
How to Maximize Software Performance of

Symmetric Primitives on Pentium III and 4
Processors

Mitsuru Matsui and Sayaka Fukuda

Information Technology R&D Center
Mitsubishi Electric Corporation

5-1-1 Ofuna Kamakura Kanagawa, Japan
matsui@iss.isl.melco.co.jp, sayaka@iss.isl.melco.co.jp

Abstract. This paper discusses the state-of-the-art software optimiza-
tion methodology for symmetric cryptographic primitives on Pentium
III and 4 processors. We aim at maximizing speed by considering the
internal pipeline architecture of these processors. This is the first paper
studying an optimization of ciphers on Prescott, a new core of Pen-
tium 4. Our AES program with 128-bit key achieves 251 cycles/block
on Pentium 4, which is, to our best knowledge, the fastest implemen-
tation of AES on Pentium 4. We also optimize SNOW2.0 keystream
generator. Our program of SNOW2.0 for Pentium III runs at the rate
of 2.75 µops/cycle, which seems the most efficient code ever made for
a real-world cipher primitive. For FOX128 block cipher, we propose a
technique for speeding-up by interleaving two independent blocks using
a register group separation. Finally we consider fast implementation of
SHA512 and Whirlpool, two hash functions with a genuine 64-bit archi-
tecture. It will be shown that new SIMD instruction sets introduced in
Pentium 4 excellently contribute to fast hashing of SHA512.

1 Introduction

Recent microprocessors, especially Intel processors, have long pipeline stages to
raise clock frequency, which, on the other side, often leads to new performance
penalty factors. Now it is not rare that a program runs slower on a newer pro-
cessor with a higher clock frequency. It seems that the clock-raising of modern
processors is approaching to its margin. That is, for maximizing performance of
a software program on a processor, it is becoming increasingly important for pro-
grammers to understand its hardware architecture and programming techniques
specific to the processor.

This paper deals with Intel Pentium III and 4 processors, which are most
widely used in modern PCs, and studies methodology for optimizing speed of
recently proposed symmetric ciphers and hash functions on these processors.
Intel recently shipped a new Pentium 4 (Prescott) with an architecture different
from the previous Pentium 4 (Willamette, Northwood) under the same name.

2

Since we often have to discuss these different cores separately, we call the old
cores Pentium 4-N, and the new core Pentium 4-P to distinguish them.

First, in section 2, we refer to Gladman’s code of Serpent block cipher [9] to
see to what extent an architecture of microprocessors affects performance of the
same code. It will be seen that even if everything is on the first level cache, the
number of execution cycles of a given code significantly varies on a processor
with a different version. Then we briefly summarize structural characteristics of
Pentium III and 4. It should be noted that Pentium 4 has successfully raised
its clock frequency by increasing the number of pipeline stages, but in return,
SIMD instructions work only in a longer latency on this processor.

In section 3, we show how to measure a speed of a target assembly code on
these processors. We have adopted a common method for the measurement; i.e.
we count the number of clock cycles of a target subroutine using an internal
timer of the processor. However in repeating our measurement experiments, we
have found that an accurate measurement of execution cycles is not a simple
issue as it looks on Pentium 4 particularly with Hyperthread Technology. Since
this is a separate matter of interest but a less cryptographic topic, we will give
a further observation in an appendix.

In subsequent sections, we specifically discuss software optimization tech-
niques for symmetric cryptographic primitives. Our first target algorithm is AES
[6]. The structure of AES is very suitable for 32-bit processors, but if we aim at
ultimate performance, a dependency chain and a register starvation are likely
a bottleneck of the speed. We carefully selected and arranged registers and in-
structions, and as a result, our optimized code with 128-bit key runs in 251
cycles/block on Pentium 4, which is, to our best knowledge, the fastest imple-
mentation of AES on Pentium 4.

The next algorithm is stream cipher SNOW2.0 [4]. This algorithm has two
highly independent functions inside, and hence is suitable for superscalar pro-
cessors. We derive a possible minimum number of µops on Pentium III and 4,
and show that this number can be achieved in practice. Our program generates a
key stream very efficiently at the rate of 2.75 µops/cycle on Pentium III, which
is very close to the structural limit of Pentium III and 4 (3 µops/cycle), and
is, as far as we know, the most efficient code designed for a read-world cipher
primitive.

