
How to Misuse AODV: A Case Study of Insider Attacks against

Mobile Ad-hoc Routing Protocols

Peng Ning and Kun Sun

Computer Science Department, North Carolina State University

Raleigh, NC 27695-7534

Emails: ning@csc.ncsu.edu, ksun3@unity.ncsu.edu

February 23, 2003

Abstract

This paper presents a systematic analysis of insider attacks against mobile ad-hoc routing
protocols, using the Ad hoc On-Demand Distance Vector (AODV) protocol as an example. It
identifies a number of attack goals and then study how to achieve these goals through misuses
of the routing messages. To facilitate the analysis, this paper classifies the insider attacks into
two categories: atomic misuses and compound misuses. Atomic misuses are performed by ma-
nipulating a single routing message, which cannot be further divided; compound misuses are
composed of combinations of atomic misuses and possibly normal uses of the routing proto-
col. The analysis results in this paper reveal several classes of insider attacks, including route
disruption, route invasion, node isolation, and resource consumption. This paper also includes
simulation results that demonstrate the impact of these attacks.

1 Introduction

Mobile Ad-hoc Networks (MANET) have attracted substantial research efforts recently, partially
due to their attractive applications in infrastructureless situations such as battle fields and disaster
recovery. Among all the research issues, security in MANET is particularly challenging due to
the nature of wireless communication and the lack of infrastructure supports. Several efforts (e.g.,
Security-aware AODV [1], Ariadne [2], SEAD [3], CONFIDANT [4], watchdog and pathrater [5])
are under way to provide security services in ad-hoc routing protocols.

Most of the current security mechanisms (e.g., Ariadne [2], SEAD [3]) are preventive approaches
that depend on cryptography to ensure the security of the network. However, in a typical mobile
ad-hoc network such as a battle field, mobile nodes are extremely vulnerable to capture or key
compromise. Even if critical keying materials are protected by tamper proof hardware, it is still
difficult to ensure that the same hardware will not be misused by an attacker. Thus, to ensure the
overall security of the network, it is important to develop security mechanisms that can survive
malicious attacks from “insiders” who have full control of some nodes. In order to protect against
insider attacks, it is necessary to understand how an insider can attack a wireless ad-hoc network.
Several attacks (e.g., routing disruption attacks and resource consumption attacks [2, 3]) have been
discussed in the literature. However, these attacks have not been seriously studied and verified.

In this paper, we adopt a systematic way to study the insider attacks against mobile ad-hoc
routing protocols. We first identify a number of misuse goals that an inside attacker may want to

1

achieve, and then enumerate all possible actions that an attacker may apply to a routing message.
Our analysis is then to examine whether the attack goals may be achieved through these misuse
actions. To facilitate the analysis, we further classify misuses of the AODV protocol into two
categories: atomic misuses and compound misuses. Intuitively, atomic misuses are performed by
manipulating a single routing message, which cannot be further divided. In contrast, compound
misuses are composed of multiple atomic misuses, and possibly normal uses of the routing protocol.

Since atomic misuses are potentially building blocks of compound misuses, in this paper, we start
with analyzing atomic misuses. In addition, we also study compound misuses that can achieve more
powerful effects than simple compositions of atomic misuses when carefully composed together. We
do not discuss simple compositions of atomic misuses, though we do perform simulation experiments
to study their impacts. We pick the AODV protocol [6] as a target, performing our analysis from
an attacker’s perspective. It is easy to see that our analysis scheme is also applicable to other
ad-hoc routing protocols, possibly with slight changes. To validate the analysis results, we have
implemented the misuses based on the AODV extension in ns2, and evaluated the effectiveness of
the misuses through simulations.

The rest of this paper is organized as follows. The next section briefly describes the AODV
protocol. Section 3 describes our analysis scheme. Section 4 focuses on analyzing the atomic
misuses of AODV routing message. Section 5 discusses compound misuses. Section 6 presents the
experimental results. Section 7 discusses the related work in security of wireless ad-hoc networks.
Section 8 concludes this paper and points out future research directions. Appendices give the details
of the misuses as well as the simulation results.

2 An Overview of AODV Protocol

The Ad-hoc On-Demand Distance Vector (AODV) [6] protocol is an on-demand routing protocol,
which initiates a route discovery process only when desired by a source node. When a source node
wants to send data packets to a destination node but cannot find a route in its routing table, it
broadcasts a Route Request (RREQ) message to its neighbors. Its neighbors then rebroadcast the
RREQ message to their neighbors if they do not have a fresh enough route to the destination node.
(A fresh enough route is a valid route entry for the destination node whose associated sequence
number is equal to or greater than that contained in the RREQ message.) This process continues
until the RREQ message reaches the destination node or an intermediate node that has a fresh
enough route.

Every node has its own sequence number and RREQ ID1. AODV uses sequence numbers to
guarantee that all routes are loop-free and contain the most recent routing information. RREQ
ID in conjunction with source IP address uniquely identify a particular RREQ message. The
destination node or an intermediate node only accepts the first copy of a RREQ message, and
drops the duplicated copies of the same RREQ message.

After accepting a RREQ message, the destination or intermediate node updates its reverse
route to the source node using the neighbor from which it receives the RREQ message. The
reverse route will be used to send the corresponding Route Reply (RREP) message to the source
node. Meanwhile, it updates the sequence number of the source node in its routing table to the
maximum of the one in its routing table and the one in the RREQ message. When the source or an
intermediate node receives a RREP message, it updates its forward route to the destination node
using the neighbor from which it receives the RREP message. It also updates the sequence number

1It is also known as flood ID in earlier versions of AODV specifications.

2

of the destination node in its routing table to the maximum of the one in its routing table and
the one in the RREP message. A Route Reply Acknowledgement (RREP-ACK) message is used
to acknowledge receipt of a RREP message. Though not required, AODV may utilize the HELLO
message to maintain the local connectivity of a node.

Route maintenance is done with Route Error (RERR) messages. If a node detects a link break in
an active route, it sends out a RERR message to its upstream neighbors that use it as the next hop
in the broken route. When a node receives a RERR message from its neighbor, it further forwards
the RERR message to its upstream neighbors.

AODV is a stateless protocol; the source node or an intermediate node updates its routing table
if it receives a RREP message, regardless of whether it has sent or forwarded a corresponding
RREQ message before. If it cannot find the next hop in the reverse routing table, it simply drops
the RREP message. Otherwise, it unicasts the RREP message to the next hop in the reverse route.

In general, a node may update the sequence numbers in its routing table whenever it receives
RREQ, RREP, RERR, or RREP-ACK messages from its neighbors.

3 Analysis Scheme

We adopt a systemic way to analyze the insider attacks against the AODV protocol. We first
identify a number of misuse goals that an inside attacker may want to achieve, and then study how
these goals may be achieved through misuses of the routing messages. These misuse goals are listed
as follows.

• Route Disruption (RD). Route Disruption means either breaking down an existing route or
preventing a new route from being established.

• Route Invasion (RI). Route invasion means that an inside attacker adds itself into a route
between two endpoints of a communication channel.

• Node Isolation (NI). Node isolation refers to preventing a given node from communicating
with any other node in the network. It differs from Route Disruption in that Route Disruption
is targeting at a route with two given endpoints, while node isolation is aiming at all possible
routes.

• Resource Consumption (RC). Resource consumption refers to consuming the communication
bandwidth in the network or storage space at individual nodes. For example, an inside
attacker may consume the network bandwidth by either forming a loop in the network.

There may be other attack goals (e.g., denial of service); however, we do not consider them in
our current work.

To facilitate the analysis, we further classify misuses of the AODV protocol into two categories:
atomic misuses and compound misuses. Intuitively, atomic misuses are performed by manipulating
a single routing message, which cannot be further divided. In contrast, compound misuses are
composed of multiple atomic misuses, and possibly normal uses of the routing protocol. It is easy
to see that atomic misuses may be used as building blocks of compound misuses.

We perform our analysis of atomic misuses through understanding the effects of possible atomic
misuse actions. Each atomic misuse action is an indivisible manipulation of one routing message.
Specifically, we divide the atomic misuse actions in AODV into the following four categories:

3

• Drop (DR). The attacker simply drops the received routing message.

• Modify and Forward (MF). After receiving a routing message, the attacker modifies one or
several fields in the message and then forwards the message to its neighbor(s) (via unicast or
broadcast).

• Forge Reply (FR). The attacker sends a faked message in response to the received routing
message. Forge Reply is mainly related to the misuse of RREP messages, which are in
response of RREQ messages.

• Active Forge (AF). The attacker sends a faked routing message without receiving any related
message.

At first glance, compound misuses seem to be simple compositions of atomic uses. However, when
carefully aggregated together, some compositions of atomic misuses become more powerful attacks
due to the changes in the number of messages. For example, if an attacker regularly broadcasts
RREQ messages with false information in the neighborhood of a victim node, the attacker can
successfully prevent the victim node from receiving any messages. In our analysis of compound
misuses, we focus on the aforementioned, “powerful” compound misuses; simple compositions of
atomic misuses (and possibly the normal routing messages as well as the above compound misuses)
can be analyzed via automatic vulnerability analysis tools (e.g., attack graphs [8]).

It is easy to see that our analysis scheme is also applicable to other mobile ad hoc routing
protocols, possibly with slight modification. However, in this paper, we only focus on the AODV
protocol, while considering the analysis of the other protocols as possible future work.

Since atomic misuses form the foundation of compound misuses, in the following, we first perform
a systematic analysis of atomic misuses of the AODV protocol, and then study how atomic misuses
and normal routing messages may be combined to launch compound misuses.

4 Atomic Misuses of AODV

In this section, we present our analysis results about atomic misuses of the AODV protocol. Due
to the space limit, we only summarize the results and discuss a few atomic misuses in details. For
the complete set of atomic misuses, please refer to the appendix of our technical report [7].

In our analysis, we use a simple naming scheme to identify atomic misuses, which combines
routing message type and atomic misuse action. Specifically, each atomic misuse is named in the
form of MessageType Action, which means that an inside attacker applies the “Action” to a routing
message of type “MessageType.” For brevity, we use the abbreviations introduced in the previous
section to represent atomic misuse actions. For example, RREP DR represents that an attacker drops
(DR) a RREP message. We also use names in the form of MessageType Action Goal to represent
that an inside attacker attempts to achieve the “Goal” by applying the “Action” to a routing
message of type “MessageType.” For example, RREP DR RD represents that an attacker attempts to
disrupt (RD) a route by dropping (DR) a RREP message.

4.1 Atomic Misuses of RREQ Messages

Table 1 summarizes the atomic misuses of a RREQ message. The atomic misuse action Forge
Reply is not applicable to RREQ messages, since RREQ messages are not used to reply to any
other routing message.

4

Table 1: Atomic Misuses of A RREQ Message and Achievable Misuse Goals.
Atomic Misuse Route Disruption Route Invasion Node Isolation Resource Consumption

RREQ DR Yes (in some cases) No No No
RREQ MF Yes Yes Partial2 No
RREQ AF Yes Yes Partial No

Atomic misuse RREQ DR refers to simply dropping the received RREQ message. If an attacker
applies such attacks to all the RREQ messages it receives, this kind of misuses is equivalent to
not having the attacking node in the network. An inside attacker may also selectively drop RREQ
messages. Attackers that launch such misuses are in nature similar to the selfish nodes mentioned
in [5].

Atomic misuse RREQ MF refers to the atomic misuses with which an inside attacker modifies one
or several fields in a RREQ message that it just receives, and then broadcasts the modified RREQ
message. Table 2 lists the RREQ message fields that an attacker may modify as well as the possible
modifications.

Table 2: Possible Modifications of Fields in A RREQ Message.
RREQ Message Field Modifications

Type Change the message type.
RREQ ID Increase it to make the faked RREQ message acceptable, or de-

crease it to make the RREQ message unacceptable.
Hop Count Decrease it to update other nodes’ reverse routing tables, or in-

crease it to invalidate the update.
Destination IP Address Replace it with another IP address.
Destination Sequence Number Increase it to update other nodes’ forward route tables, or decrease

it to suppress its update.
Source IP Address Replace it with another IP address.
Source Sequence Number Increase it to update other nodes’ reverse route tables, or decrease

it to suppress its update.
Flags Reverse the setting.

