
University of Vermont University of Vermont 

UVM ScholarWorks UVM ScholarWorks 

Rubenstein School of Environment and Natural 
Resources Faculty Publications 

Rubenstein School of Environment and Natural 
Resources 

1-1-2020 

How to measure, report and verify soil carbon change to realize How to measure, report and verify soil carbon change to realize 

the potential of soil carbon sequestration for atmospheric the potential of soil carbon sequestration for atmospheric 

greenhouse gas removal greenhouse gas removal 

Pete Smith 
University of Aberdeen 

Jean Francois Soussana 
INRAE 

Denis Angers 
Agriculture et Agroalimentaire Canada 

Louis Schipper 
University of Waikato 

Claire Chenu 
Centre de recherche Île-de-France-Versailles - Grignon 

See next page for additional authors 
Follow this and additional works at: https://scholarworks.uvm.edu/rsfac 

 Part of the Agriculture Commons, Climate Commons, and the Sustainability Commons 

Recommended Citation Recommended Citation 
Smith P, Soussana JF, Angers D, Schipper L, Chenu C, Rasse DP, Batjes NH, van Egmond F, McNeill S, 
Kuhnert M, Arias‐Navarro C. How to measure, report and verify soil carbon change to realize the potential 
of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology. 2020 
Jan;26(1):219-41. 

This Article is brought to you for free and open access by the Rubenstein School of Environment and Natural 
Resources at UVM ScholarWorks. It has been accepted for inclusion in Rubenstein School of Environment and 
Natural Resources Faculty Publications by an authorized administrator of UVM ScholarWorks. For more 
information, please contact scholarworks@uvm.edu. 

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/rsfac
https://scholarworks.uvm.edu/rsfac
https://scholarworks.uvm.edu/rs
https://scholarworks.uvm.edu/rs
https://scholarworks.uvm.edu/rsfac?utm_source=scholarworks.uvm.edu%2Frsfac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=scholarworks.uvm.edu%2Frsfac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/188?utm_source=scholarworks.uvm.edu%2Frsfac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1031?utm_source=scholarworks.uvm.edu%2Frsfac%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@uvm.edu


Authors Authors 
Pete Smith, Jean Francois Soussana, Denis Angers, Louis Schipper, Claire Chenu, Daniel P. Rasse, Niels H. 
Batjes, Fenny van Egmond, Stephen McNeill, Matthias Kuhnert, Cristina Arias-Navarro, Jorgen E. Olesen, 
Ngonidzashe Chirinda, Dario Fornara, Eva Wollenberg, Jorge Álvaro-Fuentes, Alberto Sanz-Cobena, and 
Katja Klumpp 

This article is available at UVM ScholarWorks: https://scholarworks.uvm.edu/rsfac/79 

https://scholarworks.uvm.edu/rsfac/79


Glob Change Biol. 2020;26:219–241.	 		 	 | 	219wileyonlinelibrary.com/journal/gcb

 

Received:	13	July	2019  |  Accepted:	22	August	2019
DOI: 10.1111/gcb.14815  

I N V I T E D  R E S E A R C H  R E V I E W

How to measure, report and verify soil carbon change to realize 
the potential of soil carbon sequestration for atmospheric 
greenhouse gas removal

Pete Smith1  |   Jean‐Francois Soussana2 |   Denis Angers3 |   Louis Schipper4  |   

Claire Chenu5 |   Daniel P. Rasse6  |   Niels H. Batjes7 |   Fenny van Egmond7 |   

Stephen McNeill8 |   Matthias Kuhnert1 |   Cristina Arias‐Navarro2  |   Jorgen E. Olesen9 |   

Ngonidzashe Chirinda10 |   Dario Fornara11  |   Eva Wollenberg12 |   Jorge Álvaro‐Fuentes13 |    

Alberto Sanz‐Cobena14 |   Katja Klumpp15

1Institute	of	Biological	&	Environmental	Sciences,	University	of	Aberdeen,	Aberdeen,	UK
2INRA,	Paris	Cedex	07,	France
3Agriculture	and	Agri‐Food	Canada,	Quebec,	QC,	Canada
4Environmental	Research	Institute,	University	of	Waikato,	Hamilton,	New	Zealand
5INRA,	AgroParisTech.,	Thiverval‐Grignon,	France
6Norwegian	Institute	of	Bioeconomy	Research	(NIBIO),	Ås,	Norway
7ISRIC	–	World	Soil	Information,	Wageningen,	The	Netherlands
8Manaaki	Whenua	–	Landcare	Research,	Lincoln,	New	Zealand
9Department	of	Agroecology,	Aarhus	University,	Tjele,	Denmark
10International	Center	for	Tropical	Agriculture	(CIAT),	Cali,	Colombia
11Agri‐Food	and	Biosciences	Institute,	Belfast,	UK
12CGIAR	CCAFS	Programme,	University	of	Vermont	(UVM),	Burlington,	VT,	USA
13Soil	and	Water	Department,	Spanish	National	Research	Council	(CSIC),	Zaragoza,	Spain
14Research	Center	for	the	Management	of	Environmental	and	Agricultural	Risks	(CEIGRAM),	Universidad	Politécnica	de	Madrid,	Madrid,	Spain
15INRA,	VetAgro‐Sup,	UCA,	Clermont	Ferrand,	France

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2019	The	Authors.	Global Change Biology	published	by	John	Wiley	&	Sons	Ltd

Correspondence

Pete	Smith,	Institute	of	Biological	&	
Environmental	Sciences,	University	of	
Aberdeen,	23	St	Machar	Drive,	Aberdeen	
AB24	3UU,	UK.
Email:	pete.smith@abdn.ac.uk

Funding information

AGRISOST‐CM,	Grant/Award	Number:	
S2018/BAA‐4330;	Ministerio	de	Economia	
y	Competitividad,	Grant/Award	Number:	
AGL2017‐84529‐C3‐1‐R;	NUEVA;	
Global	Research	Alliance	on	Agricultural	
Greenhouse	Gases;	REMEDIA;	Danish	
Ministry	of	Climate,	Energy	and	Utilities,	
Grant/Award	Number:	SINKS2;	New	
Zealand	Agricultural	Greenhouse	Gas	
Research	Centre;	European	Union,	Grant/

Abstract

There	 is	 growing	 international	 interest	 in	 better	 managing	 soils	 to	 increase	 soil	  
organic	carbon	(SOC)	content	to	contribute	to	climate	change	mitigation,	to	enhance	
resilience	to	climate	change	and	to	underpin	food	security,	through	initiatives	such	as	
international	‘4p1000’	initiative	and	the	FAO's	Global	assessment	of	SOC	sequestra‐
tion	potential	 (GSOCseq)	programme.	Since	SOC	content	of	 soils	 cannot	be	easily	
measured,	a	key	barrier	to	implementing	programmes	to	increase	SOC	at	large	scale,	
is	the	need	for	credible	and	reliable	measurement/monitoring,	reporting	and	verifica‐
tion	(MRV)	platforms,	both	for	national	reporting	and	for	emissions	trading.	Without	
such	platforms,	investments	could	be	considered	risky.	In	this	paper,	we	review	meth‐
ods	and	challenges	of	measuring	SOC	change	directly	in	soils,	before	examining	some	
recent	 novel	 developments	 that	 show	 promise	 for	 quantifying	 SOC.	We	 describe	
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1  | INTRODUC TION

Soil	organic	carbon	(SOC)	represents	a	stock	of	around	1,500–2,400	
Gt	C	(~5500–8800	Gt	CO2)	in	the	top	metre	of	soils	globally	(Batjes,	
1996;	Sanderman,	Hengl,	&	Fiske,	2017).	The	lower	estimate	in	the	
range	 is	 approximately	 three	 times	 the	 stock	of	 carbon	 (C)	 in	veg‐
etation	and	 twice	 the	 stock	of	C	 in	 the	atmosphere	 (Smith,	2012).	
Small	changes	in	C	stocks	can	therefore	have	significant	impacts	on	
the	atmosphere	and	climate	change.	Since	the	onset	of	agriculture	
around	 8,000	 years	 ago	 (Ruddiman,	 2005),	 soils	 have	 lost	 around	
140–150	Gt	C	(~510–550	Gt	CO2;	Sanderman	et	al.,	2017)	through	
cultivation.	It	is	known	that	best	management	practices	can	restore	
some	at	least	some	of	this	lost	carbon	(Lal	et	al.,	2018),	so	it	has	been	
suggested	that	soil	C	sequestration	could	be	a	significant	greenhouse	
gas	 (GHG)	removal	strategy	 (also	called	negative	emission	technol‐
ogy,	or	carbon	dioxide	removal	option;	Smith,	2016).	Global	estimates	
of	soil	C	sequestration	potential	vary	considerably,	but	a	recent	sys‐
tematic	review	by	Fuss	et	al.	(2018)	suggests	an	annual	technical	po‐
tential	of	2–5	Gt	CO2/year.	Estimates	of	economic	potentials	are	at	
the	lower	end	of	this	range	(Smith,	2016;	Smith	et	al.,	2008).

An	incomplete	understanding	on	how	SOC	changes	are	influenced	
by	climate,	 land	use,	management	and	edaphic	 factors	 (Stockmann	
et	al.,	2013),	adds	complexity	 to	designing	appropriate	monitoring,	
reporting	 and	 verification	 (MRV)	 platforms.	 For	 instance,	 process‐
level	knowledge	on	how	these	variables	influence	changes	in	C	stocks	
and	fluxes	remains	incomplete	(Bispo	et	al.,	2017).	Furthermore,	the	
reversibility	of	C	sequestration,	when	practices	that	retain	C	are	not	
maintained,	or	due	to	climate	variability	or	climate	change,	increases	
uncertainty	in	the	time	frames	needed	to	monitor	SOC	enhancement	
activities	 (Rumpel	 et	 al.,	 2019).	 In	 addition,	 the	 large	 background	
stocks,	inherent	spatial	and	temporal	variability	and	slow	soil	C	gains	
make	 the	 detection	 of	 short‐term	 changes	 (e.g.	 3–5	 years)	 in	 SOC	
stocks	 and	 the	design	of	 reliable,	 cost‐effective	 and	 easy	 to	 apply	
MRV	platforms	challenging	(Post,	Izaurralde,	Mann,	&	Bliss,	1999).

Smith	et	al.	(2012)	described	a	framework,	building	on	available	
models,	data	sets	and	knowledge,	 to	quantify	 the	 impacts	of	 land	
use	and	management	change	on	soil	carbon.	That	paper	concluded	

by	presenting	a	future	vision	for	a	global	framework	to	assess	soil	
carbon	 change,	 based	 on	 a	 combination	 of	mathematical	models,	
spatial	data	to	drive	the	models,	short‐	and	long‐term	data	to	evalu‐
ate	the	models,	and	a	network	of	benchmarking	sites	to	verify	esti‐
mated	changes.	Here,	we	review	the	new	knowledge	since	then,	and	
further	develop	this	vision	in	the	light	of	the	need	to	provide	credible	
and	 robust	MRV	capabilities	 to	 support	 the	growing	 International	
and	National	 initiatives	to	 increase	SOC,	such	as	the	 International	
‘4p1000’	initiative	(Chabbi	et	al.,	2017;	Rumpel	et	al.,	2018,	2019).

We	focus	on	methods	to	measure and/or estimate	SOC	change,	
but	these	measurement/estimation	methods	also	form	the	basis	of	
how	changes	in	SOC	can	be	monitored and reported	at	plot	to	national	
(and	even	global)	scales,	and	how	reported	changes	could	be	verified. 

We	begin	by	 reviewing	 the	methods	 and	challenges	of	measuring	
SOC	change	directly	in	soils	(Section	2),	before	examining	some	re‐
cent	developments	that	show	promise	for	quantifying	SOC	stocks	
(and	 therefore	 change)	 using	 flux	measurements,	 non‐destructive	
field‐based	spectroscopic	methods	and	the	possibility	 in	 future	of	
estimating	SOC	change	through	earth	observation/remote	sensing	
(Section	3).	We	then	review	how	repeat	soil	surveys	are	used	to	esti‐
mate	territorial	changes	in	SOC	over	time	(Section	4),	and	how	long‐
term	 experiments	 and	 space‐for‐time	 substitution	 sites	 can	 serve	
as	 sources	 of	 knowledge	 and	 can	 be	 used	 to	 testing	models,	 and	
as	 potential	 benchmark	 sites	 in	 global	 platforms	 to	 estimate	 SOC	
change	(Section	5).	Section	6	summarizes	recent	reviews	on	models	
available	for	simulating	and	predicting	change	in	SOC,	after	which	
Section	7	describes	MRV	platforms	for	SOC	change	already	in	use	
in	various	countries/regions.	We	finish	the	review	(Section	8)	by	de‐
scribing	a	new	vision	for	a	global	framework	for	MRV	of	SOC	change	
to	support	national	and	international	initiatives.