We also give the first performance analysis of FOX128 block cipher [11]. Since
this cipher has an 8-byte×8-byte matrix inside, we should use the 64-bit MMX
registers, but due to a long dependency chain, a straightforward program runs
inefficiently. However, fortunately this algorithm does not require many registers,
and we can improve performance by assigning two independent register sets to
two independent blocks respectively and interleaving the two codes in an internal
block loop. It will be seen that this technique excellently improves the speed of
FOX128.

Finally we deal with hash functions SHA512 [7] and Whirlpool [3]. These hash
functions have a genuine 64-bit structure, and use of 64-bit MMX instructions
is essential. Nakajima et al. [14] studied performance analysis of these hash

3

functions on Pentium III, but due to missing “64-bit add” instructions, SHA512
had a heavy performance penalty on Pentium III. This paper first gives detailed
performance analysis of SHA512 and Whirlpool on Pentium 4. We show that a
two-block parallel implementation (in the sense of [14]) using the 128-bit XMM
registers significantly boosts its hashing speed.

All the results shown in this paper were obtained using the following PCs.

Processor Pentium III Pentium 4 Pentium 4

Core Coppermine Northwood Prescott

Clock 800MHz 2.0GHz 2.8GHz

Hyperthread no no yes

Memory 256MB 1GB 512MB

OS Windows 2000 Windows XP Professional Windows XP Professional

Compiler Microsoft Visual Studio .NET 2003/Macro Assembler Version 7

Table 1. Our reference machines and environments.

2 Pentium III and 4 Processors

2.1 Pentium III and 4 at a glance

Table 2 shows our performance measurement results of Gladman’s implementa-
tion [9] of Serpent block cipher [1] written in an assembly language. In [9] we
can find two assembly language source codes: one is coded using 32-bit x86 in-
structions only (Program 1) and the other encrypts two blocks in parallel using
64-bit MMX SIMD instructions, where the first block is put on the upper 32-bit
half of the MMX registers and the second block on the lower half (Program 2).
This parallel encryption technique works well because Serpent was designed so
that the entire algorithm could be efficiently implemented using 32-bit logical
and shift operations only. This implementation technique can be used for en-
crypting not only two independent message streams but also one single stream
with a non-feedback mode of operation such as a counter mode. In addition, we
modified Program 2 to enable us to encrypt four blocks in parallel using 128-bit
XMM SIMD instructions (Program 3); this translation is very straightforward.

Pentium III Pentium 4-N Pentium 4-P

Program 1 (32-bit code) 773 1267 689

Program 2 (64-bit code) 570 1052 1119

Program 3 (128-bit code) - 656 681

Table 2. Encryption speed of Gladman’s Serpent codes (cycles/block).

Program 1 is very slow on Pentium 4-N; this is probably because 32-bit shift
instructions have long latencies (4 or 5 cycles) on this processor, which was later
improved on the new Prescott core (more than one shift in one cycle). Program 2
runs faster on Pentium III but not twice as fast, because we need four instructions
to do a rotate shift on the MMX registers. The reason why Program 2 is again

4

so slow on Pentium 4 is totally different; the MMX units of Pentium 4 work
only in half speed. On the other side, Program 3 is fast as expected due to the
SIMD computation, as compared with Program 2. (Program 3 does not work on
Pentium III because Pentium III does not have 128-bit XMM shift instructions).

Note that these programs are not optimized for Pentium 4, and hence this
table should not be seen as a maximal performance figure of Serpent. It was in-
tended to show a typical example where the same code runs in a totally different
efficiency on a processor with a different version. Table 2 clearly shows that a
selection of a processor and a careful optimization on the processor are critically
important for maximizing performance.

2.2 Pentium III and 4 a bit more

We here sketch structural characteristics of Pentium III and 4 for later sections.
For more details about the internal architecture and optimization tips of Pentium
III and 4-N, see an excellent article written by Agner Fog [8], which tells us much
more than any published documents about these processors.