Several fields have immediate security implications when modified. RREQ ID along with the
source IP address uniquely identifies a RREQ message; they indicate the freshness of a RREQ
message. Since a node only accepts the first copy of a RREQ message, an increased RREQ ID
along with the source IP address can guarantee that the faked RREQ message is accepted by other
nodes.

To ensure loop freedom in AODV, after receiving a RREQ message, a node updates its reverse
routing table only if the source sequence number field in the RREQ message is greater than that in
its routing table, or the source sequence numbers are equal, but the hop count field in the RREQ
message is smaller than that in the routing table. An inside attacker may also change these fields
to affect other nodes’ routing table.

An intermediate node or a source node updates its forward routing table if the destination
sequence number in the RREP message is greater than the one in its routing table, or the destination
sequence numbers are the same, but the hop count in the RREP message plus one is smaller than
the one in its routing table. An inside attacker may increase the sequence numbers or decrease
the hop count in a faked RREQ message to update other nodes’ routing tables, or decrease the
sequence numbers or increase the hop count to invalidate a RREQ message.

5

When a node updates its routing table, the next hop in the route entry is assigned as the node
from which it receives the RREQ message. An inside attacker may manipulate the source IP
address in the IP header to change the reverse route.

Both RREQ DR and RREQ MF must be triggered by an incoming RREQ message. In contrast,
an inside attacker may perform a RREQ AF misuse to forge a RREQ message without receiving
a RREQ message. An inside attacker may need to collect some necessary information to forge
RREQ messages (e.g., by listening to the traffic). Theoretically, the attacker may forge any field
in a RREQ message, generating the effects we just discussed.

Now let us look at an atomic misuse of a RREQ message, RREQ MF NI, with which an inside
attacker prevents a victim node from receiving data packets from other nodes for a short period of
time. The attacker may make the following modifications after it receives a RREQ message from
the victim node: (1) Increase the RREQ ID by a small number; (2) Replace the destination IP
address with a non-existent IP address; (3) Increase the source sequence number by at least one; (4)
Set the source IP address in IP header to a non-existent IP address. The attacker then broadcasts
the forged message. When the neighbors of the attacker receive the faked RREQ message, they will
update the next hop to the source node to the non-existent node, since the faked RREQ message
has a greater source sequence number. Due to the non-existent destination IP address, the faked
message can be broadcasted to the farthest nodes in the ad-hoc network. When other nodes want
to send data packets to the source node, they will use the routes established by the faked RREQ
message, and the data packets will be dropped due to the non-existent node.

This atomic misuse can prevent a victim node from receiving data packets for a short period of
time; however, it cannot fully isolate the victim node, due to the local repair mechanism in the
AODV protocol [6]. The other nodes will initiate another round of route discovery if they note that
the data packets cannot be delivered successfully. In addition, the victim node may still be able to
send data packets to other nodes.

Several of the atomic misuses of RREQ messages use RREQ messages to add entries the routing
table of other nodes. These entries are different from those established through normal exchange
of RREQ and RREP messages. In particular, the lifetime of these entries is set to a default value
(e.g., 3 seconds as in our experiments). Thus, to make such entries effective, an attacker needs to
launch the atomic misuses periodically.

4.2 Atomic Misuses of RREP Messages

Table 3 summarizes the atomic misuses of a RREP message and whether they can achieve the
misuse goals. The premise of atomic misuses of RREP messages is that the inside attacker must

Table 3: Atomic Misuses of A RREP Message and Achievable Misuse Goals.
Atomic Misuse Route Disruption Route Invasion Node Isolation Resource Consumption

RREP DR Yes (in some cases) No No No
RREP MF Yes Yes No No
RREP FR Yes Yes No No
RREP AF Yes Yes No Yes

already be in a reverse route involving a victim node, so that it can receive a RREQ or RREP
message, or send a forged RREP through some other nodes. Due to this restriction, most of the
atomic misuses of RREP messages, including RREP DR RREP MF, have limited impact.

Atomic misuse RREP FR is specific to RREP messages. It refers to the misuse with which an

6

� �� �� � � � � 	
 � �

 � � � 	
 � �

 � � � � � �� � � � � � � �� � � �
Figure 1: An Attacker Invades A Route by Sending A Faked RREP Actively.

attacker forges a RREP message in response to a RREQ message. For example, after receiving a
RREQ message, an inside attacker may forge a RREP message as if it had a fresh enough route to
the destination node. In order to suppress other legitimate RREP messages that the source node
may receive from other nodes, the attacker may forge a faked RREP message by increasing the
destination sequence number. An attacker may disrupt the route between the victim node to a
given destination, or invade in the route between by suppressing other alternative routes.

An interesting atomic misuse is RREP AF RI. If an inside attacker has routes to both the source
and the destination nodes of an existing route (as shown in Figure 1(a)), it can invade the route by
sending a faked RREP message to the source node. In Figure 1, assume node A is the attacking
node, which already has a route to nodes 0 and 3, respectively. Node A can forge a RREP message
as follows: (1) Set the source IP to node 0; (2) Set the destination IP to node 3; (3) Set the
destination sequence number to node 3’s sequence number plus at least one; (4) Set the source
IP in the IP header to node 2; (5) Set the destination IP in the IP header to node 1. Node A
then sends the faked RREP message to node 1, which forwards the faked RREP message to node 0
(Figure 1(b)). When nodes 0 and 1 receive the faked RREP message, they will update the sequence
number of node 3 in their routing tables to the destination sequence number in the faked RREP
message. Node 0 will still use node 1 as the next hop to node 3, but node 1 will update node A
as the next hop to node 3. Note that node A already has a route to node 3. As a result, node A
successfully becomes a part of the route from node 0 to node 3 (Figure 1(c)).

4.3 Atomic Misuses of RERR Messages

Table 4 summarizes the three types of atomic misuses of RERR messages and the misuse goals
that they can achieve. The misuse action Forge Reply is not applicable to RERR messages, since
RERR messages are not used to reply to any routing messages.

Table 4: Atomic Misuses of A RERR Message and Achievable Misuse Goals.
Atomic Misuse Route Disruption Route Invasion Node Isolation Resource Consumption

RERR DR Yes (in some case) No No No
RERR MF Yes No Partial Yes
RERR AF Yes No Partial Yes

RERR DR has limited impact on the network except for causing delays in the identification of route
errors, since the upstream nodes will eventually discover the problematic routes and establish new
routes.

In order to know which neighbors should receive a RERR message, each node keeps a “precursor
list” of its neighbors for each route entry. When a link break is detected, the node sends a RERR
message to all the nodes in the corresponding precursor list. To launch RERR MF misuses, an inside
attacker may modify the RERR message after it receives a RERR message, and send the faked
RERR message to the neighbors in the precursor list. Table 5 lists the fields in a RERR message

7

that the attacker may manipulate. Sometimes, the attacker may modify the IP addresses in the IP
header as well.

Table 5: Possible Modifications of Fields in A RERR message.
RERR Message Field Modifications

Type Change the value of Type.
DestCount Modify it according to the number of unreachable destinations

included in the RERR message.
Unreachable Destination IP Address Replaces it with another IP address.
Unreachable Destination Sequence
Number

Increases it to update other nodes’ routing table, or decreases it
to invalidate this entry.

Additional Unreachable Destination
IP address (if needed)

Add a new destination IP address which is still reachable.

Additional Unreachable Destination
Sequence number (if needed)

Increases it to update other nodes’ routing table, or decreases it
to invalidate this entry.

5 Compound Misuses

One or several inside attackers may combine atomic misuses, and possibly normal uses of routing
messages, in any order to launch compound misuses. For example, an attacker may repeatedly
launch the same type of atomic misuses to make the impact persistent. As another example, an
attacker may launch some early atomic or compound misuses to prepare for some later ones. A
crucial issue here is to understand the compound misuses that can be used as “building blocks” of
more complex attacks. Once we understand “building blocks,” we may analyze the complex atomic
scenarios through automatic vulnerability analysis tools such as the attack groups [8].

For convenience, we extend the naming scheme for atomic misuses to denote compound misuses
of the same type of atomic misuses. Specifically, we put an “s” after the type of routing message
that is being misused in the corresponding atomic misuse. For example, RREQs AF represent that
an attacker actively forges multiple RREQ messages.

In our analysis, we observe that most of atomic misuses targeted at disrupting services can only
generate temporary impact due to the local repair mechanism that is commonly seen in mobile ad
hoc routing protocols. Thus, to make the impact of these misuses persistent, an attacker needs
to repeat the atomic misuses regularly. We do not discuss such misuses in detail; however, our
experimental results will show that an attacker can indeed achieve its goals through such compound
misuses.

Another class of compound misuses is more interesting than simply repeating the same type
of atomic misuses. We discovered that an attacker may achieve some misuse goals through well
planned combination of atomic misuses. Let’s see an example as follows.

An inside attacker may invade into a route through a RREQs AF compound misuse. Consider the
scenario shown in Figure 2(a). Suppose nodes 0 through 5 are normal nodes, and node A is the
attacker node. Further assume there is a route from node 0 to node 5. The attacker at node A may
forge a RREQ message as follows: (1) Set the source IP address as node 5; (2) Set the destination
IP address as node 0; (3) Set the source sequence number to a number greater than node 5’s current
sequence number; (4) Set the source IP address in IP header as node A. Node A then broadcasts
the faked RREQ message. After receiving this message, nodes 2 and 3 will both set node A as the
next hop to node 5, as in Figure 2(b).

8

� � ��� ��� � � � � ��� ��� � �� � ��� ��� � �
Figure 2: Route Invasion by Two Faked RREQ Messages.

To further establish the route from node A to node 5, the attacker may generate the second
RREQ message as follows: (1) Set the source IP address as node A; (2) Set the destination IP
address as node 5; (3) Set the destination sequence number to a number greater than node 5’s
current sequence number; (4) Set the source IP address in the IP header as node A. Node A can
then broadcast this RREQ message. This message will help node A establish a route to node 5, as
in Figure 2(c).

As discussed earlier, one or several inside attackers may compose attacks by arbitrarily combin-
ing atomic and/or compound misuses. In particular, the attackers may use different misuses to
complement each other. For example, RREQs AF is effective in preventing a victim node from receiv-
ing messages from other nodes, and RREP AF is effective in preventing other nodes from receiving
from the victim node. By combining them together, the attacker(s) may successfully isolate a node.
In addition, one or several inside attackers may use some misuses or normal routing messages to
prepare for later misuses. For example, all RREP related misuses require a route involving both
the attacker and the victim node. To prepare for such misuses, an attacker may use a normal
RREQ message or an atomic misuse (e.g., RREQ AF) to establish the required route. These misuses
are interesting; however, we do not consider them in this paper. Indeed, manually analyzing such
attacks is not the best option due to the potentially large search space for possible complex attack
scenarios. A better solution is to model the individual misuses and then construct attack strategies
through automatic tools. Our work in this paper provides the foundation required by such tools.

6 Experimental Results

In order to validate our analysis results, we have implemented all the misuses and performed a
series of experiments through simulation. The simulation is based on ns2 version 93 with the CMU
Monarch extension for the AODV protocol4. To take advantage of the existing AODV code, we
implemented the atomic misuses by simply overriding the AODV agent’s receive and send functions.
Compound misuses are performed by repeating/combining the atomic misuses.

Table 6 shows the parameters used in our experiments. We used continuous bit rate (CBR) in all
our experiments. In each simulation scenario, there are 5 mobile nodes if it is for atomic misuses,
and 20 nodes if it is for compound misuses. In all the experiments, there is only one inside attacker
in the ad hoc network. The field configuration is 1000 m × 600 m. The simulation runs for 100
simulated seconds. After arriving at a location, a node stays there for 2.0 seconds before moving to
the next location. A source node sends 4 data packets per simulated seconds. There are at most 20
connections during each simulation run. In a node’s transmission range (250m), other nodes can
receive signals from this node directly. The physical link bandwidth is 2 Mbps.

We have verified all the atomic misuses through analyzing the trace files generated by the sim-

3http://www.isi.edu/nsnam/ns/.
4http://www.monarch.cs.rice.edu/.