2  | DIREC T ME A SUREMENT OF SOC 
STOCK CHANGES

Accurate	estimates	of	SOC	stocks	rely	strongly	on	baseline	SOC	val‐
ues,	which	are	determined	by	physical	sampling	and	soil	C	content	

how	 repeat	 soil	 surveys	 are	used	 to	estimate	 changes	 in	SOC	over	 time,	 and	how	
long‐term	experiments	and	space‐for‐time	substitution	sites	can	serve	as	sources	of	
knowledge	and	can	be	used	to	test	models,	and	as	potential	benchmark	sites	in	global	
frameworks	to	estimate	SOC	change.	We	briefly	consider	models	that	can	be	used	to	
simulate	and	project	change	in	SOC	and	examine	the	MRV	platforms	for	SOC	change	
already	in	use	in	various	countries/regions.	In	the	final	section,	we	bring	together	the	
various	components	described	 in	 this	 review,	 to	describe	a	new	vision	 for	a	global	
framework	for	MRV	of	SOC	change,	to	support	national	and	international	initiatives	
seeking	to	effect	change	in	the	way	we	manage	our	soils.

K E Y W O R D S

measurement,	monitoring,	MRV,	reporting,	soil	organic	carbon,	soil	organic	matter,	verification
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measurements.	This	approach	traditionally	 involves	the	quantifica‐
tion	of	(a)	fine	earth	(<2	mm)	and	coarse	mineral	(>2	mm)	fractions	of	
the	soil;	(b)	organic	carbon	(OC)	concentration	(%)	of	the	fine	earth	
fraction;	and	(c)	soil	bulk	density	or	fine	earth	mass	(FAO,	2019a).	In	
some	instances,	such	as	grasslands	or	forest	soils,	it	may	be	of	inter‐
est	to	quantify	and	account	for	the	coarse	fraction	of	belowground	
OC	(FAO,	2019a).	The	challenge	remains	to	accurately	estimate	the	
rock	content	of	sampled	soils,	which	can	significantly	affect	soil	bulk	
density	(Page‐Dumroese,	Jurgensen,	Brown,	&	Mroz,	1999;	Poeplau,	
Vos,	 &	 Don,	 2017;	 Throop,	 Archer,	 Monger,	 &	 Waltman,	 2012).	
Changes	 in	management	 that	 influence	carbon	content	also	affect	
the	bulk	density	of	the	soil	(Haynes	&	Naidu,	1998),	and	thereby	the	
amount	of	soil	 that	 is	sampled	within	a	given	sampling	depth.	 It	 is	
therefore	recommended	to	use	an	‘equivalent	mass	basis’	approach	
when	comparing	SOC	stocks	across	land	uses	and	different	manage‐
ment	regimes	 (Ellert	&	Bettany,	1995;	Upson,	Burgess,	&	Morison,	
2016;	Wendt	&	Hauser,	2013).

Direct	measurements	also	rely	on	appropriate	study	designs	and	
sampling	protocols	to	deal	with	high	spatial	variability	of	SOC	stocks	
(Minasny	et	al.,	2017).	To	reduce	potential	sources	of	error	in	SOC	
stock	estimation	and	minimize	 the	minimum	detectable	difference	
(i.e.	the	smallest	difference	in	SOC	stock	that	can	be	detected	as	sta‐
tistically	significant	between	two	sampling	periods;	FAO,	2019a),	a	
large	number	of	soil	samples	is	often	required	(Garten	&	Wullschleger,	
1999;	Vanguelova	et	al.,	2016).	Sufficient	sampling	depth	is	a	crucial	
factor	for	properly	evaluating	changes	 in	soil	C	content	 (IPCC	rec‐
ommends	a	minimum	depth	of	30	cm).	Several	long‐term	agronomy	
experiments	suffer	from	an	increase	in	ploughing	depth	during	more	
recent	decades,	 as	 agricultural	machinery	became	more	powerful.	
Insufficient	 information	 on	 historical	 sampling	 depth	 can	 also	 add	
uncertainty	to	the	results.

Several	 methods	 for	 increasing	 soil	 C	 content	 require	 deeper	
sampling	for	confirming	the	expected	effect.	The	positive	effect	of	
no‐till	on	soil	C	content	measured	in	the	surface	soil	may	not	be	ap‐
parent	when	measuring	to	60	cm	depth	 (Angers	&	Eriksen‐Hamel,	
2008;	 Blanco‐Canqui	 &	 Lal,	 2008).	 Crops	 with	 deep	 root	 pheno‐
types	are	considered	a	promising	method	to	increase	C	sequestra‐
tion	in	soils	(Paustian	et	al.,	2016),	though	demonstrating	their	effect	
requires	deep	soil	sampling.	Deeper	soil	sampling	(100	cm)	is	recom‐
mended	(FAO,	2019a),	but	often	requires	specific	machinery	and	is	
costly.

Costs	 associated	 with	 collecting,	 processing	 and	 storing	 soil	
samples	and	C	content	measurements	using,	for	example,	common	
dry	combustion	methods	(Nelson	&	Sommers,	1996)	can	make	large‐
scale	direct	measurements	of	soil	SOC	stocks	prohibitively	expen‐
sive.	 It	was	estimated	 that	 to	detect	meaningful	 changes	 in	 soil	C	
stocks	 across	 forest	 ecosystems	 in	Finland	 (i.e.	 3,000	plots	 at	 the	
national	scale)	might	cost	4	million	Euro	for	one	sampling	campaign	
(e.g.	baseline	measurement	from	1	year)	and	then	again	for	the	fol‐
lowing	 sampling	 interval	 (e.g.	 10	 years	 later;	 Mäkipää,	 Häkkinen,	
Muukkonen,	&	Peltoniemi,	2008).	Thus,	 there	 is	 the	need	 to	eval‐
uate	 these	costs	against	 the	value	of	 soil	C	 sequestered	 (Mäkipää	
et	al.,	2008;	Smith,	2004b)	and	search	for	trade‐offs	between	costs	

involved	and	alternative	SOC	estimation	methods	 including	differ‐
ent	modelling	approaches.

A	 combination	 of	 direct	 measurements	 (at	 the	 plot	 scale)	 and	
modelling	 (at	 larger	spatial	scales)	can	greatly	help	defining	the	ef‐
ficacy	of	different	 land	management	practices	 in	enhancing	 soil	C	
sequestration	and	has	been	used	for	estimating	soil	C	change	in	na‐
tional	GHG	inventory	platforms	(e.g.	VandenBygaart	et	al.,	2008).	It	
is,	therefore,	crucial	to	evaluate	the	cost‐effectiveness	of	measuring	
and	sequestering	C	across	different	 land	uses	and	socio‐economic	
conditions	(Alexander,	Paustian,	Smith,	&	Moran,	2015).

3  | NOVEL METHODS OF ME A SURING 
SOC CHANGE

3.1 | Inferring SOC stock changes from flux 
measurements

An	alternative	to	repeated	measurements	is	to	draw	up	a	full	carbon	
budget.	This	indirect	approach	accounts	for	the	initial	uptake	of	car‐
bon	 through	photosynthesis	 (gross	primary	production),	 its	 subse‐
quent	partial	losses	through	respiration	(soil,	plant	and	litter)	to	give	
net	 ecosystem	 exchange	 (NEE)	 or	 net	 ecosystem	 production	 and	
further	C	inputs	(organic	fertilization)	and	outputs	(harvest)	to	and	
from	the	system	(see	Smith,	Lanigan,	et	al.,	2010;	Soussana,	Tallec,	&	
Blanfort,	2010).	The	measurements	of	the	net	balance	of	C	fluxes	ex‐
changed	(i.e.	estimating	NEE)	can	be	achieved	by	chamber	measure‐
ments	or	by	the	eddy	covariance	(EC)	method	(e.g.	Baldocchi,	2003).	
During	recent	decades,	estimates	of	C	sequestration	from	flux	meas‐
urements	have	been	reported	to	be	comparatively	uncertain	due	to	
(a)	necessary	assumptions	associated	with	data	processing	(e.g.	foot‐
print,	spectral	corrections,	i.e.	Aubinet,	Vesala,	&	Papale,	2012);	the	
fact	 that	 (b)	 this	method	 is	 a	 point‐in‐space	measurement;	 and	 (c)	
net	changes	in	soil	C	pools	are	relatively	small	compared	to	C	stored	
in	 biomass	 and	 litter	when	measured	 over	 short	 time	 periods	 (i.e.	
<5	years).

Despite	this,	 recent	developments	 in	 instrumentation	 (analyser	
performance	and	set‐ups,	e.g.	Rebmann	et	al.,	2018),	data	acquisi‐
tion	and	processing	(i.e.	data	loggers,	software,	QA/QC	checks)	have	
greatly	improved	the	reliability	of	estimates	(e.g.	Fratini	&	Mauder,	
2014).	Furthermore,	harmonized	networks	of	long‐term	observation	
sites,	created	to	provide	access	to	standardized	data	and	to	quan‐
tify	the	effectiveness	of	carbon	sequestration	and/or	GHG	emission	
at	 European	 (Integrated	Carbon	Observation	 System,	 ICOS;	 Franz	 
et	al.,	2018)	and	global	scale	(FLUXNET	global	network,	e.g.	Baldocchi,	 
Housen,	&	Reichstein,	2018;	Figure	1),	have	greatly	reduced	uncer‐
tainties	in	flux	and	supplementary	measurements.	Moreover,	ongo‐
ing	analyses	on	peculiarities	of	flux	measurement	likely	to	increase	
uncertainties	in	flux	measurements,	such	as	integration	of	(moving)	
point	 sources,	 that	 is,	 grazing	 animals	 (Felber,	 Münger,	 Neftel,	 &	
Ammann,	2015;	Gourlez	de	la	Motte	et	al.,	2019),	ditches	(Nugent,	
Strachan,	 Strack,	 Roulet,	 &	 Rochefort,	 2018)	 and	 fallow	 periods,	
have	been	studied	thoroughly	and	have	allowed	routine	data	analy‐
ses	to	be	updated	(e.g.	Sabbatini	et	al.,	2018).
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Concerning	 the	 comparison	 between	 C	 sequestration	 deter‐
mined	 via	 the	 EC	 technique	 (i.e.	 full	 C	 balance)	 and	 soil	 C	 stock	
changes,	 some	 studies	 have	 shown	 poor	 agreement	 (Jones	 et	 al.,	
2017),	but	a	number	of	studies	have	shown	comparable	estimates,	
when	applied	for	time	frames	>10	year	and	with	soil	data	including	
at	least	both	top	and	medium	soil	depths	(i.e.	0–60	cm;	e.g.	grassland: 

Leifeld,	Ammann,	Neftel,	&	Fuhrer,	2011;	Skinner	&	Dell,	2014;	Stahl	
et	al.,	2017;	cropland:	Emmel	et	al.,	2018;	Hoffmann	et	al.,	2017;	for‐

est:	Ferster,	Trofymow,	Coops,	Chen,	&	Black,	2015).	Coupling	of	EC	
with	soil	C	stock	change	studies	has	become	a	favoured	approach	
to	understand	both	short‐	and	long‐term	effects	of	principal	drivers	
(e.g.	management,	climate)	on	ecosystem	functioning	(i.e.	Eugster	&	
Merbold,	2015),	 in natura	measurement	and	modelling	approaches	
(e.g.	Beer	et	al.,	2010;	Besnard	et	al.,	2018;	Williams	et	al.,	2009).