[Pentium III] One of the biggest stall factors of Pentium III comes from the
decoding stage, where a sequence of x86 instructions is broken down into RISC-
style micro operations (µops). This break-down rule is quite complex, and a
programmer must carefully arrange the order of instructions in order not to
suffer a stall in this stage.

The executing stage has five independent pipes p0–p4, where p0 and p1 han-
dle arithmetic and logical µops, p2 is used for reading from memory, and p3/p4
are used for writing to memory. This means that to aim at 3 µops/cycle, which
is the maximal execution rate of Pentium III, we have to assign at least one µop
out of three µops to memory read/write.

[Pentium 4 Northwood] In Northwood, instructions are cached after de-
coding. This means that the decoding stage is no longer a bottleneck of speed,
assuming that the size of a critical loop is sufficiently small. An important fea-
ture of Northwood is that execution units for simple 32-bit µops run in double
speed, but those for 64-bit/128-bit SIMD µops work only in half speed.

A special penalty of Northwood comes from 32-bit shift instructions, which
have long latencies, typically 4 or 5 cycles. Also reading from memory to the
MMX/XMM registers is very slow, taking approximately 8 cycles, according to
[8]. The maximal execution rate of this processor remains 3 µops/cycle.

[Pentium 4 Prescott] This new core of Pentium 4 has not been well docu-
mented. The speed of a 32-bit shift instruction is greatly improved; more than
one shift can be issued in a single cycle (but not exactly two shifts in our exper-
iments, unlike what Intel’s manual says). This is a good news.

However, many µops of Prescott have longer latencies than those of North-
wood due to a deeper pipeline of this processor. The latency of a 32-bit load and
an xor, for instance, is 4 and 1, respectively (2 and 0.5 for Northwood), which
can be a new performance constraint.

5

Table 3 summarizes major differences of Pentium III and 4. The sixth and
seventh rows show a latency of a sequence of two instructions, whose results
were obtained by our own experiments. This type of sequence often appears on
a dependency chain of block cipher codes.

Pentium III Pentium 4-N Pentium 4-P

Pipeline Stages 10 20 32

L1 data cache 16KB 8KB 16KB

32-bit load latency/throughput 3/1 2/1 4/1

32-bit xor latency/throughput 1/0.5 0.5/0.5 1/0.5

32-bit shift latency/throughput 1/1 4/1 >0.5/1

mov ebx,TABLE[eax] / mov eax,ebx 4 cycles 3 cycles 5 cycles

movq mm0,TABLE[eax] / movd eax,mm0 4 cycles 13 cycles 18 cycles

Table 3. Pentium III vs. Pentium 4.

3 How to Measure Execution Cycles

A common method for measuring a speed of a piece of code is to insert the code
to be measured between two CPUID-RDTSC sequences, where CPUID flushes the
pipeline and RDTSC reads processor’s internal clock value as follows:

xor eax,eax xor eax,eax

cpuid cpuid

rdtsc rdtsc

mov CLK1,eax mov CLK3,eax

xor eax,eax xor eax,eax

cpuid cpuid

FUNCTION(..., int block) ; nothing here

xor eax,eax xor eax,eax

cpuid cpuid

rdtsc rdtsc

mov CLK2,eax mov CLK4,eax

xor eax,eax xor eax,eax

cpuid cpuid

Code 1. Measurement of FUNCTION. Code 2. Measurement of overhead.

Clearly CLK2-CLK1 shows clock cycles from line 4 to line 11, but this value
contains an overhead of measurement itself, which corresponds to CLK4-CLK3.
Hence we define the speed of FUNCTION as ((CLK2-CLK1)-(CLK4-CLK3))/block
(cycles/block). In our reference PCs, the overhead CLK4-CLK3 is 214, 632 and
847 cycles for Pentium III, 4-N and 4-P, respectively.

In practice, the measured number of cycles varies due to various reasons. We
hence ran the code above many times and adopted an average value, not a min-
imal value, as the speed of FUNCTION. For more details about the measurement
issue on Pentium 4, see appendix.

6

4 AES

The first example of our implementation is AES. For the description and nota-
tions of the AES algorithm, refer to [6]. The fastest AES codes currently known
on Pentium III and Pentium 4-N were designed by Lipmaa [12][13]. However no
information about his implementation details has been published. Our imple-
mentation below is hence independent of his works.