9

Table 6: Simulation Parameters
Communication Type CBR

Number of Nodes 5 or 20
Simulation Area 1000m*600m
Simulation Time 100 seconds

Pause Time 2.0 seconds
Packet Rate 4 pkt/sec

Number of Connections 20
Transmission Range 250m

Physical Link Bandwidth 2Mbps
Number of Inside Attackers 1

0
50

100
150
200
250
300
350
400

0 0.5 1 1.5 2 2.5 3 3.5
Mobility Rate (m/s)

o

f
d

at
a

p
ac

ke
ts

 in
 o

n
e

co
n

n
ec

ti
o

n

NORMAL RREQs_MF_RD RREQs_AF_RD

(a) Route Disruption by RREQs

0
50

100
150
200
250
300
350
400
450

0 0.5 1 1.5 2 2.5 3 3.5
Mobility Rate (m/s)

o

f
d

at
a

p
ac

ke
ts

 in
 o

n
e

co
n

n
ec

ti
o

n

NORMAL RREPs_FR_RD RREPs_AF_RD

(b) Route Disruption by RREPs

0
50

100
150
200
250
300
350
400
450

0 0.5 1 1.5 2 2.5 3 3.5
Mobility Rate (m/s)

o

f
d

at
a

p
ac

ke
ts

th

ro
u

g
h

 a
tt

ac
ke

r

Total # of data packets Before misuses.
After RREQs_MF_RI After RREPs_FR_RI

(c) RREPs FR RI and RREQs MF RI

0

50000

100000

150000

200000

250000

300000

350000

0 0.5 1 1.5 2 2.5 3 3.5
Mobility Rate (m/s)

R
o

u
ti

n
g

 O
ve

rh
ea

d

NORMAL RREQs_AF_RC RREQs_MF_RC

(d) Resource Consumption by RREQs

Figure 3: Experimental Results about Compound Misuses

ulations. We found that all the atomic misuses intended for Route Disruption and Node Isolation
succeeded; however, the effect can last for a short period of time due to the local repair mechanism
in the AODV protocol. This is due to two reasons. First, the impact caused by such atomic misuses
are detectable by the normal nodes, which then attempt to recover from the failures by establishing
new routes. Second, all the atomic misuses are performed with a single routing message. They do
not have further impact once the affected nodes perform local repair successfully.

In contrast, the atomic misuses intended for Route Invasion are much more subtle. Unless the
routes established via atomic misuses are disrupted, the victim nodes will continue to use the routes
involving the inside attacker to transmit data packets. Details of the experiments about atomic
misuses can be found in the appendix.

Though atomic misuses for Route Disruption and Node Isolation are not effective when they
are used individually, our experiments show that they are quite powerful when they are used in
compound misuses.

10

Figure 3 shows the experimental results for compound misuses for Route Disruption, Route
Invasion, and Resource Consumption. Figure 3(a) displays the numbers of data packets transmitted
between two victim nodes when using compound misuses of RREQ messages. It clearly shows that
when RREQs MF RD and RREQs AF RD are used against these two nodes, the number of data packets
drops almost to zero. Figure 3(b) shows the same measure when compound misuses of RREP
messages are used. The number of data packets transmitted between the two victim nodes is slightly
better than in Figure 3(a); however, it is still much lower than the number of packets transmitted
in normal situations. Figure 3(c) shows the number of data packets transmitted through an inside
attacker with or without Route Invasion misuses. It is easy to see that the misuses effectively
make the attacker a part of the route between the two victim nodes. Finally, Figure 3(d) shows
that the routing overhead with RREQs MF RC is higher than the overhead in normal situations, and
RREQs AF RC misuse is much higher than the RREQs MF RC.

7 Related Work

Research in MANET has been rather active. Several routing protocols have been proposed to
discover and maintain routes in MANET environments, including secure routing protocols. Early
proposals for secure ad hoc routing (e.g., [9], [1], [10], and [11]) use public key cryptography to
protect ad hoc routing messages. However, due to the heavy computation involved in public key
cryptography, these proposals are too expensive for nodes in mobile ad hoc networks, which are
usually powered by batteries.

Recent results usually use symmetric cryptography to authenticate the routing messages. Pa-
padimitratos and Haas proposed to authenticate the route discovery process with a secret key shared
between the source and the destination nodes [12]. Basagni et al. use a network-wide secret key
to secure the routing messages [13]. Yi et al. modified AODV to include security metrics for route
discovery, using different trust levels with a shared symmetric key for each level [1]. Hu, Perrig, and
Johnson have proposed a sequence of secure mobile ad hoc routing protocols, including Ariadne [2]
and SEAD [3], as well as security mechanisms for routing protocols [14]. Their techniques include
authenticating routing messages through a one-way key chain with delayed disclosures of keys, and
authentication code with secret keys shared by mobile nodes.

Intrusion detection can provide another layer of protection to mobile ad hoc networks. Zhang
and Lee proposed a distributed and cooperative IDS architecture in mobile ad-hoc networks [15].
They use data on the node’s physical movements and the corresponding change in its routing table
as the trace data to build the anomaly detection model. In Marti et al.’s proposal [5], each node uses
a component called watchdog to detect misbehaving nodes, and another component called pathrater
to choose a reliable route based on the information collected by the watchdog. In Buchegger and
Boudec’s proposal [4], each node not only monitors the bad behaviors of neighbors, but collects the
list of malicious nodes from warnings sent from other trusted nodes.

8 Conclusions

In this paper, we reported the results of a systematic analysis of insider attacks against the AODV
protocol. We classified the possible insider attacks into atomic misuses and compound misuses,
and identified a number of atomic as well as compound misuses. We also performed a series of
experiments (based on simulation) to validate these misuses. Our results showed that an inside
attacker can effectively invade into routes or disrupt the normal operations of the AODV protocol.

11

The results in this paper represent our initial attempt in understanding insider attacks against
mobile ad hoc routing protocols. As a part of our future work, we plan to investigate insider attacks
against secure mobile ad hoc routing protocols such as Ariadne [2].

References

[1] S. Yi, P. Naldurg, and R. Kravets, “Security-aware routing protocol for wireless ad hoc net-
works,” in Proc. of ACM MobiHoc 2001, Oct 2001.

[2] Y. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-demand routing protocol for
ad hoc networks,” in Proc. of (MobiCom 2002), Sept. 2002.

[3] Y.-C. Hu, D. B. Johnson, and A. Perrig, “SEAD: Secure efficient distance vector routing for
mobile wireless ad hoc networks,” in 4th IEEE Workshop on Mobile Computing Systems and
Applications, June 2002.

[4] S. Buchegger and J. L. Boudec, “Performance analysis of the CONFIDANT protocol (coop-
eration of nodes: Fairness in dynamic ad-hoc networks),” in Proc. of ACM MobiHoc 2002,
pp. 226–236, June 2002.

[5] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing misbehavior in mobile ad hoc
networks,” in Proc. MobiCom 2000, pp. 255–265, 2000.

[6] C. Perkins, E. Belding-Royer, and S. Das. Internet Draft, June 2002. draft-ietf-manet-aodv-
11.txt.

[7] P. Ning and K. Sun, “How to misuse AODV: A case study of insider attacks against mobile
ad-hoc routing protocols,” Tech. Rep. TR-2003-07, CS Department, NC State University, 2003.

[8] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing, “Automated generation and analysis
of attack graphs,” in Proc. of IEEE Symposium on Security and Privacy, May 2002.

[9] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE Network, vol. 13, no. 6, pp. 24–30,
1999.

[10] J. Hubaux, L. Buttyan, and S. Capkun, “The quest for security in mobile ad hoc networks,”
in Proc. ACM MobiHoc 2001, 2001.

[11] K.Sanzgiri, B.Dahill, B.N.Levine, C.Shields, and E.M.Belding-Royer, “A secure routing pro-
tocol for ad hoc networks,” in Proc. of the Tenth IEEE Int’l Conf. on Network Protocols,
2002.

[12] P. Papadimitratos and Z. J. Haas, “Secure routing for mobile ad hoc networks,” in Proc. of the
SCS Communication Networks and Distributed Systems Modeling and Simulation Conference,
pp. 27 – 31, Jan 2002.

[13] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti, “Secure pebblenets,” in Proc. of ACM Mobi-
Hoc 2001, pp. 156–163, 2001.

[14] Y. Hu, A. Perrig, and D. V. Johnson, “Efficient security mechanisms for routing protocols,”
in Proc. of the 10th Annual Network and Distributed System Security Symposium, 2003.

12

[15] Y. Zhang and W. Lee, “Intrusion detection in wireless ad hoc networks,” in Proc. of ACM
MobiCom 2000), pp. 275–283, 2000.

A Description of Atomic Misuses and the Simulation Results

This appendix provides descriptions of the atomic misuses and the simulation results about these
atomic misuses. In all the simulations, there are 5 nodes in the network, and node 2 is the malicious
node launching the misuses.

A.1 Atomic Misuses of RREQ Messages

A.1.1 Atomic Misuses RREQ DR

Atomic misuses RREQ DR refer to simply dropping the received RREQ message. If an attacker applies
such attacks to all the RREQ messages it receives, this kind of misuses is equivalent to not having
the attacking node in the network. An inside attacker may also selectively drop RREQ messages.
Such misuses are in nature similar to selfish nodes mentioned in [5]. If the attacking node is the
only node between two parts of an ad-hoc network, it may selectively separate the nodes in these
two parts, and partially achieve the goal of route disruption. RREQ DR cannot achieve the other
three misuse goals. Due to the simplicity of RREQ DR misuses, we do not include the experimental
results here.

A.1.2 Atomic Misuses RREQ MF

RREQ MF RD: If an attacking node is the only node connecting two parts of an ad-hoc network,
the attacker can prevent a new route from being established by utilizing one of the following
modifications on a RREQ message it receives:

• Change the Type field;

• Replace the destination IP address with another IP address;

• Replace the source IP address with another IP address;

• Replace the source IP address in IP header with another IP address.

Even if there exists other routes between two given nodes, the attacker still has a chance to
disrupt the new route from being established. Suppose node S broadcasts a RREQ message to
establish a route to node D. After receiving the RREQ message, the attacker modifies the following
fields of the RREQ message:

1. Replace the RREQ ID of node S with the RREQ ID of node D, and increases it by a small
number;

2. Interchange the source IP address 5 (node S) with the destination IP address (node D) in the
RREQ message;

5In draft-11, it is marked as “Originator IP Address”.

13

3. Increment the destination sequence number by at least one, and then interchanges the source
sequence number with the destination sequence number;

4. Fill source IP address in IP header with a non-existent IP address.

By doing these modifications, the attacker pretends to forward a RREQ message initiated from
node D to node S, whereas the original RREQ message is initiated from node S to node D. Neighbors
of the attacker accept the faked RREQ message since they have not received a RREQ message
with such a RREQ ID from node D before. Because the faked RREQ message has a greater source
sequence number, these neighbors updates their next hop to the node D as the non-existent node,
which is indicated by the source IP address in the IP header. These neighbors rebroadcast the faked
RREQ message to their neighbors. When node D receives the faked RREQ message, it just drops
the message since it notices that this message is originated from itself. When node S receives the
faked RREQ message, it updates its reverse route table since the source sequence number (of node
D) in the faked RREQ message is greater than that in its route table. Node S then updates the
next hop to node D as the neighbor from which it receives the faked RREQ message, and unicasts
a RREP message to this neighbor. When the RREP message is unicasted along the reverse route,
it is lost due to the non-existent node in the reverse route.

Due to the broadcast of the legitimate RREQ message, node S may receive normal RREP
messages, but the route established by the faked RREQ message suppresses the routes established
by RREP messages since node D’s sequence number in the faked RREQ message is greater than
those in the RREP messages. After that, node S begins to send data packets along the route
established by the faked RREQ message, but all data packets are dropped when they reach the
non-existent node. When the upstream neighbor of the attacker discovers the link failure, it either
sends a RERR message back to node S, or starts ”local repair,” which broadcasts a RREQ message
to discover a route from itself to the destination node if the destination is no farther than maximum
repair hops away.

Note that the reverse route table (established by RREQ messages) and the forward route (es-
tablished by RREP messages) are in indeed one route table. The route entries added by RREQ
messages can be updated by RREP message, and vice versa.