3.2 | Spectral methods for measuring SOC stocks

New	spectral	methods	for	measuring	SOC	concentration	and	stocks	
are	rapidly	becoming	available	for	direct	point	measurements	in	field	
and	in	the	lab,	but	also	for	measurement	of	patterns	at	larger	scales	
across	 landscapes	and	 regions.	Each	comes	with	a	 specific	associ‐
ated	accuracy	and	cost	(Bellon‐Maurel	&	McBratney,	2011;	England	
&	Viscarra	Rossel,	2018;	Nayak	et	al.,	2019).	A	smart	combination	
of	these	and	more	traditional	methods	can	either	bring	down	costs	
(Nocita	 et	 al.,	 2015),	 provide	 more	 exhaustive	 spatial	 patterns	 of	
SOC	 stocks	 (Aitkenhead,	 2017;	 Rosero‐Vlasova,	 Vlassova,	 Pérez‐
Cabello,	Montorio,	&	Nadal‐Romero,	2019)	or	provide	indications	for	
change	in	stocks	(Li	et	al.,	2018;	Zhao,	Ye,	Li,	Yu,	&	Mcclellan,	2016).

The	methods	for	measuring	SOC	concentration	mainly	rely	on	the	
reflectance	of	light	on	soil	in	the	infrared	region.	The	organic	bonds	
and	minerals	 in	 the	soil	absorb	 light	at	specific	wavelengths,	 result‐
ing	is	a	soil	content‐specific	absorbance	or	reflectance	spectrum.	This	
spectrum	is	measured	with	high	level	of	spectral	detail	(hyperspectral,	
often	in	the	lab)	or	limited	level	of	detail	in	wider	bands	(multispectral,	
often	 from	 satellites	 or	 cheaper	 field	 instruments).	Using	 a	 statisti‐
cal	model	based	on	a	spectral	library,	the	soil	carbon	percentage	can	
be	predicted	from	spectral	measurements	of	the	unknown	samples.	

The	spectral	library	is	derived	from	samples	on	which	soil	properties	
have	been	determined	by	traditional	laboratory	methods,	such	as	dry	
combustion,	 alongside	 reflectance	 measurements.	 Relevant	 wave‐
lengths	for	soil	and	SOC	are	mainly	in	the	mid‐	(4,000–600	cm−1)	and	
the	near‐	or	short‐wave	infrared	region	(2,000–2,500	nm).	Other	key	
soil	 properties	 can	 also	be	 simultaneously	determined	 if	 present	 in	
the	spectral	 libraries,	 including	 fractions	of	OC	and	vulnerability	of	
soil	carbon	to	loss	(Baldock,	Beare,	Curtin,	&	Hawke,	2018;	Baldock,	
Hawke,	Sanderman,	&	Macdonald,	2013),	soil	texture,	pH	and	others	
(Stenberg,	Viscarra	Rossel,	Mouazen,	&	Wetterlind,	2010),	which	can	
be	used	to	inform	modelling	approaches.	Partial	least	squares	regres‐
sion	(PLSR)	is	a	statistical	method	that	is	currently	most	widely	used	
to	predict	soil	properties	 from	spectra.	These	machine	 learning	ap‐
proaches	 (e.g.	Cubist,	Random	Forests,	Support	Vector	 [regression]	
Machines	and	others)	are	rapidly	developing,	and	new	techniques	are	
becoming	available,	currently	referred	to	as	deep	learning	(Padarian,	
Minasny,	&	Mcbratney,	 2019)	 and	memory	 based	 learning	 (Dangal,	
Sanderman,	 Wills,	 &	 Ramirez‐Lopez,	 2019;	 Ramirez‐Lopez	 et	 al.,	
2013).	These	techniques,	such	as	locally	weighted	PLSR,	use	local	cal‐
ibrations	based	on	spectrally	similar	subsets	of	a	spectral	library.	This	
will	likely	lead	to	considerable	improvement,	reducing	the	prediction	
errors.	This	does	not	 resolve	 the	 inherent	 laboratory	measurement	
uncertainties	associated	with	both	reference	and	spectral	data.

Standardization	of	reference	laboratory	methods,	spectral	mea‐
surements	and	soil	data	exchange	to	some	extent	negates	these	is‐
sues,	and	they	are	addressed	in	several	international	co‐operations,	
one	of	which	 is	Pillar	5	of	the	Global	Soil	Partnership	 (GSP,	2017).	
If	standardization	and	calibration	transfer	challenges	can	be	solved,	
combining	spectral	libraries	can	provide	a	vast	data	resource	for	not	
only	local	but	also	more	regional	and	global	SOC	analyses	(England	&	
Viscarra	Rossel,	2018;	Viscarra	Rossel,	Behrens,	et	al.,	2016;	Viscarra	
Rossel,	Brus,	Lobsey,	Shi,	&	Mclachlan,	2016).

Laboratory	costs	could	be	reduced	by	using	Fourier	transform	mid‐
infrared	(MIR)	diffuse	reflectance	spectroscopy	for	estimation	of	total	
carbon,	OC,	clay	content	and	sand	fraction	(Viscarra	Rossel,	Walvoort,	
Mcbratney,	 Janik,	 &	 Skjemstad,	 2006;	 Wijewardane,	 Ge,	 Wills,	 &	
Libohova,	 2018).	 Several	 commercial	 laboratories	 use	 near‐infrared	

F I G U R E  1  Map	of	flux	towers	and	
available	time	series	worldwide	
Source:	Fluxnet,	2019
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(NIR)	for	this	purpose	but	once	a	sufficient	spectral	library	or	calibration	
set	is	compiled,	MIR	outperforms	NIR	(Reeves,	2010;	Viscarra	Rossel	
et	al.,	2006;	Vohland,	Ludwig,	Thiele‐Bruhn,	&	Ludwig,	2014).	In	such	
studies	 or	 applications,	 bigger	 libraries	 are	 spiked	or	 subselected	 to	
build	local	(spectral	or	geographical)	prediction	models	using	machine	
learning	techniques	(Janik,	Skjemstad,	Shepherd,	&	Spouncer,	2007).	
Sample	preparation	is	very	simple	(dry,	sieve	to	<2	mm,	fine	grind	(Soil	
Survey	Staff,	2014)	and	after	a	library	is	built,	the	measurements	are	
fast	and	inexpensive,	and	can	assess	all	of	the	listed	properties	at	the	
same	time	(Nocita	et	al.,	2015).

These	spectral	libraries	can	also	be	used	to	calibrate	field	spec‐
trometers,	although	accuracy	will	often	be	lower,	mostly	due	to	mois‐
ture	and	surface	roughness	of	 the	soil.	Higher	cost	 in	situ	systems	
are	available	for	both	NIR	and	MIR	(Dhawale	et	al.,	2015;	Hutengs,	
Ludwig,	Jung,	Eisele,	&	Vohland,	2018).	Alternatives	are	cheap	in‐field	
NIR	spectrometers	for	point	measurements	(Tang,	Jones,	&	Minasny,	
2019)	which	tend	to	have	 low(er)	accuracies	due	to	hardware	con‐
straints	and	which	may	have	bias.	On‐the‐go	systems	with	2–5	wave‐
lengths	are	on	the	market	as	well	as	penetrometers	with	visible	and	
near‐infrared	 reflectance	 spectroscopy	 (VNIR),	 which	 also	 provide	
a	measure	 for	penetration	resistance	or	compacted	soil	 (Ackerson,	
Morgan,	 &	 Ge,	 2017;	 Al‐Asadi	 &	Mouazen,	 2018;	 Poggio,	 Brown,	
&	 Bricklemyer,	 2017;	 Wetterlind,	 Piikki,	 Stenberg,	 &	 Söderström,	
2015).	A	 final	possibility	 is	a	core	sampler	which	measures	 the	ex‐
tracted	soil	core	in	field	with	VNIR	and	active	gamma	radiation	for	
(total)	bulk	density	(Lobsey	&	Viscarra	Rossel,	2016).

An	important	property	for	calculating	SOC	stocks	is	soil	bulk	den‐
sity	which	is	difficult	to	measure	accurately	in	field	(Bellon‐Maurel	&	
McBratney,	2011).	A	method	used	 in	a	number	of	set‐ups	 is	gamma	
attenuation.	This	can	be	measured	on	the	extracted	soil	core	(England	
&	Viscarra	Rossel,	2018;	Lobsey	&	Viscarra	Rossel,	2016)	or	directly	
in	the	soil	(Jacobs,	Eelkema,	Limburg,	&	Winterwerp,	2009).	With	this	
technique,	the	attenuation	by	matter	of	gamma	radiation	originating	
from	a	small	radioactive	source	is	measured	over	a	known	volume	be‐
tween	source	and	detector.	The	matter	 in	this	case	consists	of	both	
soil	and	moisture.	The	volume	is	simulated	using	Monte	Carlo	simula‐
tions.	This	provides	a	measure	of	dry	bulk	density	after	correction	for	
moisture	content	as	measured	for	instance	with	a	time	domain	reflec‐
tometry	(Jacobs	et	al.,	2009)	or	VNIR	(Lobsey	&	Viscarra	Rossel,	2016).

The	benefit	of	these	techniques	is	the	possibility	to	acquire	more	
samples	and/or	more	in‐field	measurements,	allowing	a	user	to	address	
the	potential	of	carbon	sequestration	of	the	soil	adequately.	Some	of	
these	techniques	are	most	suitable	for	describing	the	spatial	distribu‐
tion	of	soil	carbon,	while	others	are	suitable	for	quantitative	estimates	
or	monitoring	(in	time,	allowing	the	impacts	of	management	on	soil	car‐
bon	to	be	detected).	Choices	can	be	made	based	on	cost	and	required	
accuracy	of	the	purpose	(value	of	information	or	decision	analysis).

At	 larger	scales,	remote	sensing	offers	added	possibilities.	This	
can	either	be	by	relating	UAV,	airplane	or	satellite	data	directly	to	soil	
properties,	or	by	inferring	changes	in	SOC	by	vegetation	changes,	or	
by	using	remote	imagery	as	a	covariate	in	digital	soil	mapping	of	SOC.	
Direct	interpretation	can	be	performed	on	hyperspectral	imagery	in	
combination	with	spectral	libraries	for	direct	quantification	of	bare	

soil	patterns	 (top	1	cm;	Gomez,	Lagacherie,	&	Bacha,	2012;	 Jaber,	
Lant,	&	Al‐Qinna,	2011),	or	by	using	multivariate	imagery	for	map‐
ping	bare	soil	patterns	as	indication	of	SOC	or	soil	class	differences	
either	 using	 raw	 or	 enhanced	 imagery	 such	 as	 by	 multi‐temporal	 
composites	(Gallo	et	al.,	2018;	Rogge	et	al.,	2018).

Changes	 in	 vegetation	patterns	 visible	 in	 remote	 imagery	 can	be	
used	to	detect	(changes	in)	land	use	and	thus	infer	soil	properties	and	
SOC	change.	Analysis	of	land‐use	change,	net	primary	productivity	and	
SOC	stocks	are	instrumental	for	identifying	hotspots	of	SOC	sequestra‐
tion	potential	(Caspari,	Lynden,	&	Bai,	2015;	van	der	Esch	et	al.,	2017).

The	 third	option	 is	 to	use	satellite	 imagery	products	as	covari‐
ates	in	digital	soil	mapping,	where	the	relation	between	soil	proper‐
ties	and	satellite	information	is	used	to	predict	SOC	maps	at	various	
depths	 using	 point	 observations	 and	 satellite	 imagery	 products	
(Hengl	et	al.,	2017;	McBratney,	Mendonça	Santos,	&	Minasny,	2003;	
Minasny	&	McBratney,	2016).

Remote	 sensing	 offers	 a	 range	 of	 possibilities,	 detail	 and	 spa‐
tial	scales	that	are	not	feasible	with	point	measurements	alone	(Ge,	
Thomasson,	&	Sui,	2011;	Mulder,	Bruin,	Schaepman,	&	Mayr,	2011).	
That	said,	a	combination	of	remote	and	in	situ	or	point	data	will	re‐
main	 necessary	 to	 derive	 high	 resolution	 and	 accurate	 SOC	maps.	
Apart	from	the	limited	penetration	depth	(top	1	cm	while	a	soil	profile	
would	be	desirable),	this	is	also	due	to	the	fact	that	in	many	regions,	
bare	soil	is	never	visible,	or	areas	are	too	often	covered	in	clouds.	At	
the	same	time,	the	high	temporal	frequency	and	high	spatial	resolu‐
tion	of	remote	imagery	offer	an	unprecedented	possibility	to	study	
and	monitor	space–time	dynamics	of	SOC	change	if	used	in	combi‐
nation	with	(long‐term)	monitoring	stations	(Chabrillat	et	al.,	2019).