AES is a typical cipher from an implementation viewpoint in the sense that
we have to make use of data registers also as address registers alternatively on
its critical path, which means that a dependency chain is likely a performance
bottleneck. A common x86 code of one round of AES consists of (1) a four-
time repetition of the following sequence (with different input registers), which
corresponds to Subbytes+Shiftrows+Mixcolumns , and (2) four xors, which cor-
respond to AddRoundKey. Note that, while the final round of AES is different
from other rounds, it can be implemented using the same sequence below with
another tables, which will be referred as table5 to table8. We hence need a
total of 8KB memory for the lookup tables.

movzx esi,al ; lowest byte of input eax

mov/xor register1,table1[esi*4] ; first table lookup (4 byte)

movzx esi,ah ; second byte of input eax

mov/xor register2,table2[esi*4] ; second table lookup (4 byte)

shr eax,16 ; move higher 16 bits to lower side

movzx esi,al ; third byte of input eax

mov/xor register3,table3[esi*4] ; third table lookup (4 byte)

movzx esi,ah ; highest byte of input eax

mov/xor register4,table4[esi*4] ; fourth table lookup (4 byte)

Code 3. An example of 1/4 component of Subbytes+Shiftrows+Mixcolumns
(mov for the first time and xor for the second to the forth times).

In an actual assembly program, how to minimize the latency of one round
sequence is not trivial due to a “register starvation”. Since we need four one-byte
components of registers1 to register4 in the next round, these four registers
should be eax, ebx, ecx and edx, but this is impossible without saving/restoring
at least one input register in each round, which requires additional instructions.
Assigning 64-bit MMX registers to registers1 to 4 also requires additional in-
structions for copying them to eax, ebx, ecx and edx for the next round, since
we can not direct extract a byte of an MMX register to an x86 register.

[Pentium III] Our implementation on Pentium III uses four specially arranged
lookup tables. These tables have an 8-bit input and a 64-bit output, where
table1 to table4 (in Code 3) are put on the lower 32-bit half of each entry of
our new tables, and table5 to table8 for the final round are put on the higher
32-bit half of the entry. We also assign two x86 registers and two MMX registers
to register1 to register4 for all rounds except the final round, and assign four
MMX registers to all of register1 to register4 in the final round. movq/pxor
instructions are used to access MMX registers.

7

This lookup table structure contributes to reducing code size and hence in-
creasing decoding efficiency. This structure also works very well in the final
round, because the output of the final round no longer has to be copied to x86
registers and can be treated as full 64-bit data, as shown below. Our imple-
mentation of AES with 128-bit key on this strategy runs at the speed of 232
cycles/block in our measurement policy. When the block loop overhead (see
appendix) is taken into consideration, this is almost the same performance as
Lipmaa’s best known result.

punpckhdq mm0,mm1 ; two upper 32-bit -> 64-bit

punpckhdq mm2,mm3 ; two upper 32-bit -> 64-bit

pxor mm0, Final_Subkey1 ; AddRoundKey (8 bytes)

pxor mm2, Final_Subkey2 ; AddRoundKey (8 bytes)

movq [memory+0], mm0 ; store ciphertext (8 bytes)

movq [memory+8], mm2 ; store ciphertext (8 bytes)

Code 4. Our AES code after the final round.

[Pentium 4] Since MMX memory instructions have a very long latency on Pen-
tium 4 (for both Northwood and Prescott), we have to write a code using x86
registers and instructions only. In addition, using a high 8-bit partial register,
such as ah, leads to a special penalty on Pentium 4, while no penalty takes place
in using a low 8-bit partial register. Specifically, movzx esi,ah is decomposed
into two µops on Pentium 4 unlike Pentium III. Code 1 uses this type of in-
struction twice, but one of them can be avoided by changing the last two lines
as follows:

shr eax,8 ; only one uop (upper 24 bits = 0)

mov/xor register4, table4[eax*4] ; fourth table lookup

Code 5. Modification of Code 1 for Pentium 4.