In the simulation, node 0 is the source node, and node 1 is the destination node. Malicious node
2 sends a faked RREQ message to disrupt the route from node 0 to node 1. From the trace file, we
can see clearly that the route is disrupted when node 3 attempts to forward data packets to node
88, which is a non-existent node. The fragment of the trace file is as follows:
...

s 0.200000000 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 0.200900287 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

s 0.201042333 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 0.201942620 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

s 0.201942934 2 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [88:255 -1:255 28 0] [0x2 3 101 [0 12] [1 10]] (REQUEST)

r 0.201943000 4 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 0.202843535 4 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 28 0] [0x2 3 101 [0 12] [1 10]] (REQUEST)

r 0.202843535 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 28 0] [0x2 3 101 [0 12] [1 10]] (REQUEST)

...

s 0.778799135 0 AGT — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

r 0.778799135 0 RTR — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

s 0.778799135 0 RTR — 3 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [3] 0 0

r 0.780535995 3 RTR — 3 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [3] 1 0

14

f 0.780535995 3 RTR — 3 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 88] [3] 1 0

D 0.780535995 3 RTR CBK 2 cbr 68 [13a 3 3 800] ——- [0:0 1:0 29 88] [2] 1 0

D 0.780535995 3 RTR CBK 3 cbr 68 [13a 3 3 800] ——- [0:0 1:0 29 88] [3] 1 0

s 0.780535995 3 RTR — 0 AODV 32 [0 0 0 0] ——- [3:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 0.781932282 0 RTR — 0 AODV 32 [0 ffffffff 3 800] ——- [3:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 0.781932596 2 RTR — 0 AODV 32 [0 ffffffff 3 800] ——- [3:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 0.781932662 4 RTR — 0 AODV 32 [0 ffffffff 3 800] ——- [3:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

...

RREQ MF RI: Let’s first consider a scenario in which an inside attacker is in the transmission
range of a source node that initiates a RREQ message. After receiving the RREQ message from
the source node, the attacker may modify the RREQ message as follows:

1. Increase the source node’s RREQ ID by at least one;

2. Increase the source sequence number by at least one;

3. Increase the destination sequence number by at least one.

After generating this faked RREQ message, the attacker broadcasts it to its neighbors. The
neighbors of the attacker accept the faked RREQ message due to the new pair of the RREQ ID
and the source IP address. They then update their next hop to the source node as the attacking
node, because the faked RREQ message has a greater source sequence number than those in their
route tables. They also rebroadcast the faked RREQ message to their neighbors. When the
source node receives the faked RREQ message, it drops the message, since this message appears
to originate from itself. When the destination node receives the faked RREQ message, it updates
its next hop to the source node as the neighbor from which it receives the faked RREQ message,
and then updates its own sequence number to the maximum of its current sequence number and
the destination sequence number in the RREQ message. After that, it fills the updated sequence
number into the destination sequence number in the RREP message. The destination node then
unicasts the RREP message to the source node along the reverse route, which includes the attacker.
Because this RREP message contains a greater destination sequence number than that in the source
node’s route table which may have been updated by other legitimated RREP messages, the source
node updates the destination sequence number to that in the RREP message, and sets the attacker
as the next hop to the destination node. Now the attacker succeeds in invading the route from the
source node to the destination node.

When the attacker is not in the transmission range of a source node, i.e., there exists at least one
intermediate node between the attacker and the source node, the attacker cannot invade the route
by modifying a RREQ message in the above way. When the attacker broadcasts the faked RREQ
message, all the neighbors will accept it and update the attacker as the next hop to the source
node. When the attacker forwards the RREP message to a neighbor along the reverse route, this
neighbor will just send the RREP message back to the attacker. As a result, there will be a loop
involving the attacker and one of its neighbors. However, the attacker still can invade the route by
sending two faked RREQ messages, which is a compound misuse by RREQs MF RI.

In the simulation, node 0 is the source node, and node 1 is the destination node. In normal
situations, the route is 0 ⇒ 3 ⇒ 1; with atomic misuse RREQ MF RI, the route is 0 ⇒ 3 ⇒ 2 ⇒ 1.
The fragment of the trace file is as follows:
...

s 5.668618722 0 AGT — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

15

r 5.668618722 0 RTR — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

s 5.668618722 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669519249 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

s 5.670400475 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [2:255 -1:255 29 0] [0x2 2 3 [1 5] [0 9]] (REQUEST)

r 5.678305682 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 3 [1 5] [0 9]] (REQUEST)

r 5.678306029 1 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 3 [1 5] [0 9]] (REQUEST)

s 5.678306029 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 0:255 30 2] [0x4 1 [1 6] 10.000000] (REPLY)

r 5.678306076 0 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 3 [1 5] [0 9]] (REQUEST)

s 5.679947136 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [3:255 -1:255 28 0] [0x2 3 3 [1 5] [0 9]] (REQUEST)

r 5.682433791 0 RTR — 0 AODV 44 [13a 0 3 800] ——- [1:255 0:255 29 0] [0x4 2 [1 2] 10.000000] (REPLY)

s 5.682433791 0 RTR — 0 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [0] 0 0

r 5.694526421 2 RTR — 0 AODV 44 [13a 2 1 800] ——- [1:255 0:255 30 2] [0x4 1 [1 12] 10.000000] (REPLY)

f 5.694526421 2 RTR — 0 AODV 44 [13a 2 1 800] ——- [1:255 0:255 29 3] [0x4 2 [1 12] 10.000000] (REPLY)

r 5.696474821 3 RTR — 0 AODV 44 [13a 3 2 800] ——- [1:255 0:255 29 3] [0x4 2 [1 12] 10.000000] (REPLY)

f 5.696474821 3 RTR — 0 AODV 44 [13a 3 2 800] ——- [1:255 0:255 28 2] [0x4 3 [1 12] 10.000000] (REPLY)

D 5.696474821 3 IFQ ARP 0 AODV 44 [13a 3 3 800] ——- [1:255 0:255 28 2] [0x4 3 [1 6] 10.000000] (REPLY)

...

r 5.700809487 2 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 26 0] [0x2 5 5 [1 10] [0 14]] (REQUEST)

s 5.700809487 2 RTR — 0 AODV 44 [0 0 0 0] ——- [2:255 0:255 30 3] [0x4 2 [1 12] 9.000000] (REPLY)

r 5.700809778 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 26 0] [0x2 5 5 [1 10] [0 14]] (REQUEST)

r 5.700809920 1 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 26 0] [0x2 5 5 [1 10] [0 14]] (REQUEST)

r 5.702343754 2 RTR — 0 AODV 44 [13a 2 3 800] ——- [1:255 0:255 28 2] [0x4 3 [1 12] 10.000000] (REPLY)

r 5.705962421 3 RTR — 0 AODV 44 [13a 3 2 800] ——- [2:255 0:255 30 3] [0x4 2 [1 12] 9.000000] (REPLY)

s 5.793703616 0 AGT — 1 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

r 5.793703616 0 RTR — 1 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

s 5.793703616 0 RTR — 1 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [1] 0 0

r 5.795440889 3 RTR — 1 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [1] 1 0

f 5.795440889 3 RTR — 1 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 2] [1] 1 0

r 5.797541289 2 RTR — 1 cbr 68 [13a 2 3 800] ——- [0:0 1:0 29 2] [1] 2 0

f 5.797541289 2 RTR — 1 cbr 68 [13a 2 3 800] ——- [0:0 1:0 28 1] [1] 2 0

r 5.799762731 1 AGT — 1 cbr 68 [13a 1 2 800] ——- [0:0 1:0 28 1] [1] 3 0

...

RREQ MF NI: In general, an inside attacker cannot completely isolate a node by modifying one
RREQ message, but it can prevent the source node from receiving data packets from other nodes
for a short period of time. After receiving a RREQ message from the source node, the attacker
applies the following modifications:

1. Increase the RREQ ID by a small number;

2. Replace the destination IP address with a non-existent IP address;

3. Increase the source sequence number by at least one;

4. Set the source IP address in IP header to a non-existent IP address.

When the neighbors of the attacker receive the faked RREQ message, they update the next hop
to the source node to a non-existent node, which is indicated by the source IP address in IP header
of the RREQ message, since the faked RREQ message has a greater source sequence number.

16

Because the faked RREQ message has a non-existent destination IP address, it can be broadcasted
to the farthest nodes in the ad-hoc network, and no RREP message is generated. When other
nodes want to send data packets to the source node, they just use the routes established by the
faked RREQ message. The data packets are dropped due to the non-existent node in the routes.
The attacker may isolate a victim node from receiving from other nodes for a short period of time
until new routes are estalished. Alternatively, the attacker can set its own IP address as the source
IP address in the IP header, so it can receive and drop the data packets from other nodes to the
victim node.

In the simulation, node 0 is the victim node. In normal situations, node 1 can send data packets
to node 0 without sending a RREQ message, because it can use the reverse route added by the
RREQ message originated from node 0. With the atomic misuse RREQs MF NI, node 1 fails when
sending data packets to a non-existent node, and then generates a RERR message. At the same
time, all nodes receiving the faked RREQ message cannot send data packets to node 0. The related
fragment of the trace file is as follows:
...

s 5.668618722 0 AGT — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

r 5.668618722 0 RTR — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

s 5.668618722 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669518888 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669519456 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669519512 1 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

s 5.669519512 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 0:255 30 0] [0x4 1 [1 2] 10.000000] (REPLY)

f 5.669660935 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [88:255 -1:255 29 0] [0x2 2 2 [1 0] [0 6]] (REQUEST)

s 5.670400683 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.673439043 0 RTR — 0 AODV 44 [13a 0 1 800] ——- [1:255 0:255 30 0] [0x4 1 [1 2] 10.000000] (REPLY)

s 5.673439043 0 RTR — 0 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 1] [0] 0 0

r 5.674763944 1 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.674764345 2 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.674764512 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.676492882 1 AGT — 0 cbr 68 [13a 1 0 800] ——- [0:0 1:0 30 1] [0] 1 0

r 5.677757675 0 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 29 0] [0x2 2 2 [1 0] [0 6]] (REQUEST)

r 5.677758076 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 29 0] [0x2 2 2 [1 0] [0 6]] (REQUEST)

r 5.677758135 1 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 29 0] [0x2 2 2 [1 0] [0 6]] (REQUEST)

s 5.677758135 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 0:255 30 88] [0x4 1 [1 2] 10.000000] (REPLY)

...

s 6.068618722 1 RTR — 3 cbr 68 [0 0 0 0] ——- [1:1 0:1 30 88] [0] 0 0

D 6.068618722 1 IFQ ARP 0 AODV 44 [0 0 1 800] ——- [1:255 0:255 30 88] [0x4 1 [1 2] 10.000000] (REPLY)

D 6.068618722 1 RTR CBK 3 cbr 68 [0 0 1 800] ——- [1:1 0:1 30 88] [0] 0 0

s 6.068618722 1 RTR — 0 AODV 32 [0 0 0 0] ——- [1:255 -1:255 1 0] [0x8 1 [0 0] 0.000000] (ERROR)

r 6.069390888 3 RTR — 0 AODV 32 [0 ffffffff 1 800] ——- [1:255 -1:255 1 0] [0x8 1 [0 0] 0.000000] (ERROR)

r 6.069391348 2 RTR — 0 AODV 32 [0 ffffffff 1 800] ——- [1:255 -1:255 1 0] [0x8 1 [0 0] 0.000000] (ERROR)

r 6.069391512 0 RTR — 0 AODV 32 [0 ffffffff 1 800] ——- [1:255 -1:255 1 0] [0x8 1 [0 0] 0.000000] (ERROR)

...

RREQ MF RC: It is difficult for an attacker to consume too much resource with one faked RREQ
message. However, an attacker may still be able to introduce unnecessary broadcast messages
into the network through a single RREQ MF RC misuse. Specifically, an attacker can modify an

17

incoming RREQ message to make it appear to be fresh (by increasing the RREQ ID) so that it
will be rebroadcasted by the attacker’s neighbors. To generate real impact on the network, the
attacker needs to repeatedly apply RREQ MF RC misuses, and generate a broadcast message loop in
the network. We will discuss such misuses in the context of compound misuses.

A.1.3 Atomic misuses RREQ AF

RREQ AF RD: If there exists a route from a source node to a destination node, an inside attacker can
break down the route by broadcasting a faked RREQ. In the faked RREQ message, the attacker
pretends to rebroadcast a RREQ message initiated from the destination node to the source node
with a non-existent node as the source IP address in the IP header, just as described in RREQ MF RD.
Due to the same reason described in RREQ MF RD, the source node will update its route to the
destination node through a non-existent node, so the route is broken down.