4  | REPE ATED SOIL SURVE YS—NATIONAL/
SUB NATIONAL

Repeat	soil	sampling	programmes	have	been	conducted	in	a	number	of	
countries,	such	as	England	and	Wales	(Bellamy,	Loveland,	Bradley,	Lark,	
&	Kirk,	2005;	Kirkby	et	al.,	2005),	Denmark	(Heidmann,	Christensen,	&	
Olesen,	2002;	Taghizadeh‐Toosi,	Olesen,	et	al.,	2014),	Belgium	(Sleutel,	
Neve,	&	Hofman,	2003)	and	New	Zealand	(Schipper	et	al.,	2014—see	
below).	These	rely	on	resampling	of	previously	sampled	locations	after	
varying	periods.	Advantages	are	that	repeat	sampling	schemes	measure	
actual	soil	carbon	contents	over	large	spatial	scales	and	over	long	pe‐
riods	(Bellamy	et	al.,	2005),	but	the	main	disadvantage	is	that	land‐use	
change	and	 land	management	between	 sampling	periods	 are	mostly	
unknown,	making	attribution	of	any	observed	changes	in	soil	carbon	to	
specific	drivers	(such	as	management	or	climate	change)	very	difficult	
(Smith	et	al.,	2007).	In	some	cases,	records	of	land	use	and	management	
have	been	available	allowing	the	effect	of	management	changes	to	be	
assessed	for	better	verification	of	modelling	approaches	to	quantifying	
SOC	stock	changes	(Taghizadeh‐Toosi,	Olesen,	et	al.,	2014).

Resampling	 of	 soil	 survey	 sites	 originally	 sampled	 in	 the	
1970s–1990s	in	New	Zealand	has	played	an	important	role	in	identi‐
fying	changes	in	soil	carbon	stocks	in	grazed	pastures	(Schipper	et	al.,	
2014).	The	difficulty	with	these	historical	resampling	efforts	was	that	
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sites	were	not	chosen	with	national	survey	purposes	in	mind,	so	their	
representativeness	was	questionable.	Additionally,	sampling	efforts	
were	not	carried	out	uniformly	over	space	and	time,	so	resampling	
was	potentially	confounded	by	the	effects	of	soil	type,	climate	and	
other	factors.	However,	these	data	have	been	central	to	development	
and	subsequent	implementation	of	more	robust	sampling	designs	of	
grazed	 lands.	Alongside,	resampling	of	site	 impacts	of	management	
practices	on	carbon	stock	has	been	explored	through	the	sampling	
of	adjacent	long‐term	management	practices	(e.g.	Barnett,	Schipper,	
Taylor,	Balks,	&	Mudge,	2014;	Mudge	et	al.,	2017).

In	the	case	of	Europe,	differences	exist	in	the	availability	of	soil	
surveys	 among	 countries.	 As	 highlighted	 in	 the	 final	 report	 of	 the	
ENVASSO	 project,	 soil	 monitoring	 networks	 are	 much	 denser	 in	
northern	and	eastern	European	countries	compared	with	countries	
located	 in	 the	 southern	 part	 of	 the	 continent	 (Kibblewhite	 et	 al.,	
2008).	 For	 example,	 countries	 such	 as	 France,	 Sweden	 or	 Poland	
maintain	 systematic	 soil	 monitoring	 systems	 at	 national	 level	 with	
different	 density	 of	 monitoring	 sites	 and	 sampling	 frequencies.	
In	 the	 case	 of	 France,	 different	 soil	monitoring	 system	 levels	 exist	
which	operates	to	either	forest	and	non‐forest	areas.	The	Soil	Quality	
Monitoring	 Network	 was	 created	 20	 years	 ago	 for	 non‐forested	
areas,	covering	the	main	land	uses	in	France	in	a	16	×	16	km	grid	(King,	
Stengel,	 Jamagne,	 Le	Bas,	&	Arrouays,	 2005).	 Similarly,	 in	 Sweden,	
soil	monitoring	is	performed	at	two	geographical	levels	(national	and	
regional)	 and	with	 different	 levels	 of	 application:	 forest	 land,	 inte‐
grated	monitoring	(areas	with	minor	impact	of	forest	management),	
intensive	monitoring	plots	(223	forest	plots)	and	arable	land	monitor‐
ing	(Olsson,	2005).	Poland	has	also	different	soil	monitoring	systems	
for	forest	and	cropland	soils.	For	the	case	of	croplands,	monitoring	
soils	started	 in	1994	and	since	then	soils	have	been	sampled	every	
8	years	with	different	soils'	properties	measured	(Białousz,	Marcinek,	
Stuczyński,	 &	 Turski,	 2005).	 In	 Denmark,	 soils	 are	 sampled	 every	
8–10	years	to	1	m	depth	on	a	regular	7	km	grid	covering	both	agricul‐
tural	and	forest	soils	(Taghizadeh‐Toosi,	Olesen,	et	al.,	2014).

In	 contrast,	 EU	 Mediterranean	 countries	 such	 as	 Italy,	 Spain	 or	
Greece	 are	 examples	of	European	 regions	where	 systematic	 national	
soil	monitoring	 systems	 are	 underdeveloped	 or	 non‐existent,	 despite	
the	risks	of	SOC	losses,	and	soil	erosion	events	resulting	from	a	com‐
bination	of	crop	management	and	regional	 impacts	of	climate	change	
(Trnka	et	al.,	2011).	For	example,	in	the	case	of	Italy,	there	is	no	moni‐
toring	system,	but	there	is	willingness	to	develop	it.	In	Spain,	over	the	
last	 20	 years,	 two	 independent	 soil	 national	 inventories	 have	 been	
performed;	one	to	assess	soil	erosion	and	the	other	to	asses	soil	heavy	
metal	pollution	(Ibáñez,	Sánchez	Díaz,	de	Alba,	López	Arias,	&	Bioxadera,	
2005).	However,	the	inventories	have	not	been	linked	and	there	is	no	
firm	schedule	for	future	resampling	yet	in	place.

5  | LONG ‐TERM E XPERIMENTS OF SOC 
CHANGE

Since	 changes	 in	 bulk	 soil	 carbon	 occur	 slowly	 (Smith,	 2004a),	
long‐term	measurements	are	required	to	show	the	relatively	small	

change	 against	 the	 large	 background	 carbon	 stock.	 To	 this	 end,	
long‐term	field	experiments	exist	in	various	parts	of	the	world,	with	
some	dating	from	the	19th	century.	Although	many	of	these	experi‐
ments	were	originally	set	up	to	examine	the	effects	of	management	
(often	fertilization)	on	crop	or	grass	yield,	many	have	a	history	of	
measurements	 of	 soil	 carbon	 and	 nitrogen	 change.	 Over	 recent	
decades,	 results	 from	 these	 field	 experiments	 have	 been	 central	
to	testing	the	accuracy	of	models	of	turnover	of	SOC.	As	noted	by	
Smith	et	al.	 (2012),	the	 long‐term	experiments	 in	various	parts	of	
the	world	existed	largely	in	isolation	of	each	other,	but	in	the	1990s,	
there	were	attempts	to	bring	the	various	experiments	together	into	
shared	networks	(Barnett,	Payne,	&	Steiner,	1995),	with	two	such	
networks	 focussing	 on	 soil	 C;	 the	 Soil	 Organic	 Matter	 Network	
(SOMNET)	 and	EuroSOMNET	 (the	more	 detailed	European	 com‐
ponent	 of	 the	 larger	 global	 network)	were	 two	 attempts	 to	 cou‐
ple	 SOC	 models	 with	 observations	 from	 long‐term	 experiments	
(Smith	et	al.,	1997),	with	the	aims	or	both	testing	models	and	the	
sharing,	 comparing	 and	use	of	 data	 from	across	 the	 experiments	
to	estimate	carbon	sequestration	potential	(Smith,	Powlson,	Smith,	
Falloon,	&	Coleman,	2000).	SOMNET	later	evolved	into	an	online,	
real‐time	 inventory	 project	 with	 a	 website	 known	 as	 Long‐Term	
Soil‐Ecosystems	Experiments,	which	now	has	collected	metadata	
on	well	 over	200	 long‐term	soil	 experiments	Richter,	Hofmockel,	
Callaham,	Powlson,	and	Smith	(2007),	with	the	metadata	currently	
hosted	 by	 the	 International	 Soil	 Carbon	 Network	 (iscn.fluxd	ata.
org/partn	er‐netwo	rks/long‐term‐soil‐exper	iment	s/).	 Smith	 et	 al.	
(2012)	showed	the	locations	and	purpose	of	these	long‐term	exper‐
iments.	Most	(>80%)	of	the	world's	long‐term	field	studies	address	
agricultural	research	questions,	and	most	of	the	field	studies	test	
agricultural	questions	in	the	temperate	zone.	Nonagricultural	sites	
and	experiments	in	the	bioclimatic	zones	other	than	the	temperate	
region	are	under‐represented	(Smith	et	al.,	2012).

Long‐term	field	studies	have	proved	extremely	valuable	for	un‐
derstanding	 the	 long‐term	 dynamics	 of	 SOC	 and	wider	 issues	 of	
soil	sustainability	(Richter	et	al.,	2007).	In	terms	of	MRV,	the	long‐
term	experiments	serve	as	 (a)	a	 long‐term	record	of	change;	 (b)	a	
test	bed	for	SOC	models;	(c)	locations	where	new	practices	could	
be	tested	and	measured;	and	(d)	sites	where	shorter	term	(e.g.	flux	
measurements)	could	be	taken	to	better	understand	shorter	term	
processes.	 Such	 experiments	 could	 therefore	 form	 vital	 compo‐
nents	of	national	and	international	MRV	platforms	for	SOC	change.	
Existing	 long‐term	 monitoring	 sites	 are	 extremely	 valuable	 but	
do	not	exist	 in	every	global	 region,	making	a	compelling	case	 for	
starting	 new	 long‐term	 experimental/	 monitoring	 sites	 in	 under‐
represented	regions.

6  | MODEL S OF SOC CHANGE

The	soil	organic	matter	 (SOM)	dynamics	can	be	described	by	dif‐
ferent	mathematical	formulations	(Parton,	Grosso,	Plante,	Adair,	&	
Luz,	2015),	as	presented	in	Table	1,	and	different	model	approaches	
(Campbell	 &	 Paustian,	 2015;	 Manzoni	 &	 Porporato,	 2009).	 Most	

http://iscn.fluxdata.org/partner-networks/long-term-soil-experiments/
http://iscn.fluxdata.org/partner-networks/long-term-soil-experiments/
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common	 SOM	 models	 are	 compartment	 models,	 which	 use	 be‐
tween	 two	and	 five	 carbon	pools	 (Falloon	&	Smith,	 2000).	While	
the	stability	and	complexity	of	the	organic	compounds	is	not	rep‐
resented	explicitly	in	models,	it	is	represented	by	varying	turnover	
and	 residence	 times	 of	OC	 in	 different	 carbon	 pools	 (Stockmann	
et	al.,	2013).	The	residence	times	are	controlled	by	the	decay	rate	
of	the	carbon	in	the	different	pools,	which	is	usually	described	by	
the	 first‐order	 kinetics	 (e.g.	 Falloon	&	Smith,	 2000;	Parton	 et	 al.,	
2015;	Paustian,	1994).	A	wide	range	of	different	models	show	this	
structure,	either	as	independent	SOM	model	or	as	part	of	an	eco‐
system	model,	 dynamic	vegetation	model	or	 a	 general	 circulation	
model	(Campbell	&	Paustian,	2015;	Ostle	et	al.,	2009;	Parton	et	al.,	
2015).	Manzoni	and	Porporato	(2009)	 identified	about	250	differ‐
ent	models,	but	there	are	still	new	developments,	as	there	are	still	
unresolved	challenges.