For Northwood, which has only 8KB L1 data cache, we reduced the size of
our lookup tables to 6KB by removing table5 and table6 of the final round
without increasing the number of instructions. This is possible by using a movzx
instruction as shown in Table 4 (note that Pentium is a little-endian proces-
sor). As a result, our code runs at the speed of 251 cycles/block on Pentium 4
Northwood. This is, as far as we know, the fastest implementation of AES on
Pentium 4. On the other hand, our implementation on Prescott is unfortunately
slower than that on Northwood. We feel that this is due to a high latency of
load instructions (4 cycles for Prescott and 2 cycles for Northwood).

Table 5 summarizes our performance results. Our codes have the following
interface and we assume that the subkey has been given in the third argument.
We set block to 128 or 256, which was fastest in our environments. We did not
use any static memory except read-only lookup tables.

FUNCTION(uchar *plaintext, uchar *ciphertext, uint *subkey, int block)

8

Operation Instruction Table Size

table5 x → (0‖0‖0‖S[x]) movzx Register,BYTE PTR table8+3[esi*4] 0

table6 x → (0‖0‖S[x]‖0) movzx Register,WORD PTR Table8+2[esi*4] 0

table7 x → (0‖S[x]‖0‖0) mov Register,table7[esi*4] 1KB

table8 x → (S[x]‖0‖0‖0) mov Register,table8[esi*4] 1KB

Table 4. Reduction of lookup tables of the final round.

Pentium III Pentium 4-N Pentium 4-P

µops/block 596 654 654

cycles/block 232 251 284

cycles/byte 14.5 15.7 17.8

µops/cycles 2.57 2.61 2.30

Table 5. Our implementation results of AES.

5 SNOW2.0

Our next example of implementation is stream cipher SNOW2.0, which was
designed by Ekdahl and Johansson and presented at SAC2002 [4]. SNOW2.0 was
intended to overcome a slight weakness of its earlier version, which was initially
submitted to the NESSIE project [15]. SNOW2.0 is based on a firm theoretical
background and is very fast. It is now under discussion for an inclusion in the
next version of the ISO/IEC 18033 standard. Our paper gives the first detailed
performance analysis of SNOW2.0 in an assembly language.

Fig. 1. SNOW 2.0.

Figure 1 illustrates the keystream generation algorithm of SNOW2.0, which
consists of sixteen 32-bit registers si with feedback mechanism with two 32-bit
memories R1 and R2. α and α−1 are multiplicative constants over GF (232),
and S is an AES-like 4-byte×4-byte matrix multiplication. Clearly SNOW2.0
strongly targets at 32-bit processors from the implementation point of view.

9

According to the authors’ document, α and α−1 were chosen so that the
multiplications with these values over GF (232) could work efficiently using two
pre-calculated tables MUL_a and MUL_ainv as follows:

s * α = (s << 8) xor MUL_a[s >> 24]
s * α−1 = (s >> 8) xor MUL_ainv[s & 0xff]

The straightforward implementation of the first operation (multiplication
with α) requires four instructions (five µops), but we have found that it can be
done with fewer instructions as shown below by preparing a new table MUL_a2
such that MUL_a2[x] = MUL_a[x] ^ (a & 0xff). Since we need 2KB for MUL_a2
and MUL_ainv and 4KB for S, the total size of the lookup tables is 6KB, which
fits in L1 data cache of both Pentium III and Pentium 4.

rol eax,8 movzx esi,al

movzx esi,al shr eax,8

xor eax,MUL_a2[esi*4] xor eax,MUL_ainv[esi*4]

Code 6. Multiplication with α (left) and α−1 (right).

The structure of SNOW2.0 is very suitable for superscalar processors, since
the LFSR part (the upper half of Figure 1) and the FSM part (the lower half)
can be carried out mostly independently. For fast implementation of SNOW2.0,
we should treat sixteen consecutive LFSR clocks as “one round” as suggested
by the designers, which enables us to skip copy operations on the sixteen 32-bit
registers. We implemented the keystream generation algorithm SNOW2.0 in an
assembly language for Pentium III and Pentium 4, respecting the subroutine
interface given by designers’ C codes at [5]. We simply added an additional vari-
able “block” in the second argument, so that the routine can generate block*64
keystream bytes at one subroutine call as follows (the state information on si,
R1 and R2 are passed as static variables):

FUNCTION(uint *keystream_block, int block)

Our code requires 34 and 33 µops in one LFSR clock, i.e. in every four-byte
keystream generation, on Pentium III and Pentium 4, respectively. We think that
this already reaches the theoretical minimum number of µops. Table 6 shows a
detailed breakdown of the µops of our code. We read st twice for reducing the
latency of the LFSR part, which is the reason why the number of µops of “read
from LFSR” is 5 (not 4 as naturally expected from Figure 6), and the number
of µops of “s * α” is 3 (not 4).