In the simulation, node 0 is the victim node, and it already has a route to node 1. After node 2
sends a faked RREQ message actively, the route from node 0 to node 1 is disrupted. The fragment
of the trace file is as follows:
...

s 6.133635540 0 AGT — 2 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [2] 0 0

r 6.133635540 0 RTR — 2 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [2] 0 0

s 6.133635540 0 RTR — 2 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [2] 0 0

r 6.135372813 3 RTR — 2 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [2] 1 0

f 6.135372813 3 RTR — 2 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 1] [2] 1 0

r 6.137574510 1 AGT — 2 cbr 68 [13a 1 3 800] ——- [0:0 1:0 29 1] [2] 2 0

s 6.460392679 0 AGT — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

r 6.460392679 0 RTR — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

s 6.460392679 0 RTR — 3 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [3] 0 0

r 6.462129952 3 RTR — 3 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [3] 1 0

f 6.462129952 3 RTR — 3 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 1] [3] 1 0

r 6.464571649 1 AGT — 3 cbr 68 [13a 1 3 800] ——- [0:0 1:0 29 1] [3] 2 0

s 6.668618722 2 AGT — 4 cbr 48 [0 0 0 0] ——- [2:0 0:1 32 0] [0] 0 0

r 6.668618722 2 RTR — 4 cbr 48 [0 0 0 0] ——- [2:0 0:1 32 0] [0] 0 0

s 6.668618722 2 RTR — 0 AODV 48 [0 0 0 0] ——- [88:255 -1:255 0 0] [0x2 1 11 [0 4] [1 6]] (REQUEST)

r 6.669518855 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 0 0] [0x2 1 11 [0 4] [1 6]] (REQUEST)

s 6.669518855 3 RTR — 0 AODV 44 [0 0 0 0] ——- [3:255 1:255 30 88] [0x4 2 [0 4] 9.000000] (REPLY)

r 6.669519202 1 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 0 0] [0x2 1 11 [0 4] [1 6]] (REQUEST)

r 6.669519249 0 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 0 0] [0x2 1 11 [0 4] [1 6]] (REQUEST)

s 6.669519249 0 RTR — 0 AODV 44 [0 0 0 0] ——- [0:255 1:255 30 88] [0x4 1 [0 6] 10.000000] (REPLY)

s 6.715054878 0 AGT — 5 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [4] 0 0

r 6.715054878 0 RTR — 5 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [4] 0 0

s 6.715054878 0 RTR — 5 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [4] 0 0

D 6.715054878 0 IFQ ARP 0 AODV 44 [0 0 0 800] ——- [0:255 1:255 30 88] [0x4 1 [0 6] 10.000000] (REPLY)

...

s 7.009392113 0 AGT — 7 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [5] 0 0

r 7.009392113 0 RTR — 7 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [5] 0 0

s 7.009392113 0 RTR — 7 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [5] 0 0

D 7.009392113 0 IFQ ARP 5 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [4] 0 0

...

18

RREQ AF RI: An attacker can invade a route if the attacker is in the transmission range of the
source node of the route. The attacker pretends to forwards a RREQ message initiated from the
source node to the destination node as described in RREQ MF RI. Due to the same reason described
in RREQ MF RI, after the source node receives the the RREP message forwarded by the attacker, it
updates the attacker as the next hop to the destination node. The attacker needs to have a route
to forward the RREP message to the source node. As a result, the attacker succeeds in invading
the route from the source node to the destination node.

In the simulation, malicious node 2 succeeds in invading the route from node 0 to node 1 after
applying RREQ AF RI. The fragment of the trace file is as follows:
...

s 0.200000000 0 AGT — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

r 0.200000000 0 RTR — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

s 0.200000000 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 0.200900547 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 0.200900567 1 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

s 0.200900567 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 0:255 30 0] [0x4 1 [1 2] 10.000000] (REPLY)

s 0.201042593 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 0.204453551 1 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 0.204453739 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 0.205969251 0 RTR — 0 AODV 44 [13a 0 1 800] ——- [1:255 0:255 30 0] [0x4 1 [1 2] 10.000000] (REPLY)

...

s 0.693391010 0 AGT — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

r 0.693391010 0 RTR — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

s 0.693391010 0 RTR — 3 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 1] [3] 0 0

r 0.695128710 1 AGT — 3 cbr 68 [13a 1 0 800] ——- [0:0 1:0 30 1] [3] 1 0

...

s 30.668618722 2 RTR — 0 AODV 48 [0 0 0 0] ——- [2:255 -1:255 30 0] [0x2 1 1 [1 12] [0 12]] (REQUEST)

r 30.669518976 0 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 1 [1 12] [0 12]] (REQUEST)

r 30.669519070 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 1 [1 12] [0 12]] (REQUEST)

r 30.669519243 1 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 1 [1 12] [0 12]] (REQUEST)

s 30.669519243 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 0:255 30 2] [0x4 1 [1 14] 10.000000] (REPLY)

s 30.672031970 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 12] [0 12]] (REQUEST)

r 30.673676896 2 RTR — 0 AODV 44 [13a 2 1 800] ——- [1:255 0:255 30 2] [0x4 1 [1 14] 10.000000] (REPLY)

D 30.673676896 2 RTR NRTE 0 AODV 44 [13a 2 1 800] ——- [1:255 0:255 29 2] [0x4 1 [1 14] 10.000000] (REPLY)

s 30.673676896 2 RTR — 128 cbr 68 [0 0 0 0] ——- [2:1 1:1 30 1] [0] 0 0

r 30.674981592 2 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 12] [0 12]] (REQUEST)

r 30.674981603 1 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 12] [0 12]] (REQUEST)

r 30.674981790 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 12] [0 12]] (REQUEST)

r 30.676749157 1 AGT — 128 cbr 68 [13a 1 2 800] ——- [2:1 1:1 30 1] [0] 1 0

s 30.768618722 2 AGT — 129 cbr 48 [0 0 0 0] ——- [2:0 0:1 32 0] [0] 0 0

r 30.768618722 2 RTR — 129 cbr 48 [0 0 0 0] ——- [2:0 0:1 32 0] [0] 0 0

s 30.768618722 2 RTR — 0 AODV 48 [0 0 0 0] ——- [2:255 -1:255 30 0] [0x2 1 2 [0 10] [1 14]] (REQUEST)

r 30.769518976 0 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 2 [0 10] [1 14]] (REQUEST)

s 30.769518976 0 RTR — 0 AODV 44 [0 0 0 0] ——- [0:255 1:255 30 2] [0x4 1 [0 12] 10.000000] (REPLY)

r 30.769519070 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 2 [0 10] [1 14]] (REQUEST)

s 30.769519070 3 RTR — 0 AODV 44 [0 0 0 0] ——- [3:255 1:255 30 2] [0x4 2 [0 12] 5.000000] (REPLY)

19

r 30.769519243 1 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 2 [0 10] [1 14]] (REQUEST)

...

s 31.198477777 0 AGT — 132 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [129] 0 0

r 31.198477777 0 RTR — 132 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [129] 0 0

s 31.198477777 0 RTR — 132 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 2] [129] 0 0

r 31.200214539 2 RTR — 132 cbr 68 [13a 2 0 800] ——- [0:0 1:0 30 2] [129] 1 0

f 31.200214539 2 RTR — 132 cbr 68 [13a 2 0 800] ——- [0:0 1:0 29 1] [129] 1 0

r 31.202716104 1 AGT — 132 cbr 68 [13a 1 2 800] ——- [0:0 1:0 29 1] [129] 2 0

...

RREQ AF NI: By broadcasting one faked RREQ message, an inside attacker can prevent any vic-
tim node from receiving data packets from other nodes for a short period of time, just as described
in RREQ MF NI. But the attacker cannot completely isolate a victim node from sending data packets
to other nodes unless other misuses are also used. In the simulation, node 3 cannot send data
packets to node 0 using the route established by the faked RREQ message and generates a RERR
message. The fragment of trace file is as follows:
s 5.668618722 0 AGT — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

r 5.668618722 0 RTR — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

s 5.668618722 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669518888 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669519065 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669519139 1 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

s 5.669519139 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 0:255 30 0] [0x4 1 [1 2] 10.000000] (REPLY)

s 5.669660935 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [2:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

s 5.670400292 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.673436063 0 RTR — 0 AODV 44 [13a 0 1 800] ——- [1:255 0:255 30 0] [0x4 1 [1 2] 10.000000] (REPLY)

...

s 5.793703616 0 AGT — 1 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

r 5.793703616 0 RTR — 1 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

s 5.793703616 0 RTR — 1 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 1] [1] 0 0

r 5.795440869 1 AGT — 1 cbr 68 [13a 1 0 800] ——- [0:0 1:0 30 1] [1] 1 0

...

s 6.268618722 3 AGT — 4 cbr 48 [0 0 0 0] ——- [3:0 0:2 32 0] [0] 0 0

r 6.268618722 3 RTR — 4 cbr 48 [0 0 0 0] ——- [3:0 0:2 32 0] [0] 0 0

s 6.268618722 3 RTR — 4 cbr 68 [0 0 0 0] ——- [3:0 0:2 30 0] [0] 0 0

r 6.273052124 0 AGT — 4 cbr 68 [13a 0 3 800] ——- [3:0 0:2 30 0] [0] 1 0

...

s 6.668618722 2 RTR — 0 AODV 48 [0 0 0 0] ——- [88:255 -1:255 30 0] [0x2 1 101 [66 4] [0 16]] (REQUEST)

r 6.669518888 0 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 30 0] [0x2 1 101 [66 4] [0 16]] (REQUEST)

r 6.669518924 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 30 0] [0x2 1 101 [66 4] [0 16]] (REQUEST)

r 6.669518976 1 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [88:255 -1:255 30 0] [0x2 1 101 [66 4] [0 16]] (REQUEST)

s 6.671931181 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [3:255 -1:255 29 0] [0x2 2 101 [66 4] [0 16]] (REQUEST)

...

s 7.096760041 3 AGT — 12 cbr 48 [0 0 0 0] ——- [3:0 0:2 32 0] [4] 0 0

r 7.096760041 3 RTR — 12 cbr 48 [0 0 0 0] ——- [3:0 0:2 32 0] [4] 0 0

s 7.096760041 3 RTR — 12 cbr 68 [0 0 0 0] ——- [3:0 0:2 30 88] [4] 0 0

D 7.096760041 3 IFQ ARP 10 cbr 68 [0 0 3 800] ——- [3:0 0:2 30 88] [3] 0 0

20

...

s 7.377469954 3 AGT — 15 cbr 48 [0 0 0 0] ——- [3:0 0:2 32 0] [6] 0 0

r 7.377469954 3 RTR — 15 cbr 48 [0 0 0 0] ——- [3:0 0:2 32 0] [6] 0 0

s 7.377469954 3 RTR — 15 cbr 68 [0 0 0 0] ——- [3:0 0:2 30 88] [6] 0 0

D 7.377469954 3 RTR CBK 13 cbr 68 [0 0 3 800] ——- [3:0 0:2 30 88] [5] 0 0

D 7.377469954 3 RTR CBK 15 cbr 68 [0 0 3 800] ——- [3:0 0:2 30 88] [6] 0 0

s 7.377469954 3 RTR — 0 AODV 32 [0 0 0 0] ——- [3:255 -1:255 1 0] [0x8 1 [0 0] 0.000000] (ERROR)

r 7.378242157 2 RTR — 0 AODV 32 [0 ffffffff 3 800] ——- [3:255 -1:255 1 0] [0x8 1 [0 0] 0.000000] (ERROR)

r 7.378242178 1 RTR — 0 AODV 32 [0 ffffffff 3 800] ——- [3:255 -1:255 1 0] [0x8 1 [0 0] 0.000000] (ERROR)

r 7.378242298 0 RTR — 0 AODV 32 [0 ffffffff 3 800] ——- [3:255 -1:255 1 0] [0x8 1 [0 0] 0.000000] (ERROR)

...

RREQ AF RC: An inside attacker can only introduce limited broadcast messages into the network
by a single RREQ AF RC.