Despite	 the	 development	 of	 different	 approaches	 that	 allow	
the	 measurement	 of	 different	 carbon	 pools	 in	 the	 models	 (e.g.	
Janik	 et	 al.,	 2007;	 Skjemstad,	 Spouncer,	 Cowie,	 &	 Swift,	 2004;	
Zimmermann,	Leifeld,	Schmidt,	Smith,	&	Fuhrer,	2007),	SOC	pools	
are	often	still	 initialized	 in	a	spin‐up	run	(Nemo	et	al.,	2017).	This	
is	a	practical	approach	if	information	about	the	fractionation	is	not	
available,	but	 it	 relies	on	 ideal	assumptions	of	equilibrium	 (Smith,	
Smith,	 Monaghan,	 &	 MacDonald,	 2002)	 which	 impacts	 the	 re‐
sults	 (Bruun	 &	 Jensen,	 2002).	 Furthermore,	 the	 residence	 times	
of	 most	 pools	 exceed	 the	 duration	 of	 available	 measurements,	
which	makes	the	calibration	and	validation	of	the	models	difficult	
(Campbell	&	Paustian,	2015;	Falloon	&	Smith,	2000).	Additionally,	
not	all	relevant	processes	(e.g.	priming)	are	represented	in	the	mod‐
els	 (Guenet,	Moyano,	 Peylin,	 Ciais,	 &	 Janssens,	 2016;	Wutzler	 &	
Reichstein,	2013).	Recently,	there	has	been	a	discussion	about	the	
ability	of	existing	models	to	reflect	changes	in	temperature	(Conant	

et	al.,	2011;	Moyano,	Vasilyeva,	&	Menichetti,	2018),	which	is	most	
relevant	to	simulate	climate	change	impacts	(Conant	et	al.,	2011).	
In	short,	it	 is	not	clear,	if	the	slower,	more	stable	pools	get	differ‐
ently	affected	by	temperature	changes	(e.g.	Campbell	&	Paustian,	
2015;	Conant	et	al.,	2011).	For	these	and	other	purposes,	there	are	
an	 increasing	 number	 of	 new	model	 approaches	 and	 hypotheses	
(e.g.	 Cotrufo,	 Wallenstein,	 Boot,	 Denef,	 &	 Paul,	 2013;	 Lehmann	
&	Kleber,	2015;	Wieder,	Bonan,	&	Allison,	2013;	Wutzler,	Zaehle,	
Schrumpf,	Ahrens,	&	Reichstein,	2017).	Therefore,	long‐term	data	
sets	(Section	5)	are	needed	to	test	the	performance	of	the	estab‐
lished	and	the	new	models.

Many	operational	SOC	models	only	simulate	turnover	and	de‐
composition	of	 the	SOC	pools	and	 the	added	OC	 (Toudert	et	al.,	
2018).	These	models	thus	rely	heavy	on	proper	estimation	of	car‐
bon	inputs	in	residues	and	organic	amendments	(manure,	compost,	
etc.)	 as	well	 as	 on	 information	 on	 the	 biological	 quality	 of	 these	
inputs.	 Most	 modelling	 approaches	 used	 for	 inventory	 purposes	
rely	 on	 input	 data	 from	harvest	 residues	 or	 decaying	 plant	 parts	
and	external	organic	amendments.	The	plant	C	 inputs	are	mostly	
derived	 from	measured	agricultural	yields	using	simple	allometric	
equations,	where	the	C	inputs	is	related	linearly	or	non	linearly	to	
crop	yield	(Keel,	Leifeld,	&	Mayer,	2017).	Comparison	of	different	
published	approaches	of	estimating	C	input,	but	using	the	same	de‐
composition	model,	has	demonstrated	large	uncertainties	in	simu‐
lated	changes	in	SOC	(Keel	et	al.,	2017).	The	selection	of	allometric	
functions	 for	estimating	C	 input	 is	 therefore	a	critical	step	 in	 the	
choice	of	model	approach.	Recent	research	has	also	questioned	the	
appropriateness	of	using	simple	allometric	functions	such	as	fixed	
shoot:root	ratios	for	estimating	C	input	(e.g.	Hu	et	al.,	2018).	Rather	
than	 assuming	 a	 fixed	 shoot:root	 ratio,	 using	 a	 fixed	 amount	 of	
belowground	C	input	depending	on	site	and	crop	may	provide	the	

TA B L E  1  List	of	different	functions	to	simulate	the	decomposition	in	models	following	the	discussion	of	Parton	et	al.	(2015).	The	
publications	listed	refer	to	the	example	models.	The	abbreviations	describe	the	carbon	(C)	at	the	start	(C0)	and	at	a	certain	time	(t)	step	
(Ct),	the	decomposition	rate	(k),	the	Michaelis–Menten	constant	(Km)	and	the	maximum	reaction	velocity	for	the	process	(Vm),	the	carbon	
demand	by	the	microbes	(X0),	the	Monod	constant	(Kt)	and	the	maximum	growth	rate	(µmax).	The	graphs	show	Ct	in	a	time	series	for	one	set	
of	arbitrary	parameters

Approach Equation Graphical relation (C(t)) Example model Publications

Zero‐order	kinetics Ct=C0−kt

First‐order	kinetics Ct=C0e
−kt RothC,	ICBM Jenkinson	and	Rayner	(1977),	

Andrén	and	Kätterer	(1997)

Enzyme	kinetics dC

dt
=Vm

C

Km+C

CLM,	SEAM Wieder	et	al.	(2013),	Wutzler	et	
al.	(2017)

Microbial	growth
−

dC

dt
=�max

(

C

Kt+C

)

(

C0+X0−C
) NICA Blagodatsky	and	Richter	(1998)
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most	robust	estimate	(Hirte,	Leifeld,	Abiven,	Oberholzer,	&	Mayer,	
2018;	Taghizadeh‐Toosi,	Christensen,	Glendining,	&	Olesen,	2016).	
This	 has	 implications	 for	modelling	 application	where	 changes	 in	
crop	productivity	are	a	main	driver	of	C	inputs.

7  | WHAT MRV PL ATFORMS ARE 
CURRENTLY IN USE

A	number	of	GHG	emission	and	soil	carbon	change	quantification	
schemes	have	been	developed	 in	 various	parts	of	 the	world.	 For	
example,	 the	 Australian	 Carbon	 Farming	 Initiative/Emission	 re‐
duction	fund	has	guidance	relating	to	sampling	and	measurement	
of	SOC	and	estimating	and	 reporting	SOC	stock	change	 for	SOC	
management	 projects	 (Australian	 Government,	 2018).	 In	 Alberta	
in	Canada,	there	is	a	Conservation	Cropping	Protocol,	a	tool	used	
to	 quantify	 GHG	 emission	 reductions	 from	 conservation	 crop‐
ping	(Alberta	Government,	2012).	For	certain	production	systems	
(e.g.	 livestock	production),	FAO	has	published	guidance	on	meas‐
uring	 and	modelling	 soil	 carbon	 stocks	 and	 stock	 changes	 (FAO,	
2019a).	In	this	section,	we	examine	methods	already	in	use	in	coun‐
tries	 participating	 in	 the	Global	Research	Alliance	of	Agricultural	
Greenhouse	Gases	(GRA).

7.1 | Operational soil MRV systems in use in 
GRA countries

We	 first	 searched	 the	GRA	publications	 library	 (https	://globa	lrese	
archa	llian	ce.org/publi	cation‐libra	ry/)	 for	 operational	 soil	 MRV	
systems/procedures,	 giving	 limited	 results	 (e.g.	 Minamikawa,	
Yamaguchi,	Tokida,	Sudo,	&	Yagi,	2018).	Subsequently,	we	searched	
the	Web‐of‐Science	using	“((soil	AND	carbon)	OR	soc)	AND	((moni‐
toring	OR	 reporting	OR	verification)	OR	mrv),”	 giving	91	potential	
sources.	Adding	 the	GRA	country	names	 (56	as	of	October	2018)	
to	the	initial	search	reduced	this	to	14	papers.	These	studies	cover	
parts	of	a	country	(McHenry,	2009;	Nerger,	Funk,	Cordsen,	&	Fohrer,	
2017;	Steinmann	et	al.,	2016;	Wilson,	Barnes,	Koen,	Ghosh,	&	King,	
2010),	 consider	 selected	 agro‐ecosystems	 or	 agricultural	 prac‐
tices	 (Allen,	 Pringle,	 Page,	 &	Dalal,	 2010;	 de	Gruijter	 et	 al.,	 2016;	
McHenry,	2009;	Scott	et	al.,	2002;	Wu,	Clarke,	&	Mulder,	2010),	out‐
line	the	basis	for	a	possible	national	soil	monitoring	system	(Spencer,	
Ogle,	Breidt,	Goebel,	&	Paustian,	2011;	Visschers,	Finke,	&	Gruijter,	
2007),	were	discontinued	due	to	lack	of	funding	(Goidts,	Wesemael,	
&	Oost,	 2009;	 Taghizadeh‐Toosi,	 Olesen,	 et	 al.,	 2014;	 Yagasaki	 &	
Shirato,	2014)	or,	alternatively,	concern	measurement	systems	that	
are	 in	 their	 first	 (Mäkipää,	 Liski,	 Guendehou,	Malimbwi,	 &	 Kaaya,	
2002;	 Nijbroek	 et	 al.,	 2018)	 or	 second	 round	 (Orgiazzi,	 Ballabio,	
Panagos,	Jones,	&	Fernández‐Ugalde,	2018;	Spencer	et	al.,	2011).

Much	 early	 work	 has	 been	 done	 in	 Australia	 (McKenzie,	
Henderson,	 &	 Mcdonald,	 2002),	 and	 in	 2014,	 the	 Australian	
Government	 approved	 the	 first	 methodology	 for	 soil	 carbon	 se‐
questration	 for	use	 at	 farm	 level	 (de	Gruijter	 et	 al.,	 2016);	 recom‐
mended	 procedures	 of	 stratification	 and	 sampling,	 however,	 may	

vary	between	countries	(e.g.	Australia	and	New	Zealand,	see	Malone	
et	 al.,	 2018).	Overall,	 a	 lack	of	 common	procedures	between	 (and	
within)	countries	affects	the	suitability	of	using	the	SOC	stock	as	ab‐
solute	indicator	for	monitoring	changes	in	land	quality	and	soil	deg‐
radation,	for	example,	in	relation	to	the	SDG	monitoring	framework	
(Sims	et	 al.,	 2019).	 Earlier	 reviews	 (Batjes	&	van	Wesemael,	 2015;	
de	Brogniez,	Mayaux,	&	Montanarella,	2011;	Lorenz,	Lal,	&	Ehlers,	
2019)	also	indicated	that	basic	soil	data	and	SOC	stock	change	mon‐
itoring	systems	are	not	available,	or	inconsistent	(Jandl	et	al.,	2014),	
for	many	regions	and	nations.	Within	the	GRA	and	the	CGIAR	CCAFS	
programme,	the	initial	focus	has	been	on	MRV	resources	for	the	live‐
stock	sector	(Wilkes,	Reisinger,	Wollenberg,	Van,	&	Dijk,	2017).

There	are	three	main	approaches	(experimental	field	trials,	chro‐
nosequence	 studies	or	paired	 land‐use	 comparisons,	 and	monitor‐
ing	 networks)	 to	 determine	 relationships	 between	 environmental	
and	management	 factors,	 and	 SOC	 dynamics	 and	GHG	 emissions	
(Batjes	 &	 van	 Wesemael,	 2015;	 McKenzie	 et	 al.,	 2002;	 Morvan	 
et	al.,	2008;	Spencer	et	al.,	2011)	or	changes	 in	soil	quality/health	
(Bai	et	 al.,	 2018;	Leeuwen	et	 al.,	 2017).	An	overview	of	 long‐term	
terrestrial	soil	experiments	(LTEs)	is	maintained	by	the	International	
Soil	Carbon	Network,	including	those	from	a	European	Network	of	
long‐term	studies	for	soil	organic	matter	(SOMNET,	Powlson	et	al.,	
1998).	 Examples	 of	 chronosequence	 studies	 include	 those	 carried	
out	in	Brazil	(Cerri	et	al.,	2007;	de	Moraes	Sá	et	al.,	2009),	Ethiopia	
(Lemenih,	Karltun,	&	Olsson,	2005)	and	China	(He,	Wu,	Wang,	&	Han,	
2009),	while	 paired	 land‐use	 comparisons	 have	 been	 reviewed	 by	
various	researchers	(Bai	et	al.,	2018;	Murphy,	Rawson,	Ravenscroft,	
Rankin,	&	Millard,	2003;	Oliver	et	al.,	2004).

