
— for example, if their effect is small, it may be 
better to remove them from the model, as this 
can improve the estimation of the other parame-
ters. The second reason for using random effects 
is that the focus is on estimating the amount of 
variation. A clear example of this comes from 
quantitative genetics, where the additive genetic 
variance is important (for example in estimating 
the speed of phenotypic change due to selection), 
and the estimated values for the individuals (the 
breeding values) are often less important. The 
focus is then on estimating where the variation in 
the data is occurring.

Now we know what a random effect is, how 
do we deal with it? Breslow and Clayton (1993) 
developed the model by adding the random effect 
terms to a GLM, so that Eq. 18 would become

  (27)

where the u
ik
’s are the parameters of the random 

effect that are to be estimated, and the Z
ik
’s are the 

levels of the random effect. The u
ik
’s are assumed 

to be normally distributed, i.e. u
ik
 ~ N(0,s

k
2). The 

estimation is more complex because the vari-
ances mean that the n

i
’s are correlated, and the 

variances (and hence the correlations) have to be 
estimated.

It is easier to understand what is going on if 
we extend the notation introduced above. We can 
denote random effects like this:

 (1|Island)

(the reason for the 1 will become clear). Island is 
then a random effect, and the assumption is that 
the Island effects are normally distributed. More 
formally, if I

k
 is the effect of the kth island, then 

I
k
 ~ N(0,s

I
2). Obviously, we can have more than 

one random effect. For example, if we had sev-
eral traps on each island, these might be nested, 
and we might arrive at a model like this:

 (1|Island/Trap).

Mathematically, this means that Trap is also nor-
mally distributed.

The random effect here is, in essence, affect-
ing the intercept of the model — it is the same 
for all of the levels and values of the fi xed 
effects. This does not have to be the case, it can 
vary between different fi xed effects. For exam-
ple, if we have several species sampled, and we 
want to estimate separate Island variances for 
each species, it can be written like this:

 (Species|Island).

So that I
k
(s) ~ N[0,s

I
2(s)], i.e. the variance 

depends on which species, s, the observation is 
for. Note that here Species is a discrete factor, so 
for each level a different variance is estimated.

This approach gives models of great general-
ity, but the more complex models will be harder 
to fi t (if a separate variance is estimated for each 
species, then each variance is estimated on the 
basis of fewer data points, so is less precise), and 
may be harder to interpret.

Similarly, the effects of a continuous vari-
able, such as height above sea level, might be 
thought to vary between islands. This would 
mean that the slope would be varying (just as 
in an ANCOVA model), but would be random. 
These are sometimes called random regression 
models. They can be written in the same way as 
for the factor, i.e.

 (Height|Island)

and this would mean a model with m
i
 = b

0
 

+ b
1
(I

i
)h

i
, and b

1
(I

i
) ~ N(0,s

b
2). A fuller model 

could therefore be
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 Count ~ Species + Height + (Height|Island)
 + (1 + Species|Island/Trap)

so that the intercept and Species are all random 
effects.

Example

We can continue with the analysis of the number 
of records. First, we can see if the abundance 
varies phylogenetically. We can do this by treat-
ing genus as a factor — whilst this is not ideal, it 
provides an approximate proxy for phylogenetic 
relatedness. If we treat it as a fi xed effect, we 
need to estimate 55 parameters. Of these, 23 are 
only estimated from a single species, so their 
estimates will be poor. Using genus as a random 
effect can help, because the genera which have 
several species will help to inform about those 
with less species (for a deeper discussion, see 
chapter 12 of Gelman & Hill [2007]). We can 
then fi t the following model

 Abundance ~ log(Range Size) + Wings
 + (1|Genus).

When we do this, the standard deviation 
of the Genus effect is 0.026, which is roughly 
the same as –0.025, the estimated difference 
between brachypterous and macropterous spe-
cies (brachypterous being more abundant). This 
suggests that the effect is about as important as 
the effect of wing morphology.

A more complex model would include dif-
ferent random effects between the different wing 
morphologies, i.e.

 Abundance ~ log(Range Size) + Wings
 + (1 + Wings|Genus).

The results are shown in Fig. 4. The grey 
bars are the wing morphology-specifi c standard 
deviations. As we can see, only the macropterous 
species have any appreciable variation between 
genera, and this variation is larger than the varia-
tion between wing morphologies.

It is worth emphasising that the models pre-
sented here are to demonstrate the models, rather 
than to be the best models for the data. In par-

ticular, there are other factors, such as habitat 
preferences, that will also affect the results of 
these analyses.

Extensions

Generalized linear mixed models are powerful 
tools, that can be used to solve many problems. 
Of course, they cannot be used to analyse every 
data set, but for some problems there are exten-
sions to GLMMs that can be used, and where the 
ideas behind generalized linear mixed models 
are useful, both technically in developing these 
methods and practically in using them. Here, I 
will point to some of these extensions, without 
going into details.