A.2 Atomic Misuses of RREP Messages

A.2.1 Atomic Misuses RREP DR

RREP DR RD: If during a route discovery process, only one node generates a RREP message and an
attacker drops the RREP message when the only RREP message passes through the attacker, so
the source node cannot receive the RREP message and the route cannot be established. The source
node has to initiate another round of route discovery process. However, when the source node has
multiple neighbors and not all of them are malicious, this misuse has very limited impact.

RREP DR RI: Obviously, an attacker cannot invade a route by dropping a RREP message, which
is used to establish a route.

RREP DR NI: Because a node may communicate with several nodes in an ad-hoc network, and
the RREP messages from different destination nodes may reach the source node through different
neighbors, an inside attacker cannot isolate a node by dropping only one RREP message. However,
if an attacker is the only neighbor of a victim node, it can partially isolate the victim node by
dropping all the RREP messages sent to or from the victim node. This is essentially a compound
misuse due to the multiple dropping actions.

RREP DR RC: RREP DR misuses cannot consume noticeable resource of other nodes.

A.2.2 Atomic Misuses RREP MF

RREP MF RD: In a route discovery process, if the only RREP message passes through an inside
attacker, the attacker can prevent the route from being established by applying one of the following
modifications:

• Change the value of type;

• Replace the destination IP address with another IP address;

• Replace the source IP address with another IP address;

• Decrease the TTL in IP header to 1;

• Decrease the lifetime field to 0;

21

• Replace the source IP address in the IP header with a non-existent IP address.

Because of the modifications of the RREP message, the source node will receive an invalid RREP
message or no RREP message at all. As a result, the source node cannot establish a route to the
destination node in this round of route discovery process. However, note that the victim node may
receive RREP messages from other nodes. Thus, this misuse doesn’t always work.

In the simulation, node 0 is the source node, and node 1 is the destination node. Before node 2
forwards the RREP message, it modifies the source IP address in IP header to a non-existent node
(node 88). After node 0 receives the faked RREP message, it attempts to send data packets to the
non-existent node, and generates a RERR message. The fragment of the trace file is as follows:
...

s 5.668618722 0 AGT — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

r 5.668618722 0 RTR — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

s 5.668618722 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669518916 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669519259 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

s 5.669660963 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [2:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

s 5.670400486 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.670561157 0 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.670561343 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.670561765 1 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

s 5.670561765 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 0:255 30 2] [0x4 1 [1 2] 10.000000] (REPLY)

r 5.674626385 2 RTR — 0 AODV 44 [13a 2 1 800] ——- [1:255 0:255 30 2] [0x4 1 [1 2] 10.000000] (REPLY)

f 5.674626385 2 RTR — 0 AODV 44 [13a 2 1 800] ——- [1:255 0:255 29 0] [0x4 2 [1 6] 10.000000] (REPLY)

r 5.678306922 2 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.678307035 1 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.678307080 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.680061506 0 RTR — 0 AODV 44 [13a 0 2 800] ——- [1:255 0:255 29 0] [0x4 2 [1 6] 10.000000] (REPLY)

s 5.680061506 0 RTR — 0 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [0] 0 0

s 5.793703616 0 AGT — 1 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

r 5.793703616 0 RTR — 1 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

s 5.793703616 0 RTR — 1 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [1] 0 0

D 5.793703616 0 IFQ ARP 0 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [0] 0 0

s 5.947155678 0 AGT — 2 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [2] 0 0

r 5.947155678 0 RTR — 2 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [2] 0 0

s 5.947155678 0 RTR — 2 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [2] 0 0

D 5.947155678 0 IFQ ARP 1 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [1] 0 0

s 6.178069862 0 AGT — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

r 6.178069862 0 RTR — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

s 6.178069862 0 RTR — 3 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [3] 0 0

D 6.178069862 0 RTR CBK 2 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [2] 0 0

D 6.178069862 0 RTR CBK 3 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [3] 0 0

s 6.178069862 0 RTR — 0 AODV 32 [0 0 0 0] ——- [0:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 6.178842057 2 RTR — 0 AODV 32 [0 ffffffff 0 800] ——- [0:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 6.178842400 3 RTR — 0 AODV 32 [0 ffffffff 0 800] ——- [0:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

s 6.326604576 0 AGT — 4 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [4] 0 0

r 6.326604576 0 RTR — 4 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [4] 0 0

s 6.326604576 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 4 0] [0x2 1 2 [1 7] [0 10]] (REQUEST)

22

...

RREP MF RI: If the RREP message is the only one responding to a RREQ message, an inside
attacker doesn’t have to do anything to invade the route when the RREP message passes through
it, since it is already in the route. However, if there are other RREP messages reaching the
source node, to guarantee that the RREP message through the attacker suppresses other RREP
messages, the attacker may increase the destination sequence number of the RREP message by a
small number. The source node will update its route table by the faked RREP message that has
the greatest destination sequence number, and thus choose the route involving the attacker.

RREP MF NI: An inside attacker cannot isolate a node by manipulating only one RREP message.
If the attacker is the only neighbor of a victim node, it can partially isolate the victim node
by manipulating all the RREP messages sent to or from the victim node, which is essentially a
compound misuse.

RREP MF RC: RREP MF consumes little resource of the network and the other nodes.

A.2.3 Atomic Misuses RREP FR

RREP FR RD: After receiving a RREQ messsage, an inside attacker may forge a RREP message as
if it had a fresh enough route to the destination node. In order to suppress other legitimate RREP
messages that the source node may receive from the other nodes, the attacker may forge a faked
RREP message in the following way:

1. Set the destination IP address to the destination node’s IP address;

2. Set the source IP address to the source node’s IP address;

3. Set the source IP address in the IP header to a non-existent IP address;

4. Set the destination IP address in the IP header to the node from which the attacker receives
the RREQ message;

5. Increase the destination sequence number by at least one, or decrease the hop count to 0.

The attacker unicasts the faked RREP message to the source node along the reverse route which
is established by the RREQ message. After receiving the faked RREP message, the neighbor of
the attacker will update the next hop to the destination node to the non-existent IP address in
the IP header. Before the faked RREP message reaches the source node, the source node may
have already received other legitimate RREP messages. Even in this case, the source node will
update its next hop to the destination node as the neighbor from which it receives the faked RREP
message, since the faked RREP has a greater destination sequence number or a smaller hop count
than that in the source node’s route table. As a result, the data packets from the source node will
be lost, since they will eventually sent to a non-existent node.

In the simulation, node 0 is the source node, and node 1 is the destination node. After malicious
node 2 receives the RREQ message, it responds a faked RREP message, which disrupts the route.
The fragment of the trace file is as follows:
s 5.668618722 0 AGT — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

r 5.668618722 0 RTR — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

s 5.668618722 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669518957 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

23

s 5.669518957 2 RTR — 0 AODV 44 [0 0 0 0] ——- [88:255 0:255 30 0] [0x4 1 [1 10] 10.000000] (REPLY)

r 5.669518962 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

s 5.669661009 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.673069995 2 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.673070188 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.673070703 1 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

s 5.673070703 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 0:255 30 3] [0x4 1 [1 2] 10.000000] (REPLY)

r 5.674584702 0 RTR — 0 AODV 44 [13a 0 2 800] ——- [88:255 0:255 30 0] [0x4 1 [1 10] 10.000000] (REPLY)

s 5.674584702 0 RTR — 0 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [0] 0 0

r 5.680907982 3 RTR — 0 AODV 44 [13a 3 1 800] ——- [1:255 0:255 30 3] [0x4 1 [1 2] 10.000000] (REPLY)

f 5.680907982 3 RTR — 0 AODV 44 [13a 3 1 800] ——- [1:255 0:255 29 0] [0x4 2 [1 2] 10.000000] (REPLY)

r 5.683256703 0 RTR — 0 AODV 44 [13a 0 3 800] ——- [1:255 0:255 29 0] [0x4 2 [1 2] 10.000000] (REPLY)

s 5.793703616 0 AGT — 1 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

r 5.793703616 0 RTR — 1 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

s 5.793703616 0 RTR — 1 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [1] 0 0

D 5.793703616 0 IFQ ARP 0 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [0] 0 0

s 6.133635540 0 AGT — 2 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [2] 0 0

r 6.133635540 0 RTR — 2 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [2] 0 0

s 6.133635540 0 RTR — 2 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [2] 0 0

D 6.133635540 0 IFQ ARP 1 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [1] 0 0

s 6.302336854 0 AGT — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

r 6.302336854 0 RTR — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

s 6.302336854 0 RTR — 3 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [3] 0 0

D 6.302336854 0 RTR CBK 2 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [2] 0 0

D 6.302336854 0 RTR CBK 3 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [3] 0 0

s 6.302336854 0 RTR — 0 AODV 32 [0 0 0 0] ——- [0:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 6.303109090 2 RTR — 0 AODV 32 [0 ffffffff 0 800] ——- [0:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 6.303109094 3 RTR — 0 AODV 32 [0 ffffffff 0 800] ——- [0:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

...

RREP FR RI: If an inside attacker already has a route to the destination node, it can invade
the route by unicasting a faked RREP message to the source node along the reverse route. The
purpose of the attacker to still forge a RREP message is to surppress other RREP messages,
possibly with shorter path from the destination node to the source node. In order to suppress other
RREP messages, the attacker can increase the destination sequence number by a small number, or
decreases the hop count to 1. After receiving all the RREP messages, the source node will update
the destination sequence number in its route table to the one in the faked RREP message. It will
also update the next hop to the destination node to the neighbor from which it receives the faked
RREP message. As a result, the attacker can successfully be a part of the route from the source
node to the destincation node.

In the simulation, malicious node 2 succeeds in invading the route from node 0 to node 1. The
fragment of trace file is as follows:
...

s 27.668618722 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 27.669519022 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 27.669519170 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

s 27.669519170 2 RTR — 0 AODV 44 [0 0 0 0] ——- [2:255 0:255 30 0] [0x4 2 [1 2] 6.000000] (REPLY)

r 27.673861309 0 RTR — 0 AODV 44 [13a 0 2 800] ——- [2:255 0:255 30 0] [0x4 2 [1 2] 6.000000] (REPLY)

24

s 27.673861309 0 RTR — 6 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 2] [0] 0 0

s 27.674705510 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 27.678437155 2 RTR — 6 cbr 68 [13a 2 0 800] ——- [0:0 1:0 30 2] [0] 1 0

f 27.678437155 2 RTR — 6 cbr 68 [13a 2 0 800] ——- [0:0 1:0 29 1] [0] 1 0

r 27.680479391 1 AGT — 6 cbr 68 [13a 1 2 800] ——- [0:0 1:0 29 1] [0] 2 0

s 27.858140709 0 AGT — 7 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

r 27.858140709 0 RTR — 7 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [1] 0 0

s 27.858140709 0 RTR — 7 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 2] [1] 0 0

r 27.859878054 2 RTR — 7 cbr 68 [13a 2 0 800] ——- [0:0 1:0 30 2] [1] 1 0

f 27.859878054 2 RTR — 7 cbr 68 [13a 2 0 800] ——- [0:0 1:0 29 1] [1] 1 0

r 27.861960290 1 AGT — 7 cbr 68 [13a 1 2 800] ——- [0:0 1:0 29 1] [1] 2 0

...

RREP FR NI: A node may broadcast RREQ messages to establish routes to different destination
nodes. An inside attacker cannot isolate a node by replying only one faked RREP message.

RREP FR RC: This misuse consumes little resource of the network and other nodes. Note that the
impact of RREP FR RC is different from misuses by forging a RREQ message; RREQ messages are
brodcasted throughout the network, while RREP messages are unicasted through a reverse route.