Following	 up	 from	 the	 review	of	 European	 soil	monitoring	 net‐
works	 (Morvan	 et	 al.,	 2008),	 the	 Joint	 Research	 Centre	 of	 the	
European	 Commission	 launched	 an	 initiative	 to	 sample	 the	 topsoil	
at	22,000	points	of	 the	Land	Use/Cover	Area	Survey	 (LUCAS	proj‐
ect,	 see	Montanarella,	Tóth,	&	 Jones,	2011).	The	 first	 soil	 sampling	
round	(2009),	based	on	standard	sampling	and	analytical	procedures,	
followed	a	stratified	sampling	design	to	produce	representative	soil	
samples	for	major	 landforms	and	types	of	 land	cover	of	the	partici‐
pating	countries.	A	new	LUCAS	sampling	 round	 is	presently	under‐
way,	providing	the	basis	for	a	longer	term	monitoring	system	(Orgiazzi	 
et	al.,	2018).	Similarly,	for	the	United	States,	Spencer	et	al.	(2011)	dis‐
cuss	the	design	of	a	national	soil	monitoring	network	for	carbon	on	ag‐
ricultural	lands,	including	determination	of	sample	size,	allocation	and	
site‐scale	plot	design.	Teng	et	al.	(2014)	indicated	that	for	accurate	soil	
monitoring	in	China,	it	will	be	necessary	to	set	up	routine	monitoring	
systems	at	various	scales	(national,	provincial	and	local	scales),	taking	
into	consideration	monitoring	indicators	and	quality	assurance.

Table	2	serves	to	illustrate	the	diversity	in	soil	monitoring	networks	
and	 sample	 designs	 in	 selected	GRA	 countries.	 The	most	 common	
sampling	design	for	networks	aimed	at	monitoring	regional/national	
SOC	stocks	is	either	stratified	(according	to	soil/land	use/climate)	or	
grid	based.	Large	countries	with	a	 low	sampling	density	(<1	site	per	
100	km2)	generally	adopt	a	stratified	design	to	include	all	important	
units	 (van	Wesemael	 et	 al.,	 2011).	 The	 (expected)	 variability	within	
these	units	 should	be	determined	 to	 assess	 the	optimal	 number	of	

https://globalresearchalliance.org/publication-library/
https://globalresearchalliance.org/publication-library/


     |  227SMITH eT al.

TA
B

LE
 2

 
Ex
am
pl
es
	o
f	s
oi
l	m
on
ito
rin
g	
ne
tw
or
ks
	a
nd
	s
am
pl
e	
de
si
gn
	in
	s
el
ec
te
d	
G
R
A
	c
ou
nt
rie
sa

B
el

gi
u

m
B

ra
zi

l
C

h
in

a
M

ex
ic

o
N

ew
 Z

ea
la

n
d

Sw
ed

en

O
bj
ec
tiv
e

N
at
io
na
l	S
O
C	
m
on
ito
rin
g

SO
C	
re
sp
on
se
	to
	la
nd
	u
se
/

m
an
ag
em
en
t	c
ha
ng
e

Re
gi
on
al
	S
O
C	
m
on
ito
rin
g

N
at
io
na
l	S
O
C	
m
on
ito
rin
g

N
at
io
na
l	S
O
C	
m
on
ito
rin
g

N
at
io
na
l	S
O
C	
m
on
ito
rin
g

R
e

g
io

n
 c

o
v

e
re

d
C
ro
pl
an
d	
an
d	
gr
as
sl
an
d	
in
	

so
ut
he
rn
	B
el
gi
um

Ro
dô
ni
a,
	M
at
o	
G
ro
ss
o,
	

C
en
tr
al
	A
m
az
on
ia

N
or
th
ea
st
	(1
20
	s
ite
s)
,	

N
or
th
	(2
41
),	
Ea
st
	(3
56
),	

So
ut
h	
(1
19
),	
N
or
th
w
es
t	

(1
48
),	
So
ut
hw
es
t	(
97
)

Fo
re
st
	a
nd
	n
on
‐f
or
es
t	l
an
d	

in
	p
ar
tic
ul
ar
	p
as
tu
re
	a
nd
	

sh
ru
bs

A
ll	
re
gi
on
s	
an
d	
la
nd
	u
se
s

C
ro
pl
an
d~
3	
M
ha

St
ar
tin
g	
da
te

N
at
io
na
l	S
oi
l	S
ur
ve
y	

19
50
–1
97
0;
	re
sa
m
pl
ed
	

20
04
–2
00
7

~2
00
7

78
%
	s
ta
rt
ed
	b
ef
or
e	
19
85
	

an
d	
87
.5
%
	c
on
tin
ue
d	

un
til
	a
t	l
ea
st
	1
99
6

St
ar
te
d	
in
	2
00
3;
	e
ac
h	
ye
ar
	

on
e‐
fif
th
	o
f	t
he
	s
ite
s	
w
ill
	

be
	re
sa
m
pl
ed

N
at
io
na
l	s
oi
ls
	d
at
ab
as
e	

fr
om
	1
93
8;
	L
an
d	
us
e	
an
d	

ca
rb
on
	a
na
ly
si
s	
sy
st
em
	

st
ar
te
d	
in
	1
99
6c

Fu
ll	
sc
al
e	
in
	1
99
5,
	s
om
e	

da
ta
	fr
om
	1
98
8

Si
te
	d
en
si
ty
	(k
m

2
 

pe
r	s
ite
)

18
	k
m

2
N
/A

N
/A

78
	k
m

2
20
2	
km

2
10
	k
m

2

Si
te
	s
el
ec
tio
n

St
ra
tif
ie
d

St
ra
tif
ie
d

St
ra
tif
ie
d

G
rid

St
ra
tif
ie
d

G
rid

So
il	
sa
m
pl
in
g

Su
bs
am
pl
es

C
om
po
si
te

C
om
po
si
te

C
om
po
si
te

C
om
po
si
te

Si
ng
le

C
om
po
si
te

D
ep
th

0
–

3
0

 a
n

d
 0

–
1

0
0

 c
m

0–
10
,	1
0–
20
,	2
0–
30
,	a
nd
	

3
0

–
4

0
 c

m

0
–

2
0

 c
m

0–
30
	a
nd
	3
0−
60
	c
m

Va
ria
bl
e,
	s
am
pl
ed
	b
y	
so
il	

ho
riz
on
;	i
n	
20
09
,	1
,2
35
	

sa
m
pl
es
	to
	3
0	
cm

0
–

2
0

 a
n

d
 4

0
–

6
0

 c
m

Fr
eq
ue
nc
y

Fu
tu
re
	s
am
pl
in
g	
ro
un
ds
	

la
rg
el
y	
de
pe
nd
	o
n	
fu
nd
in
g	

(G
oi
dt
s	
et
	a
l.,
	2
00
9)

O
nc
e	
(c
hr
on
os
eq
ue
nc
es
	

an
d	
pa
ire
d	
si
te
s)

A
nn
ua
l	s
am
pl
in
g	
fr
om
	

20
10
,	s
ee
	T
en
g	
et
	a
l.	

(2
01
4)

b

Ev
er
y	
5	
ye
ar
s

A
	fi
t‐f
or
‐p
ur
po
se
	m
et
ho
d	
is
	

be
in
g	
de
si
gn
ed
	to
	m
on
ito
r	

SO
C	
st
oc
ks
	a
t	~
5	
ye
ar
	

in
te
rv
al
s	
ov
er
	u
pc
om
in
g	

de
ca
de
s

1
9

9
5

 a
n

d
 2

0
0

5
 r

o
u

n
d

 

co
m
pl
et
ed
;	i
n	
pr
in
ci
pl
e	

re
pe
at
ed
	e
ve
ry
	1
0	
ye
ar
s

A
bb
re
vi
at
io
n:
	S
O
C
,	s
oi
l	o
rg
an
ic
	c
ar
bo
n.

a
A
da
pt
ed
	fr
om
	V
an
	W
es
em
ae
l	e
t	a
l.	
(2
01
1)
.	

b
Fo
r	a
cc
ur
at
e	
so
il	
m
on
ito
rin
g	
in
	C
hi
na
,	i
t	w
ill
	b
e	
ne
ce
ss
ar
y	
to
	s
et
	u
p	
ro
ut
in
e	
m
on
ito
rin
g	
sy
st
em
s	
at
	v
ar
io
us
	s
ca
le
s	
(n
at
io
na
l,	
pr
ov
in
ci
al
	a
nd
	lo
ca
l	s
ca
le
s)
,	t
ak
in
g	
in
to
	c
on
si
de
ra
tio
n	
m
on
ito
rin
g	
in
di
ca
to
rs
	a
nd
	

qu
al
ity
	a
ss
ur
an
ce
	(T
en
g	
et
	a
l.,
	2
01
4)
.	

c
Fo
r	r
ec
en
t	d
ev
el
op
m
en
ts
,	s
ee
	h
tt
ps
	://
so
ils
.la
nd
c	a
re
re
	se
ar
ch
.c
o.
nz
/i
nd
ex
.p
hp
/s
oi
ls
‐a
t‐
m
an
aa
	ki
‐w
he
nu
	a/
ou
r‐
pr
oj
e	c
ts
/s
oi
l‐o
rg
an
	ic
‐c
ar
bo
n.
	

https://soils.landcareresearch.co.nz/index.php/soils-at-manaaki-whenua/our-projects/soil-organic-carbon


228  |     SMITH eT al.

samples	for	each	stratum	(Brus	&	de	Gruijter,	1997;	De	Gruijter,	Brus,	
Bierkens,	&	Knottters,	 2006;	 Louis	 et	 al.,	 2014).	 Such	 an	 approach	
will	allow	a	(geo)statistical	analysis	of	SOC	stock	changes	for	the	soil/
land	use/climate	units	under	consideration	as	an	alternative	or	test	for	
process‐based	models.	Continuous	 soil	monitoring	 for	 SOC	at	 time	
intervals	of	10	year	is	often	proposed	as	a	compromise	between	mini‐
mum	detectability	of	changes	(Garten	&	Wullschleger,	1999)	and	tem‐
poral	shifts	in	trends	(Bellamy	et	al.,	2005;	Schrumpf,	Schulze,	Kaiser,	
&	Schumacher,	2011;	Steinmann	et	al.,	2016).	This	may	be	longer	than	
the	duration	of	many	land‐use	management	projects	that	involve	the	
measurement	of	SOC	stock	changes	(Milne	et	al.,	2012).

New	Zealand	has	developed	a	model‐based	approach	(McNeill,	
Golubiewski,	&	Barringer,	2014;	Tate	et	al.,	2005)	to	track	SOC	stock	
changes	with	time	assuming	that	SOC	stock	values	vary	by	soil	type,	
climate	and	land	use,	and	that	the	key	driver	for	long‐term	(decadal)	
changes	in	SOC	stocks	are	due	to	changes	in	land	use,	with	all	other	
changes	 due	 to	 soil,	 climate	 or	 erosion	 assumed	 constant.	 This	
country‐specific	(Tier	2)	empirical	method	was	initially	described	in	
Tate	et	al.	(2005)	reflecting	land‐use	change	issues	relevant	to	New	
Zealand.	As	further	soil	profile	data	were	collected	(currently	2050	
profiles)	the	model	was	increasingly	improved	(McNeill	et	al.,	2014)	
adding	data	from	specific	 land‐use	classes	(notably	indigenous	and	
exotic	 forest,	 cropland,	 horticulture	 and	 wetlands).	 The	 approach	
was	also	 refined	 to	account	 for	 spatial	 autocorrelation	 to	 improve	
the	assessment	of	 the	overall	 significance	of	 land‐use	 change	and	
reports	three	validation	studies	for	the	model	(McNeill	et	al.,	2014).	
Using	low‐producing	grassland	on	a	high‐activity	clay	IPCC	default	
soil	and	moist‐temperate	IPCC	default	climate	class	as	a	reference,	
the	0–30	cm	SOC	stock	is	133.1	tonnes/ha,	the	change	as	a	result	of	
land	use	can	be	determined,	along	with	the	marginal	significance.	For	
example,	a	transition	to	high‐producing	grassland	results	in	a	change	
of	−0.22	tonnes/ha	(not	significant),	while	a	transition	to	perennial	
cropland	results	in	a	change	of	−19.5	tonnes/ha	(significant).