Table 7 gives performance of our assembly codes. Our code runs at the speed
of 203 cycles/block on Pentium 4 Northwood, which is 30% faster than designers’
optimized C code. The remarkable aspect of our code is its high parallelism. For
example, our program on Pentium III works at the rate of 2.75 µops/cycle,
which is, as far as we know, the most efficient code that was achieved in a
real cryptographic primitive. This result also shows that SNOW2.0 is essentially
faster than RC4. If we take a close look at the structure of RC4, we will see that

10

RC4 requires at least 10 µops/byte including three reads and three writes. Hence
even if we assume that an RC4 code works in 2.80 µops/cycle it takes at least
3.6 cycles/byte (much more in practice), while our SNOW2.0 code is running in
3.1–3.4 cycles/byte.

S s * α s * α−1 read from write to xor/add Total µops
LFSR LFSR/keystream

Pentium III 12 3 4 5 4 6 34

Pentium 4 13 3 4 5 2 6 33

Table 6. µops breakdown in one LFSR clock.

Pentium III Pentium 4-N Pentium 4-P

µops/block 550 534 534

cycles/block 200 203 215

cycles/byte 3.13 3.17 3.36

µops/cycles 2.75 2.63 2.48

Table 7. SNOW2.0 key generation speed.

6 FOX128

FOX is a family of block ciphers, which was recently proposed by Junod and Vau-
denay [11]. Here we treat a “generic version” of 128-bit block cipher FOX128 with
16 rounds. The left part of Figure 2 illustrates the round function of FOX128,
and the right part gives the details of the f64 function in the round function.
The f64 function consists of a sequence of (1) key xor, (2) eight parallel sbox
lookups, (3) 8-byte × 8-byte matrix mu8, (4) key xor again, and (5) eight par-
allel sbox lookups again. This is essentially a 64-bit structure, suitable for use of
the MMX instructions on Pentium III and 4.

The straightforward implementation of the f64 function requires eight 2KB
tables for the first sbox layer and mu8, and additional one to four 1KB tables
for the second sbox layer. If we take a close look at the mu8 matrix, it is easily
seen that we can reduce one 2KB table in the first layer at the cost of three or
four additional MMX µops. Our first implementation fully uses MMX registers
and MMX instructions in the main stream and in the f64 function, reducing the
table size to a total of 15KB (14KB/1KB for the first/second layer) so that the
entire tables are covered within 16KB. This runs at the speed of 692 cycles/block
on Pentium III, which is approximately 20% faster than designers’ optimized C
implementation. However, this program becomes very slow in Pentium 4 because
the f64 function has a long dependency chain and moreover Northwood suffers
a lot of cache miss penalties.

On the other hand, our implementation is free from a “register starvation”;
that is, four out of the eight MMX registers are enough to implement the entire
cipher, which means that half of the MMX registers can remain free. This leads

11

Fig. 2. FOX128.

us to a possibility of another parallel implementation technique “register group
separation”. Specifically, we assign four MMX registers to one message stream
and the remaining four to another message stream, and interleave the two inde-
pendent codes inside a block loop. This technique is expected to contribute to an
efficient use of superscalar pipelines and improve an overall performance accord-
ingly. Our code remarkably reduces the number of execution cycles on Pentium
4. In particular, the improvement on Northwood is prominent; although the
Northwood core is still paying the penalty of cache misses, its performance is
now very close to that on Prescott.

Table 8 summarizes performance measurement results of our FOX128 codes,
where (I) and (II) show the straightforward method and the two-block paral-
lel method, respectively. We adopted the same subroutine interface and coding
policy as that of the AES block cipher. In general, it is difficult to apply the
register group separation technique to codes using x86 registers only, but new
registers such as MMX and XMM have opened up a new possibility of this
parallel computation technique.