A.2.4 Atomic Misuses RREP AF

RREP AF RD: Before the attacker launches the misuse, there exists a route from a source node to a
destination node. In order to disrupt this route, the attacker can forge a RREP message as follows:

1. Set the type field to 2;

2. Set the hop count field to 1;

3. Set the source IP address as the source node of the route and the destination IP address as
the destination node of the route;

4. Increase the destination sequence number by at least one;

5. Set the source IP address in the IP header to a non-existent IP address (node 88);

Suppose the attacker already has a route to the source node, it can unicast the faked RREP
message to the source node. When the source node receives the faked RREP message, it will update
its route to the destination node through the non-existent node for the same reason as described
in RREP FR DR. In the simulation, node 0 is the source node, and node 1 is the destination node.
After node 0 receives the faked RREP message initiated by node 2, the route between node 0 and
node 1 is disrupted. The fragment of trace file is as follows:
...

s 6.460392679 0 AGT — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

r 6.460392679 0 RTR — 3 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [3] 0 0

s 6.460392679 0 RTR — 3 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [3] 0 0

r 6.462129952 3 RTR — 3 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [3] 1 0

f 6.462129952 3 RTR — 3 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 1] [3] 1 0

r 6.464571649 1 AGT — 3 cbr 68 [13a 1 3 800] ——- [0:0 1:0 29 1] [3] 2 0

s 6.668618722 2 AGT — 4 cbr 48 [0 0 0 0] ——- [2:0 0:1 32 0] [0] 0 0

r 6.668618722 2 RTR — 4 cbr 48 [0 0 0 0] ——- [2:0 0:1 32 0] [0] 0 0

25

� � !" # $ % & ' () *+ + , - & ' () *+ + , - � � . !" # $ % � � / !" # $ %
Figure 4: An Attacker Invades A Route by Sending A Faked RREP Actively.

s 6.668618722 2 RTR — 0 AODV 44 [0 0 0 0] ——- [88:255 0:255 30 0] [0x4 1 [1 10] 10.000000] (REPLY)

r 6.673061411 0 RTR — 0 AODV 44 [13a 0 2 800] ——- [88:255 0:255 30 0] [0x4 1 [1 10] 10.000000] (REPLY)

s 6.715054878 0 AGT — 5 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [4] 0 0

r 6.715054878 0 RTR — 5 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [4] 0 0

s 6.715054878 0 RTR — 5 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [4] 0 0

s 7.000000000 2 RTR — 4 cbr 68 [0 0 0 0] ——- [2:0 0:1 30 0] [0] 0 0

r 7.001737581 0 AGT — 4 cbr 68 [13a 0 2 800] ——- [2:0 0:1 30 0] [0] 1 0

s 7.009392113 0 AGT — 6 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [5] 0 0

r 7.009392113 0 RTR — 6 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [5] 0 0

s 7.009392113 0 RTR — 6 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [5] 0 0

D 7.009392113 0 IFQ ARP 5 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [4] 0 0

s 7.235771883 0 AGT — 7 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [6] 0 0

r 7.235771883 0 RTR — 7 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [6] 0 0

s 7.235771883 0 RTR — 7 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [6] 0 0

D 7.235771883 0 IFQ ARP 6 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [5] 0 0

s 7.461823765 0 AGT — 8 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [7] 0 0

r 7.461823765 0 RTR — 8 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [7] 0 0

s 7.461823765 0 RTR — 8 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 88] [7] 0 0

D 7.461823765 0 RTR CBK 7 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [6] 0 0

D 7.461823765 0 RTR CBK 8 cbr 68 [0 0 0 800] ——- [0:0 1:0 30 88] [7] 0 0

s 7.461823765 0 RTR — 0 AODV 32 [0 0 0 0] ——- [0:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 7.462596189 3 RTR — 0 AODV 32 [0 ffffffff 0 800] ——- [0:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 7.462596292 2 RTR — 0 AODV 32 [0 ffffffff 0 800] ——- [0:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

s 7.808684651 0 AGT — 9 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [8] 0 0

r 7.808684651 0 RTR — 9 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [8] 0 0

s 7.808684651 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 3 0] [0x2 1 2 [1 11] [0 10]] (REQUEST)

r 7.809585075 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:25

...

RREP AF RI: If an inside attacker has routes to both of the source node and the destination node
of a route, it can invade the route by sending one faked RREP message to the source node, as
Figure 4 shows.

As Figure 4 (a) shows, at the beginning, there exists a route between node 0 and node 1, and
node 3 and node 4 are two intermediate nodes in the route. Node 2 is an inside attacker, which
already has a route to both node 0 and node 1. In order to invade the route, the attacker pretends
to forward a RREP message from node 1 to node 0. The attacker sends the faked RREP message
to node 3, which forwards the faked RREP message to node 0, as Figure 4(b) shows.

The attacker can forge the RREP message in the following way:

1. Set the source IP address to node 0;

2. Set the destination IP address to node 1;

26

3. Set the destination sequence number to node 1’s sequence number plus at least one;

4. Set the source IP address in the IP header to node 2;

5. Set the destination IP address in the IP header to node 3.

When node 3 and node 0 receive the faked RREP message, they will update the sequence number
of node 1 in their route tables to the destination sequence number in the faked RREP message.
Node 0 still uses node 3 as the next hop to node 1, but node 3 updates node 2 as the next hop to
node 1. Because node 2 already has a route to node 1, it can forward the data packets from node
0 to node 1, as Figure 4(c) shows.

In the simulation, before the misuse, the route is 0 ⇒ 3 ⇒ 4 ⇒ 1 ; after malicious node 2 actively
sends out a faked RREP message,the route changes to 0 ⇒ 3 ⇒ 2 ⇒ 4 ⇒ 1. The fragment of the
trace file is as follows:
...

s 7.693402932 0 RTR — 0 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [0] 0 0

r 7.695563792 3 RTR — 0 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [0] 1 0

f 7.695563792 3 RTR — 0 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 4] [0] 1 0

r 7.697885792 4 RTR — 0 cbr 68 [13a 4 3 800] ——- [0:0 1:0 29 4] [0] 2 0

f 7.697885792 4 RTR — 0 cbr 68 [13a 4 3 800] ——- [0:0 1:0 28 1] [0] 2 0

r 7.700206910 1 AGT — 0 cbr 68 [13a 1 4 800] ——- [0:0 1:0 28 1] [0] 3 0

...

s 10.671253994 2 RTR — 0 AODV 44 [0 0 0 0] ——- [2:255 0:255 30 3] [0x4 1 [1 7] 10.000000] (REPLY)

r 10.680841103 3 RTR — 0 AODV 44 [13a 3 2 800] ——- [2:255 0:255 30 3] [0x4 1 [1 7] 10.000000] (REPLY)

f 10.680841103 3 RTR — 0 AODV 44 [13a 3 2 800] ——- [2:255 0:255 29 0] [0x4 2 [1 7] 10.000000] (REPLY)

r 10.682829964 0 RTR — 0 AODV 44 [13a 0 3 800] ——- [2:255 0:255 29 0] [0x4 2 [1 7] 10.000000] (REPLY)

...

s 11.619037018 0 AGT — 17 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [15] 0 0

r 11.619037018 0 RTR — 17 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [15] 0 0

s 11.619037018 0 RTR — 17 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [15] 0 0

r 11.620773878 3 RTR — 17 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [15] 1 0

f 11.620773878 3 RTR — 17 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 2] [15] 1 0

r 11.623295681 2 RTR — 17 cbr 68 [13a 2 3 800] ——- [0:0 1:0 29 2] [15] 2 0

f 11.623295681 2 RTR — 17 cbr 68 [13a 2 3 800] ——- [0:0 1:0 28 4] [15] 2 0

r 11.625537484 4 RTR — 17 cbr 68 [13a 4 2 800] ——- [0:0 1:0 28 4] [15] 3 0

f 11.625537484 4 RTR — 17 cbr 68 [13a 4 2 800] ——- [0:0 1:0 27 1] [15] 3 0

r 11.627638602 1 AGT — 17 cbr 68 [13a 1 4 800] ——- [0:0 1:0 27 1] [15] 4 0

...

RREP AF NI: An inside attacker cannot isolate a victim node by sending out only one faked RREP
message.

RREP AF RC: An inside attacker can form a loop in the network to consume resources of the nodes
in the loop. As Figure 5 shows, there are two intermediate nodes, node 3 and node 4, in a route
from node 0 to node 1.

The attacker can form a data packets loop between node 3 and node 4 by pretending to be node
3 to forward a RREP message from the destination node 1 to the source node 0. The faked RREP
message is generated as follows:

1. Set the destination IP address to node 1;

27

01 2 34 567 01 2 34 567
Figure 5: The attacker forms a loop between node 3 and node 4 by a faked RREP message. 0:
source node; 1:destination node; 2: Attacker; 3,4: intermediate nodes.

2. Set the destination sequence number as node 1’s sequence number plus at least one;

3. Set the source IP address to node 0;

4. Set the source IP address in the IP header to node 3;

5. Set the destination IP address in the IP header to node 4.

When node 4 receives the faked RREP message, it updates the next hop to node 1 as node 3.
Since there is still an entry in node 4’s route table that indicates the next hop to node 0 is node 3,
node 4 will forward the faked RREP message to node 3, which will then forward the faked RREP
message to node 0. After updating the destination sequence number in the route table, if node 0
continues to send data packets to node 1, these packets will be first sent to node 3, then node 4,
and finally back to node 3 again. As a result, a loop is formed between node 3 and node 4. These
data packets will be dropped until the TTL fields in the IP packets decrease to 0. The fragment of
the trace file is as follows:
...

s 10.463296343 0 AGT — 11 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [11] 0 0

r 10.463296343 0 RTR — 11 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [11] 0 0

s 10.463296343 0 RTR — 11 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [11] 0 0

r 10.465033204 3 RTR — 11 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [11] 1 0

f 10.465033204 3 RTR — 11 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 4] [11] 1 0

r 10.467575204 4 RTR — 11 cbr 68 [13a 4 3 800] ——- [0:0 1:0 29 4] [11] 2 0

f 10.467575204 4 RTR — 11 cbr 68 [13a 4 3 800] ——- [0:0 1:0 28 1] [11] 2 0

r 10.469876322 1 AGT — 11 cbr 68 [13a 1 4 800] ——- [0:0 1:0 28 1] [11] 3 0

s 10.668618722 2 AGT — 12 cbr 48 [0 0 0 0] ——- [2:0 4:0 32 0] [0] 0 0

r 10.668618722 2 RTR — 12 cbr 48 [0 0 0 0] ——- [2:0 4:0 32 0] [0] 0 0

s 10.668618722 2 RTR — 0 AODV 44 [0 0 0 0] ——- [3:255 0:255 30 4] [0x4 1 [1 10] 10.000000] (REPLY)

r 10.670164525 4 RTR — 0 AODV 44 [13a 4 2 800] ——- [3:255 0:255 30 4] [0x4 1 [1 10] 10.000000] (REPLY)

f 10.670164525 4 RTR — 0 AODV 44 [13a 4 2 800] ——- [3:255 0:255 29 3] [0x4 2 [1 10] 10.000000] (REPLY)

r 10.672554525 3 RTR — 0 AODV 44 [13a 3 4 800] ——- [3:255 0:255 29 3] [0x4 2 [1 10] 10.000000] (REPLY)

s 10.672554525 3 RTR — 0 AODV 44 [13a 3 4 800] ——- [3:255 0:255 28 0] [0x4 3 [1 10] 10.000000] (REPLY)

r 10.674543385 0 RTR — 0 AODV 44 [13a 0 3 800] ——- [3:255 0:255 28 0] [0x4 3 [1 10] 10.000000] (REPLY)

s 10.792191929 0 AGT — 13 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [12] 0 0

r 10.792191929 0 RTR — 13 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [12] 0 0

s 10.792191929 0 RTR — 13 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [12] 0 0

r 10.793928789 3 RTR — 13 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [12] 1 0

f 10.793928789 3 RTR — 13 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 4] [12] 1 0

r 10.796050789 4 RTR — 13 cbr 68 [13a 4 3 800] ——- [0:0 1:0 29 4] [12] 2 0

f 10.796050789 4 RTR — 13 cbr 68 [13a 4 3 800] ——- [0:0 1:0 28 3] [12] 2 0

28

r 10.798272789 3 RTR — 13 cbr 68 [13a 3 4 800] ——- [0:0 1:0 28 3] [12] 3 0

f 10.798272789 3 RTR — 13 cbr 68 [13a 3 4 800] ——- [0:0 1:0 27 4] [12] 3 0

r 10.800414789 4 RTR — 13 cbr 68 [13a 4 3 800] ——- [0:0 1:0 27 4] [12] 4 0

f 10.800414789 4 RTR — 13 cbr 68 [13a 4 3 800] ——- [0:0 1:0 26 3] [12] 4 0

r 10.802636789 3 RTR — 13 cbr 68 [13a 3 4 800] ——- [0:0 1:0 26 3] [12] 5 0

f 10.802636789 3 RTR — 13 cbr 68 [13a 3 4 800] ——- [0:0 1:0 25 4] [12] 5 0

r 10.804738789 4 RTR — 13 cbr 68 [13a 4 3 800] ——- [0:0 1:0 25 4] [12] 6 0

f 10.804738789 4 RTR — 13 cbr 68 [13a 4 3 800] ——- [0:0 1:0 24 3] [12] 6 0

...

f 10.852782789 4 RTR — 13 cbr 68 [13a 4 3 800] ——- [0:0 1:0 2 3] [12] 28 0

r 10.854884789 3 RTR — 13 cbr 68 [13a 3 4 800] ——- [0:0 1:0 2 3] [12] 29 0

f 10.854884789 3 RTR — 13 cbr 68 [13a 3 4 800] ——- [0:0 1:0 1 4] [12] 29 0

r 10.856986789 4 RTR — 13 cbr 68 [13a 4 3 800] ——- [0:0 1:0 1 4] [12] 30 0

D 10.856986789 4 RTR TTL 13 cbr 68 [13a 4 3 800] ——- [0:0 1:0 0 4] [12] 30 0

...