While	 changes	 in	 national	 or	 large	 regional	 scale	 carbon	 stock	
measurements	 can	 be	 addressed	 using	 geostatistical	 sampling	 ap‐
proaches,	 aligned	 targeted	 approaches	 (such	 as	 sampling	 of	 chro‐
nosequences	and	paired	 land	uses)	can	directly	determine	 land‐use	

change	factors,	while	controlling	for	other	spatially	dependent	vari‐
ables,	that	is,	they	can	determine	the	carbon	gain/loss	that	will	occur	
with	a	change	in	land	use	or	management.	When	coupled	with	mon‐
itored	changes	in	land	area	undergoing	these	changes,	estimates	of	
national	scale	carbon	stock	changes	can	be	calculated.	The	change	in	
carbon	stocks	determined	from	paired	site	sampling	can	also	be	used	
to	validate	interpretations	derived	from	national	scale	measurements.

7.2 | Methods used by GRA countries for estimating 
SOC changes for the ‘cropland remaining cropland’ 
category in national inventories

All	 countries	 that	 are	 party	 to	 the	 United	 Nations	 Framework	
Convention	on	Climate	Change	(UNFCCC)	are	required	to	provide	na‐
tional	 inventories	of	emissions	and	removals	of	GHG	due	 to	human	
activities.	The	IPCC	methodologies	are	intended	to	yield	national	GHG	
inventories	that	are	transparent,	complete,	accurate,	consistent	over	
time	 and	 comparable	 across	 countries.	 Because	 different	 countries	
have	 different	 capacities	 to	 produce	 inventories,	 the	 guidelines	 lay	
out	tiers	of	methods	for	each	emissions	source,	with	higher	tiers	being	
more	complex	and/or	resource	intensive	than	lower	tiers.	In	the	con‐
text	of	agricultural	GHG	emissions,	inventories	remain	the	main	tool	
connecting	policy	with	mitigation.

Figure	 2	 shows	 the	 categories	 of	methods	 used	 by	GRA	 coun‐
tries	for	estimating	the	changes	in	mineral	soil	carbon	stock	for	the	
‘Cropland	 remaining	 Cropland’	 category.	 Countries	 listed	 as	 non‐
annex	I	face	major	challenges	with	either	non‐existent	data	(15	coun‐
tries	do	not	have	country‐specific	information	they	can	use	to	develop	
their	inventory	and	eight	countries	do	not	consider	for	SOC	changes	
in	croplands	because	do	not	have	the	technical	capacity	to	monitor	
these	sources)	or	a	lack	of	relevant	data	(with	the	exception	of	Ghana	
and	Malaysia)	GRA	non‐annex	I	countries	use	a	Tier	1	approach	to	re‐
port	SOC	changes	associated	with	areas	defined	as	Cropland	land	use.

Soil	C	stocks	are	 influenced	by	multiple	factors	that	affect	pri‐
mary	production	and	decomposition,	including	changes	in	land	use	
and	 management	 and	 feedbacks	 between	 management	 activities,	
climate	 and	 soils.	 However,	 only	 a	 few	 countries	 have	 taken	 into	

F I G U R E  2  Tier	methods	used	by	
Global	Research	Alliance	of	Agricultural	
Greenhouse	Gases	countries	for	
estimating	the	changes	in	mineral	soil	
carbon	stock	for	the	‘Cropland	remaining	
Cropland’	category.	NA	indicates	that	
the	country	has	not	developed	a	GHG	
inventory.	NE	indicates	that	the	country	
has	not	included	soil	organic	carbon	
changes	in	croplands	in	the	inventory.	
Countries	reporting	carbon	stock	change	
associated	with	agricultural	land	use	and	
management	activities	are	indicated	by	(*)
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TA B L E  3  Methodology	used	to	estimate	changes	in	soil	C	stocks	for	cropland	remaining	cropland,	including	agricultural	land	use	and	
management	activities	on	mineral	soils

GRA country Tier Land management activities Reference

Australia

The	Full	Carbon	Accounting	Model	(FullCAM) Tier	3 Crop	type	and	rotation	(including	pasture	
leys)

Richards	(2001)

Stubble	management,	including	burning	
practices

Tillage	techniques

Fertilizer	application	and	irrigation

Application	of	green	manures	(particularly	
legume	crops)

Soil	ameliorants	(application	of	manure,	com‐
post	or	biochar)

Changes	in	land	use	from	grassland

Crop‐specific	coefficients	sourced	from	the	literature	
combined	with	ABS	agricultural	commodities	statistics

Tier	2 Changes	in	the	area	of	perennial	woody	crops

Canada

Process	model	(CENTURY)	based	on	the	National	Soil	
Database	of	the	Canadian	Soil	Information	System

Tier	3 Change	in	mixture	of	crop	type	(increase	in	
perennial	crops	and	increase	in	annual	crops)

McConkey	et	al.	
(2014)

Change	in	tillage	practices

Change	in	area	of	summer	fallow

Land	use,	tillage,	type	and	amount	of	input

Crop	residue,	farmyard	manure	and	presence	
or	absence	of	vegetative	cover

Perennial	and	organic	management	systems

Denmark

Average	SOC	calculated	annually	per	soil	type	and	
region	based	on	process‐based	model	(C‐TOOL)	using	
data	on	temperature	and	estimated	C	input	from	crop	
residues	and	manure	using	national	databases

Tier	3 Crop	type	and	crop	yield Taghizadeh‐Toosi	and	
Olesen	(2016)Cover	crops

Residue	management

Manure	application

Grassland	management

France

The	IPCC	Guidelines	and	OMINEA	database Tier	1 Land	use CITEPA	(2019)

Tillage

Type	and	amount	of	input

Japan

Average	carbon	stock	changes	in	each	year	by	land‐use	
subcategory	(rice	fields,	upland	fields,	orchards	and	
pastural	land)	calculated	by	the	Roth	C	model	by	the	
mineral	soil	area	of	each	prefecture	obtained	from	
statistical	material,	map	data	and	questionnaire	survey

Tier	2 Carbon	input	from	crop	residue Shirato	and	Taniyama	
(2003)Farmyard	manure

Presence	or	absence	of	vegetative	cover

Lithuania

National	statistics	for	woody	crops	and	available	data	
of	arable	land	certified	as	organic	in	FAOSTAT	and	
ecological	agricultural	land	statistics.

Tier	2 Crop	type	(perennial	crops,	certified	organic	
crops,	other	crops)

Statistics	Lithuania	
(2018)

Amount	of	input

Norway

Reference	stock	and	stock	change	factors	estimated	
by	the	Introductory	Carbon	Balance	Model	(ICBM)	
in	a	study	where	CO2	emissions	were	estimated	for	
Norwegian	cropland

Tier	2 Crop	rotations Borgen	et	al.	(2012)

Carbon	inputs

Tillage

(Continues)
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account	cropland	management	activities.	Table	3	provides	an	over‐
view	of	the	methods	used	 in	GRA	countries	for	estimating	carbon	
stock	change	and	emissions	associated	with	agricultural	land	use	and	
management	activities	on	mineral	soil.

There	are	still	high	levels	of	uncertainty	in	the	estimates;	however,	
uncertainties	are	relatively	low	for	Annex	I	countries	due	to	their	well‐
developed	statistical	 systems	and	capacity	 to	use	higher	 tier	meth‐
ods.	 In	 contrast,	 national	 inventories	 of	many	developing	 countries	
generally	have	greater	uncertainty	and	are	not	sufficiently	 rigorous	
to	enable	monitoring	of	emissions.	For	Tier	2	inventory	development,	
countries	could	use	the	expertise	of	other	GRA	members,	for	instance	
from	those	countries	that	have	adopted	a	Tier	3	method	(see	Table	4)	
to	estimate	soil	organic	C	stock	changes	in	agricultural	land.

With	 increased	 obligations	 for	 reporting	 on	 GHG	 emissions	
and	 Nationally	 Determined	 Contributions	 (NDCs)	 under	 the	
Paris	agreement,	 it	 is	 important	 that	all	 countries	are	able	 to	es‐
timate	 their	GHG	emissions	 to	maximize	 transparency,	 accuracy,	
completeness	 and	 consistency.	 Improving	 inventories	 requires	
enhanced	national	capability	to	gather	relevant	activity	data	to	de‐
velop	country‐specific	emission	factors.	There	is	a	need	to	improve	
the	 evidence	 base	 and	 to	 better	 connect	 governments	 and	 rele‐
vant	expertise	to	subsequently	improve	the	quality	of	agricultural	
NDCs	 and	 the	way	 their	 achievements	 are	 reflected	 by	 national	
GHG	inventories.

8  | PROPOSED GLOBAL SOIL MRV 
PL ATFORM

The	 sections	 above	 describe	 the	 methods	 available	 to	 measure	
and	 monitor	 carbon;	 models	 that	 can	 be	 used	 to	 simulate	 and	

project	changes	in	SOC,	different	types	of	experimental	platform	
and	the	data	needed	to	test	models	and	allow	them	to	be	run	from	
plot	 to	 global	 scale;	 and	methods/platforms	 that	 could	 be	 used	
to	verify	any	simulated	change	 in	SOC	 (summarized	 in	Figure	3).	
These	form	the	components	of	a	system	suitable	for	MRV	of	SOC	
change	(Figure	3).

Central	to	the	system	are	benchmark	sites,	which	could	be	lo‐
cated	at	existing	or	new	long‐term	experiments	(Figure	3,	item	2;	
Richter	et	al.,	2007),	or	could	consist	of	well‐characterized	chro‐
nosequences	or	paired	sampling	sites	(e.g.	He	et	al.,	2009;	Oliver	
et	 al.,	 2004).	 The	 benchmark	 sites	would	 preferably	 be	 located	
on	representative	land	cover/land‐use	types,	soil	types	and	with	
representative	management.	 At	 these	 sites,	 proposed	 practices	
to	 increase	 SOC	 could	 be	 tested	 in	 fully	 randomized	 block	 de‐
signs,	and	SOC	change	measured	over	time	(measurements	every	
few	years),	while	measuring	shorter	term	processes	(such	as	GHG	
emissions)	more	frequently	(continuously	with	EC	flux	towers	or	
frequently	with	automated	chambers;	Figure	3,	item	2;	Baldocchi,	
2003).	The	same	sites	could	be	used	to	test	novel	spectral	meth‐
ods	 for	 measuring	 SOC	 change	 against	 traditional	 direct	 SOC	
measurement	 (England	 &	 Viscarra	 Rossel,	 2018).	 Careful	 align‐
ment	of	site	selection	and	experimental	design	with	other	goals	
of	 land	 owners,	managers	 and	 regulators	 (e.g.	 quantification	 of	
soil	quality	change	or	nutrient	use	efficiency)	will	promote	stron‐
ger	uptake	of	an	 international	suite	of	benchmark	sites	with	ad‐
ditional	benefits.

Since	 it	would	be	prohibitively	expensive	 to	set	up	benchmark	
sites	 covering	 all	 possible	 combinations	 of	 land	 use,	 climate,	 soil	
type	 and	 management	 practice,	 models	 of	 SOC	 change	 are	 re‐
quired	to	interpolate	and	infer	change	across	all	combinations,	and	
to	 project	 changes	 into	 the	 future,	 across	 landscapes	 and	 under	

GRA country Tier Land management activities Reference

Spain

SOC	values	calculated	by	use	and	province,	together	
with	the	reference	values	of	the	management	factors	
provided	by	the	IPCC	Guidelines

Tier	1 Land	use Rovira	et	al.	(2007)

Crop	rotations

Amount	of	input

Tillage

United	Kingdom

Review	UK	relevant	literature	on	the	effects	of	crop‐
land	management	practices	on	soil	carbon	stocks	to	
model	UK‐specific	emission	factors	(methodology	
developed	in	Defra	project	SP1113)

Tier	1 Manure Moxley	et	al.	(2014)

Residue	inputs

Crop	type	(perennial,	cropland,	set‐aside)

Tier	2 Tillage

United	States

Published	literature	to	determine	the	impact	of	
management	practices	on	SOC	storage.	Activity	data	
based	on	the	historical	land	use/management	patterns	
recorded	in	the	2012	NRI	(USDA,	2018)

Tier	2 Tillage Ogle,	Breidt,	Eve,	and	
Paustian	(2003);	
Ogle,	Breidt,	and	
Paustian	(2006)

Cropping	rotations

Intensification

Land‐use	change	between	cultivated	and	
uncultivated	conditions

Abbreviation:	ABS,	Australian	Bureau	of	Statistics;	GRA,	Global	Research	Alliance	of	Agricultural	Greenhouse	Gases.