Pentium III Pentium 4-N Pentium 4-P

(I) (II) (I) (II) (I) (II)

µops/block 1269 1388 1395 1505 1395 1505

cycles/block 692 622 1986 1187 1481 981

cycles/byte 43.3 38.9 124.1 74.2 92.6 61.3

µops/cycle 1.83 2.23 0.70 1.27 0.94 1.53

Table 8. Our implementation results of FOX128.

12

7 SHA512 vs. Whirlpool

We here discuss two genuine 64-bit hash functions SHA512 [7] and Whirlpool [3],
both of which are now under consideration for an inclusion in the next version
of the ISO/IEC 18033 standard. These algorithms well suit for 64-bit processors
and it is expected that the 64-bit MMX instructions can be efficiently used for
gaining performance. Nakajima et al. [14] discussed speed of these hash functions
on Pentium III, and reported that Whirlpool is slightly faster than SHA512.

SHA512 suffered heavy penalty cycles on Pentium III because Pentium III
does not have an instruction for 64-bit addition, which is an essential operation
of this algorithm. Pentium 4 solves this problem, but a high latency of MMX
memory instructions can be a possible penalty factor. On the other side, we
can hash two independent messages in parallel using 128-bit XMM instructions,
which is expected to boost the hashing speed.

The structure of Whirlpool is similar to AES. It uses an 8-byte × 8-byte
matrix (a 4-byte × 4-byte matrix for AES), and hence a straightforward imple-
mentation requires eight 2KB tables. Our coding method is basically the same
as [14]; that is, we have only four tables and generate other data when necessary
using the pshufw (word shuffling) instruction.

Table 9 and Table 10 show our performance figures of SHA512 and Whirlpool,
respectively. We also made our own programs for Pentium III, where Whirlpool
runs faster than [14]. This is due to a better instruction scheduling. “single”
and “double” denote straightforward single message hashing using 64-bit MMX
instructions and double message hashing using 128-bit XMM instructions, re-
spectively. In the single message hashing, Whirlpool is still faster than SHA512
on Pentium 4 Prescott, (Northwood is slow simply due to cache miss penalties),
but the effect of double message hashing is evident; SHA512 then becomes more
than 30% faster than Whirlpool.

1block = 128bytes Pentium III Pentium 4-N Pentium 4-P

single single double single double

µops/block 13924 8710 4363 8710 4363

cycles/block 5148 4666 2826 5294 3111

cycles/byte 40.2 36.5 22.1 41.4 24.3

µops/cycles 2.70 1.87 1.54 1.65 1.40

Table 9. Our implementation results of SHA512.

1block = 64bytes Pentium III Pentium 4-N Pentium 4-P

µops/block 5206 5526 5526

cycles/block 2061 3024 2319

cycles/byte 32.2 47.3 36.2

µops/cycles 2.53 1.83 2.38

Table 10. Our implementation results of Whirlpool.

13

8 Concluding Remarks

This paper discussed various implementation trade-offs of cryptographic prim-
itives on Pentium III and 4 processors, introducing parallel encryption tech-
niques. The clock-raising of modern processors is approaching to its margin and
it seems that a next generation of processors goes toward independent multiple
cores, rather than a deeper pipeline and a higher superscalability. Hence we be-
lieve that parallel encryption/hashing techniques will be increasingly important
in a very near future.

References

[1] R. Anderson, E. Biham, L. Knudsen: “Serpent: A proposal for the Advanced En-
cryption Standard”, http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/serpent.pdf

[2] K. Aoki, H. Lipmaa: “Fast Implementations of AES Candidates”, Pro-
ceedings of The Third AES Candidate Conference, 2000. Available at
http://www.tcs.hut.fi/˜helger/papers/al00/fastaes.pdf

[3] P. Barreto: “The Whirlpool Hash Function”,
http://planeta.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

[4] P. Ekdahl, T. Johansson: “A new version of the stream cipher SNOW”, Proceedings
of 9th Annual Workshop on Selected Areas in Cryptography SAC2002, Lecture
Notes in Computer Science, Vol.2595, pp 47-61, Springer-Verlag, 2002.