One problem with linear models is that they 
are fairly restrictive about the shape of the effect 
of a covariate on the expected value of the 
response — i.e. it has to be a straight line. 
Adding polynomials can help, but unless a high-
order polynomial is used, this restriction is still a 
problem. One way of easing this is to use GAMs, 
Generalized Additive Models (e.g. Wood 2006). 
These work by fi tting smoothed curves to the 
data. The advantage of these models is that they 
provide a fl exible set of curves that can be used, 
but there are two costs. The fi rst is simply that 
more data are required in order to fi t a curve 
reasonably well. The second is interpretability 
— with a straight line, it is clear if the line is 
increasing or decreasing. Similarly, when fi t-
ting complex models, including interactions in a 
GLM is straightforward, but whilst it can be done 
in a GAM, it requires more data, and can be dif-
fi cult to visualise in more than 2 dimensions. In 
situations where there are data, and it is expected 

–0.05 0.00 0.05 0.10 0.15 0.20

Coefficients

Brachypterous

Macropterous

Dimorphic

Fig. 4. Estimates of effects of wing morphology on 
abundance: estimate ¥ standard error (black), standard 
deviation of genus effects (grey).
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that a curve is not linear, they will be useful, and 
perhaps they are best viewed as either “black 
boxes” for prediction, or as providing visualisa-
tions of non-linear curves. Random effects can 
also be added, to form GAMMs, Generalized 
Additive Mixed Models (Wood 2006).

The random effects were developed above 
using a hierarchical description — the data are 
functions of parameters, which themselves are 
modelled by being functions of further param-
eters. This approach can be extended. At its most 
general, it leads to hierarchical models (e.g. 
Gelman & Hill 2007), where complex models 
can be built from simpler blocks. Although this 
approach is very powerful, beyond a certain 
point the model fi tting becomes diffi cult, and it 
would be best to switch to a Bayesian approach 
to the fi tting (Läärä 2009). All of the models dis-
cussed above are hierarchical models (even if the 
hierarchy is fl at for many of them).

Spatial data can be modelled using hierarchi-
cal models which are very similar to GLMMs 
(e.g. Banerjee et al. 2004). The difference is that 
the spatial term is a more complex form of a 
random effect (the exact form will depend on the 
type of data).

One very powerful class of hierarchical 
models are HGLMs, Hierarchical Generalized 
Linear Models (Lee et al. 2006). These build on 
GLMM ideas, but provide more fl exibility. For 
example, they provide an approach to modelling 
the variance in the same way as the mean, using 
a doubly hierarchical linear model.

Conclusions

The models outlined above can be used to analyse 
many of the data sets that are generated in the 
ecological and evolutionary sciences. The focus 
here has been on describing how the models 
work, and how they should be interpreted. Much 
of the actual practice of using these models 
has been ignored, for reasons of simplicity and 
space. For example, variable selection has been 
ignored (e.g. Burnham & Anderson 2002), as 
have other matters such model checking. Many 
books are available that explain the processes of 
data analysis with the sorts of models discussed 
above. Gelman and Hill (2007) is one recent 
tome that gives a comprehensive coverage of the 
issues involved in fi tting and interpreting GLMs, 
GLMMs and hierarchical models.

In practice, these models will be fi tted to the 
data using statistical software. This again means 
that we can sidestep some of the complexities. 
A summary of what analyses can be done using 
which software packages is given in Table 8.

It should be clear that the models are rela-
tively simple, as they are just made up of sums of 
terms. The mathematical complexities arise from 
the form of the distributions, and more critically, 
from the methods used to fi t the models to the 
data. However, with the ready availability of 
statistical packages that can be used to carry out 
the computations, this is less of a problem. One 
issue is the reliability of these packages, and of 
the fi tting methods. Perhaps the main problems 
are seen in the application of generalized linear 
mixed models to data with a binary response, 
where the typical methods perform poorly (e.g. 
Lin & Breslow 1996).

The models explained here are being regu-
larly used by biologists. Unfortunately, because 
of the way statistics has been taught, many analy-
ses are presented simply as hypothesis tests (e.g. 
ANOVA tables), without the model that gives the 
tables being examined (Läärä 2009). The models 
are themselves not diffi cult to understand (per-
haps the main problem is understanding the scale 
on which the linear model is measured), and by 
understanding them we get closer to a description 
of the data being analysed, and hence closer to 
the underlying biology — the model is a descrip-

Table 8. Common software tools for analysing classes 
of models. R packages for analyses given in brackets.

 Programme
 

Models R SAS Genstat
 (2.6.1) (ver. 9) (10th ed.)

Linear Models Y Y Y
GLMs Y Y Y
GLMMs Y (lme4) Y Y
GAMs Y (mgcv) Y Y
GAMMs Y (mgcv) N N
HGLMs N N Y
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tion of the data, and what the organisms were 
doing, only in numbers rather than words. For 
those who fi nd the numbers abstract, we can also 
draw graphs, and describe the data in pictures.
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