TA B L E  3   (Continued)
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F I G U R E  3  Components	of	a	soil	
measurement/monitoring,	reporting	
and	verification	framework,	indicating	
which	components	contribute	to	
measurement/monitoring	(M),	reporting	
(R)	or	verification	(V).	See	text	in	Section	
8	for	explanation	of	linkages	between	the	
components

TA B L E  4  Models	used	to	estimate	carbon	dioxide	emissions	and	removals	from	the	cropland	remaining	cropland	soils	component	(Tier	3	
method)	in	GRA	countries

GRA country Model Reference

Australia The	Full	Carbon	
Accounting	Model	
(FullCAM)

Estimates	emissions	from	soil	through	a	process	
involving	all	on‐site	carbon	pools	(living	biomass,	
dead	organic	matter	and	soil)	on	a	pixel	by	pixel	
(25	m	×	25	m)	level

Richards	(2001)

Canada CENTURY Process	model	used	for	estimating	CO2	emissions	
and	removals	as	influenced	by	management	
activities,	based	on	the	National	Soil	Database	of	
the	Canadian	Soil	Information	System

Parton,	Schimel,	Cole,	and	Ojima	
(1987),	Parton,	Stewart,	and	Cole	
(1988)

Denmark C‐TOOL 3‐Pool	dynamic	soil	model	parameterized	and	
validated	against	long‐term	field	experiments	
(100–150	years)	conducted	in	Denmark,	United	
Kingdom	(Rothamsted)	and	Sweden	and	is	
‘State‐of‐the‐art’

Taghizadeh‐Toosi,	Christensen,	et	al.	
(2014)

Finland Yasso07	soil	carbon	model The	parameterization	of	Yasso07	used	in	cropland	
was	the	one	reported	in	Tuomi,	Rasinmäki,	Repo,	
Vanhala,	and	Liski	(2011)

Palosuo,	Heikkinen,	and	Regina	(2015)

Japan Soil	Carbon	RothC	model In	order	to	apply	the	model	to	Japanese	agricul‐
tural	conditions,	the	model	was	tested	against	
long‐term	experimental	data	sets	in	Japanese	
agricultural	lands	(Shirato	&	Taniyama,	2003)

Coleman	et	al.	(1997),	Coleman,	and	
Jenkinson	(1987)

Sweden Soil	Carbon	model	
ICBM‐region

Calculate	annual	C	balance	of	the	soil	based	on	
national	agricultural	crop	yield	and	manure	sta‐
tistics,	and	uses	allometric	functions	to	estimate	
the	annual	C	inputs	to	soil	from	crop	residues

Andrén	and	Kätterer	(2001)

Switzerland Soil	Carbon	RothC	model The	implementation	of	RothC	in	the	Swiss	GHG	
inventory	is	described	in	detail	in	Wüst‐Galley,	
Keel,	and	Leifeld	(2019)

Coleman	et	al.	(1997),	Coleman	and	
Jenkinson	(1987)

United	Kingdom CARBINE	Soil	Carbon	
Accounting	model	
(CARBINE‐SCA)

Simplified	version	of	the	ECOSSE	model	(Smith,	
Gottschalk	et	al.,	2010),	coupled	with	a	litter	de‐
composition	model	derived	from	the	ForClim‐D	
model	(Liski,	Perruchoud,	&	Karjalainen,	2002;	
Perruchoud,	Joos,	Fischlin,	Hajdas,	&	Bonani,	
1999)

Matthews	et	al.	(2014)

United	States DAYCENT	biogeochemical	
model

Utilizes	the	soil	C	modelling	framework	developed	
in	the	Century	model	(Parton	et	al.,	1987,	1988,	
1994;	Metherell,	1993),	but	has	been	refined	to	
simulate	dynamics	at	a	daily	time	step

Parton,	Hartman,	Ojima,	and	Schimel	
(1998),	Del	Grosso	et	al.	(2001),	Del	
Grosso	and	Parton	(2011)

Abbreviation:	GRA,	Global	Research	Alliance	of	Agricultural	Greenhouse	Gases.
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novel	combinations	(Figure	3,	item	3;	e.g.	Richards	et	al.,	2017).	To	
establish	confidence	that	the	chosen	model	or	models	are	capable	
of	accurately	and	reliably	simulating	SOC	change,	 they	need	to	be	
tested	 across	 the	 full	 range	 of	 parameter	 space	 (i.e.	multiple	 soils	
types,	climate	zones,	land‐use	types	and	soil	management	options;	
Ehrhardt	et	al.,	2018;	Smith	et	al.,	1997).	 If	necessary,	 the	models	
can	be	further	developed	or	parameterized	using	data	from	the	same	
long‐term	 experiments,	 or	 from	 shorter	 term	 experiments,	 before	
being	evaluated	again	against	a	data	set	not	used	in	development	or	
parameterization	(Smith	&	Smith,	2007).

When	the	model(s)	are	deemed	to	be	reliable,	they	could	be	ap‐
plied	(a)	to	derive	IPCC	Tier	2	emission	or	SOC	stock	change	factors,	
which	are	specific	to	the	region	and	conditions	represented	within	
the	region	(e.g.	Begum	et	al.,	2018);	or	 (b)	spatially	over	the	whole	
landscape	 (or	 the	entire	 land	area	of	a	country)	using	spatial	data‐
bases	 of	 soil	 characteristics,	 and	 land	 cover,	management	 and	 cli‐
mate	data	 (Figure	3,	 item	4),	 to	directly	 simulate	SOC	change	and	
GHG	emissions,	thereby	delivering	a	Tier	3	methodology	to	report	
emissions	(Smith	et	al.,	2012).	Data	on	changes	in	soil	management	
are	necessary	 for	estimating	changes	 in	SOC/GHG	emissions,	 and	
this	could	also	be	provided	by	self‐reported	or	farm	survey‐derived	
activity	data	(Figure	3,	item	5).

If	self‐reported	activity	data	are	used	as	the	primary	mechanism	
for	reporting,	such	activity	data	could	be	verified	through	spot	checks/	
farm	visits	or	could	be	done	using	remote	sensing	(Figure	3,	item	7),	
which	can	show,	for	example,	the	presence	of	bare	fallow,	cover	crop	
or	residue	retention	(Gallo	et	al.,	2018;	Rogge	et	al.,	2018).	In	addition	
to	providing	a	mechanism	for	verification	of	activity	data,	 remotely	
sensed	earth	observation	products	could	also	provide	spatial	data	to	
run	the	SOC/	GHG	models.	For	example,	earth	observation	can	be	
used	to	estimate	changes	in	carbon	input	to	soils,	through	changes	in	
NPP/GPP	(Chen	et	al.,	2019;	Neumann	&	Smith,	2018),	land	degrada‐
tion	(Sims	et	al.,	2019)	and	can	also	be	used	to	determine	land	cover/
land	cover	change	(e.g.	Chen	et	al.,	2019).

Well‐calibrated	models,	supported	by	measurements,	can	also	
be	used	to	establish	relationships	between	a	management	change	
in	a	particular	situation	(combination	or	soil,	climate,	land	use	and	
management)	and	a	change	in	SOC/	GHG	emissions,	including	esti‐
mates	of	uncertainty	(Fitton	et	al.,	2017).	This	would	allow	activity	
data	(Figure	3,	item	5),	self‐reported	by	the	farmer/land	manager,	
to	be	used	as	the	primary	source	of	data	for	reporting,	in	place	of	
the	need	to	directly	measure	SOC	of	GHG	emission	change	(Smith,	
2004b).	More	broadly,	uncertainties	and	potential	biases	in	all	com‐
ponents	of	 the	MRV	framework,	 including	all	measurements	and	
modelling	schemes,	need	to	be	addressed.	For	transparency,	there	
is	a	need	for	unified	protocols	for	such	uncertainty	assessments.

In	terms	of	verification,	change	in	SOC	stocks,	spatial	soil	moni‐
toring	networks	(Figure	3,	item	6)	could	be	used	to	ground‐truth	SOC	
changes	estimated	by	the	Tier	2	method	or	Tier	3	model	projections	
over	 time.	 If	 resampled	 every	 few	 years,	 the	 soil	 monitoring	 net‐
work	(on	a	grid	as	shown	in	Figure	3	item	7,	e.g.	Bellamy	et	al.,	2005,	
or	 using	 a	 stratified	 sampling	 protocol;	Montanarella	 et	 al.,	 2011)	
could	 provide	 independent	 estimates	 of	 large‐scale	 SOC	 change.	

Some	 basic	 methodological	 requirements	 and	 recommendations	
can	 be	 formulated	 for	 ‘good	 SOC‐monitoring	 and	 MRV	 practice’	
to	support	scientific	and	policy	decisions	(Batjes	&	van	Wesemael,	
2015;	 Desaules,	 Ammann,	 &	 Schwab,	 2010;	Morvan	 et	 al.,	 2008;	
Spencer	et	al.,	2011).	These	 include:	 (a)	 the	provision	of	 long‐term	
continuity	 and	 consistency	 under	 changing	 boundary	 conditions,	
such	as	biophysical	site	conditions,	climate	change,	methodologies,	
socio‐economic	setting	and	policy	context;	(b)	adoption	of	a	scientif‐
ically	and	politically	(e.g.	for	GRA,	UNFCCC,	UNNCCD)	appropriate	
spatial	and	temporal	resolution	for	the	measurements;	 (c)	ensuring	
continuous	quality	assurance	at	all	stages	of	the	measurement	and	
monitoring	 process;	 (d)	 measurement/observation	 and	 documen‐
tation	of	all	potential	drivers	of	SOC	and	GHG	change;	and	(e)	soil	
monitoring	network‐collated,	 georeferenced	 samples	 archived	and	
the	associated	 (harmonized)	data	made	accessible	 through	distrib‐
uted	databases	to	enhance	the	value	of	the	collated	data	for	multiple	
uses.	In	addition	to	this,	soil	monitoring	networks	should	be	included	
in	a	broader	cross‐method	validation	programme	to	ultimately	per‐
mit	spatially	and	temporally	validated	comparisons	both	within	and	
between	countries.	An	open‐access	database,	where	short‐	or	long‐
term	soil	C	measurements	could	be	uploaded	and	shared	(e.g.	https	:// 
datav	erse.org/	 or	 an	 online	 collaborative	 platform	 as	 used	 in	 the	
CIRCASA	project:	 https	://www.circa	sa‐proje	ct.eu/),	would	 also	be	
of	great	benefit	for	progressing	a	global	MRV	system.

As	 indicated,	 the	 implementation	 of	 soil	 monitoring	 networks	
poses	several	scientific,	technical	and	operational	challenges.	From	
an	operational	point	of	view,	to	implement	an	integrated	monitoring	
system,	it	will	be	crucial	to	overcome	initialization	costs	and	unequal	
access	 to	 monitoring	 technologies.	 For	 developing	 countries,	 this	
will	 require	 international	 cooperation,	 capacity	 building	 and	 tech‐
nology	transfer	(de	Brogniez	et	al.,	2011),	which	could	be	facilitated	
within	GRA,	CCAFS	and	similar	organizations,	in	synergy	with	rele‐
vant	funding	mechanisms,	or	via	the	recently	established	‘GSOCseq’	
programme	of	the	UN	FAO	(FAO,	2019b).

While	 other	 components	 of	 a	 soil	 MRV	 framework	 could	 be	
added,	the	components	outlined	in	Figure	3	could	certainly	fulfil	all	
of	the	functions	necessary	for	an	MRV	system.	As	seen	in	Sections	
4–7,	the	existing	capacity	in	terms	of	existing	benchmark	sites,	soil	
monitoring	programmes	and	access	to	models	in	different	countries	
varies	greatly.	While	some	countries	are	already	using	Tier	2	and	3	
monitoring	of	soil	C	change,	others	have	barely	begun	to	build	ca‐
pacity.	Recently,	 the	UN	FAO	has	established	a	programme	called	
‘GSOCseq’	 (FAO,	2019b)	which	aims	to	build	this	capacity	 interna‐
tionally.	Programmes	such	as	this	could	pave	the	way	for	making	this	
proposed	MRV	framework	a	reality.
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