[5] P. Ekdahl: SNOW Homepage, http://www.it.lth.se/cryptology/snow/

[6] Federal Information Processing Standards Publication 197, “Advanced Encryption
Standard (AES)”, NIST, 2001.

[7] Federal Information Processing Standards Publication 180-2, “Secure Hash Stan-
dard”, NIST, 2002.

[8] A. Fog: “How To Optimize for Pentium Family Processors”, Available at
http://www.agner.org/assem/

[9] B. Gladman: “Serpent Performance”,
Available at http://fp.gladman.plus.com/cryptography technology/serpent/

[10] IA-32 Intel Architecture Optimization Reference Manual, Order Number 248966-
011, http://developer.intel.ru/download/design/Pentium4/manuals/24896611.pdf

[11] P. Junod, S. Vaudenay: “FOX : a new Family of Block Ciphers”, Preproceedings of
11th Annual Workshop on Selected Areas in Cryptography SAC2004, pp131-146,
2004.

[12] H. Lipmaa: “Fast Software Implementations of SC2000”, Proceedings of Informa-
tion Security Conference ISC2002, Lecture Notes in Computer Science, Vol.2433,
pp.63-74, Springer-Verlag, 2002.

[13] H. Lipmaa: “AES / Rijndael: speed”,
http://www.tcs.hut.fi/˜helger/aes/rijndael.html

[14] J. Nakajima, M. Matsui: “Performance Analysis and Parallel Implementation of
Dedicated Hash Functions on Pentium III”, IEICE Trans. Fundamentals, Vol.E86-
A, No.1, pp.54-63, 2003.

[15] New European Schemes for Signatures, Integrity, and Encryption (NESSIE),
https://www.cosic.esat.kuleuven.ac.be/nessie/

14

Appendix: On Measuring Execution Cycles

Our measurement method shown in section 3 agrees with [14], but not with [2].
Aoki et al. [2] regarded execution time for decrementing the block counter and
branching conditionally inside FUNCTION also as an overhead. Specifically, they
subtracted the number of execution cycles of the following “Null function” from
that of FUNCTION, and defined its result as performance of the target primitive.

/* push all used registers */

cmp dword ptr [block], 0

jz L1

align 16

L0:

dec dword ptr [block]

jnz L0

L1:

/* pop these registers once more */

We do not adopt this method because our definition is more practical and vis-
ible for users (application programmers) and moreover it is difficult to measure
the overhead of the loop processing accurately, due to the nature of superscalar
and out-of-order architecture of the processors. It should be noted that in Pen-
tium 4 micro-operations in a small loop are likely rearranged on the trace cache
so that the number of branches can be reduced [8].

Also, it is common to count execution cycles many times and regard the min-
imum value as a “real” cycle count in practice. This is based on the assumption
that an interruption by an operation system always increases execution cycles.
But this does not always hold for Pentium 4 with Hyperthread Technology (HT),
which enables a single processor to run two multi-threaded codes simultaneously.
Our experiments show that Code 2, for example, runs in 632 cycles on North-
wood without HT (or with disabled HT) in almost all cases, and takes more
cycles in some rare cases; however on Northwood with HT, Code 2 runs in 636
cycles in almost all cases and takes more or less cycles in some rare cases. We
saw it run even in 600 cycles!

Another implicit assumption is that we should always obtain a constant cycle
count if no interruption takes place during the measurement. To make sure this,
we again measured the speed of Code 2 under DOS with disabling interruptions
for more than 20 processors with different stepping/revision numbers. As a result,
we found that only one type of processor (Prescott Stepping 3 Revision 0) did
not run in a constant time. We do not know reason of this instability.

This suggests that if we measure a target code many and many times, we
might finally obtain an exceptionally fast result, but clearly this does not make
sense in practice. We hence decided to take the most frequent value or an average
value in measuring a speed of a code. Our experiments show that the number of
cycles obtained by Aoki et al’s method [2] is smaller than ours by typically 6, 14
and 7 cycles/block for Pentium III, 4-N and 4-P, respectively. Hence to compare
our results with Aoki’s or Lipmaa’s, simply subtract these numbers from ours.