A.3 Atomic Misuses of RERR Messages

A.3.1 Atomic Misuses RERR DR

Atomic misuses RERR DR refer to the misuses with which an attacker simply drops a RERR message
it receives without notifying its neighbors in the precursor list.

RERR DR RD: Suppose an inside attacker is the only neighbor in the precursor list of a node that
sends a RERR message. If the attacker drops the RERR message, the upstream nodes in the
precusor list of the attacker cannot receive the RERR message, and they won’t be able to notify
their upstream nodes about the broken link. These upstream nodes continue to send data packets
through the broken route, and these data packets are dropped due to the broken link. However,
because the node that drops the data packets may send out other RERR messages and this atomic
misuse only drops one RERR message, this goal can only last for a short time.

RERR DR RI: An attacker cannot invade a route by dropping a RERR message.

RERR DR NI: An attacker cannot isolate a victim node by dropping a RERR message.

RERR DR RC: If the upstream nodes of the attacker cannot receive the RERR message, they
continue to use the broken route to send data packets. However, it cannot consume too much
resource of the network and the other nodes.

A.3.2 Atomic Misuses RERR MF

RERR MF RD: By receiving and modifying a RERR message, an inside attacker can disrupt several
routes that involve the attacker. In the faked RERR message, the attacker may replace an unreach-
able destination IP address with another IP address, or append new unreachable Destination IP
addresses that, in fact, can be reached through the attacker. The attacker needs to increment the
unreachable destination sequence number by at least one, and then broadcasts the faked RERR
message to all its neighbors. If a neighbor has a route to an unreachable destination node in the
faked RERR message and the next hop equals to the attacker (indicated by the source IP address
in the IP header), it disables this route and updates the destination sequence number with the
unreachable destination sequence number in the faked RERR message. The neighbors will then
forward the faked RERR message to its neighbors in their percursor lists. As a result, all the nodes

29

that have a route through the attacker to the destination node will disable the route. Atomic
misuses RERR MF need to be triggered by the receipt of a RERR message before modifying and
forwarding it to other nodes. In fact, an attacker can send out a faked RERR message without
receiving any RERR message, as we will discuss in atomic misuses RERR AF.

RERR MF RI: An insider attacker cannot invade a route using this atomic misuses.

RERR MF NI: If an inside attacker is the only neighbor of a victim node, it can disable all the
route entries in the victim node’s routing table by sending one faked RERR messsage. When the
attacker receives a RERR message, it appends all the destination nodes in its route table into the
RERR message and increase the corresponding unreachable destination sequence numbers by at
least one. The attacker unicasts the faked RERR message to the victim node. When the victim
node receives the faked RERR message, since all of its route entries use the attacker as the next hop
and the unreachable destination sequence numbers in the faked RERR message are greater than
the corresponding destination nodes’ sequence numbers in its route table, it disables all the route
entries in its route table. In RERR MF NI, the attacker needs to receive a RERR message before
sending out a faked RERR message, so its effect is quite limited.

RERR MF RC: From RERR MF RD, we know that one faked RERR message may effect several nodes
in such way that each node may invalidate serveral route entries in its route table. When they
want to send data packets to those destination nodes but have no valid routes, they have to send
RREQ messages to establish the routes again. One faked RERR message may cause several RREQ
messages broadcasted in the whole ad-hoc network, so we consider that this misuse succeeds in
consuming the resource of the network and the other nodes.

A.3.3 Atomic Misuses RERR AF

RERR AF RD: It’s easy to see that an inside attacker may disrupt a route by sending out one faked
RERR message. If the attacker is in the transmission range of an intermediate node of a route,
the attacker may impersonate the intermediate node to broadcast a faked RERR message. The
attacker may forge such a RERR message in the following way:

1. Set the route’s destination node as the unreachable destination address;

2. Set the intermediate node’s IP address as the source IP address in IP header;

3. Set the unreachable destination sequence number as a number greater than the destination
node’s sequence number.

The attacker broadcasts the faked RERR message to its neighbors. If a neigbhor has a route to
the destination node with the impersonated node as the next hop, it will disable the corresponding
route entry. In addition, it will forward the RERR message to its upstream neighbors in its
precursor list. As a result, the routes through the intermediate node to the destination node will
be disrupted.

In the simulation, malicious node 2 sends a RERR message to disable the route from node 0 to
node 1. The fragment of the trace file is as follows:
...

s 30.556909022 0 AGT — 119 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [119] 0 0

r 30.556909022 0 RTR — 119 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [119] 0 0

s 30.556909022 0 RTR — 119 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [119] 0 0

30

r 30.558645882 3 RTR — 119 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [119] 1 0

f 30.558645882 3 RTR — 119 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 4] [119] 1 0

r 30.560767882 4 RTR — 119 cbr 68 [13a 4 3 800] ——- [0:0 1:0 29 4] [119] 2 0

f 30.560767882 4 RTR — 119 cbr 68 [13a 4 3 800] ——- [0:0 1:0 28 1] [119] 2 0

r 30.562849000 1 AGT — 119 cbr 68 [13a 1 4 800] ——- [0:0 1:0 28 1] [119] 3 0

...

f 30.768618722 2 RTR — 0 AODV 32 [0 0 0 0] ——- [4:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 30.769391323 4 RTR — 0 AODV 32 [0 ffffffff 2 800] ——- [4:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 30.769391323 3 RTR — 0 AODV 32 [0 ffffffff 2 800] ——- [4:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

s 30.774151077 3 RTR — 0 AODV 32 [0 0 0 0] ——- [3:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 30.774923364 0 RTR — 0 AODV 32 [0 ffffffff 3 800] ——- [3:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 30.774923678 2 RTR — 0 AODV 32 [0 ffffffff 3 800] ——- [3:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

r 30.774923744 4 RTR — 0 AODV 32 [0 ffffffff 3 800] ——- [3:255 -1:255 1 0] [0x8 1 [1 0] 0.000000] (ERROR)

...

s 30.790606169 0 AGT — 121 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [120] 0 0

r 30.790606169 0 RTR — 121 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [120] 0 0

s 30.790606169 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 5 0] [0x2 1 2 [1 4] [0 6]] (REQUEST)

...

RERR AF RI: In inside attacker cannot invade a route by sending a faked RERR message.

RERR AF NI: An inside attacker can launch this atomic misuse in the same way as described in
RERR MF NI except that the attacker needs not to receive any RERR message in advance. The faked
RERR message can only prevent the victim node from sending data packets for a short period of
time, and it cannot prevent the victim node from receiving data packets. Moreover, to be successful,
RERR AF NI requires the attacker to be the only neighbor of the victim node.

RERR AF RC: This atomic misuse can consume the resource of the network and other nodes to a
certain degree. A victim node disables several routes after receiving a faked RERR message, as
described in RERR AF RD. If the victim node still needs to send data packets to the corresponding
destination nodes, it has to broadcast a RREQ message to establish a new route. One faked RERR
message may make several nodes broadcast several RREQ messages to establish new valid routes
to the destination node.

B Description of Compound Misuses and the Simulation Results

From the analysis of atomic misuse, we see that an inside attacker can achieve specific misuse
goals; however, some of these goals may only last for a short period of time, such as RREQ DR RD. In
order to maintain the misuses in effect, the attacker may repeat the same kind of atomic misuses
many times. Besides the misuse goals that an atomic misuse may achieve, the compound misuses
may achieve more misuse goals due to the change in quantity. Table 7 lists the misuse goals that
compound misuses can achieve.

RREQs DR RD: In RREQ DR RD, if an inside attacker is the only node that connects two parts of
the ad-hoc network, it can prevent a route from begin established between two parts of an ad-hoc
network. However, this misuse goal can only last for a short period of time because the source node
may send other RREQ messages to establish the route. In RREQs DR RD, the attacker drops all
the RREQ messages sent from the source node, so the destination node cannot receive any RREQ
message, and no RREP message will be generated.

31

Table 7: Compound Misuses of the same kind of Route Messages
Compound Misuse Route Disruption Route Invasion Node Isolation Resource Consumption

RREQs DR Yes (in some cases) No No No
RREQs MF Yes Yes Partial Yes
RREQs AF Yes Yes Partial Yes

RREPs DR Yes (in some cases) No No No
RREPs MF Yes Yes No Yes
RREPs FR Yes Yes Partial No
RREPs AF Yes Yes Partial Yes

RERRs DR Yes (in some cases) No No No
RERRs MF Yes No Partial Yes
RERRs AF Yes No Partial Yes

8 9 :;< => ? @ 8 A :;< => ? @8 A :;< => ? @B B C D B B C DB B C D
Figure 6: Route Invasion by RREQs MF RI.

RREQs MF RD: If there are alternative paths for a RREQ message to reach the destination node,
the attacker can use RREQs MF RD to disrupt the route for a long period of time. When the attacker
receives a RREQ message, it may launch a RREQ MF RD misuses. If the source node discovers that
the route is broken, it will send out other RREQ messages to estalish the route again. Whenever
the attacker receives one of such RREQ messages, it disrupts the routes by one RREQ MF RD. The
simulation result of RREQs MF RD is shown in Figure 3(a). It clearly shows that the number of data
packets between two nodes drops almost to zero.

RREQs MF RI: When the attacker is not in the transmission range of a source node, i.e., there
exists at least one intermediate node between the attacker and the source node, the attacker still
can invade the route by sending out two RREQ messages after receiving a RREQ message.

Consider the scenario shown in Figure 6(a). Suppose node 2 is a malicious node, and all the
other nodes are normal. When the attacker receives a RREQ message, it may forge the first RREQ
message as follows:

• Set the source IP address as node 1;

• Set the destination IP address as node 0;

• Set the source sequence number to a number greater than node 1’s current sequence number;

• Set the source IP address in IP header as node 2.

Node 2 broadcasts the faked RREQ message. After receiving this message, nodes 3 and 4 will
both set node 2 as the next hop to node 1, as Figure 6(b) shows. At this time, node 2 may have
no route to the destination node 1. In addition, even if node 2 already has a route to node 1, there
exists a loop between node 2 and node 4. In order to further establish a route from node 2 to node
1, the attacker may generate a second RREQ message as follows:

• Set the source IP address as node 2;

32

• Set the destination IP address as node 1;

• Set the destination sequence number to a number greater than node 1’s current sequence
number;

• Set the source IP address in the IP header as node 2.

Node 2 then broadcasts the second faked RREQ message. When node 4 receives this RREQ
message, because it has no fresh enough route to node 1, it just rebroadcasts the RREQ message.
When node 1 receives the RREQ message, it generates a RREP message which will be forwarded
back to node 2. As a result, node 2 establishes a route to node 1. Now the attacker (node 2) is a
part of the route from node 0 to node 1, as Figure 6(c) shows.

The simulation result of RREQs MF RI is shown in Figure 3(c). It clearly shows that misuse
RREQs MF RI effectively makes the attacker a part of the route between two victim nodes.

RREQs MF NI: For the same reason as described in tt RREQ MF NI, an inside attacker may
prevent a victim node from receiving data packets from other nodes. The faked RREQ message
can suppress the legitimate RREP or RREQ messages originated from the victim node.

Local repair can prevent this misuse to some extent. In the faked RREQ messages, if the attacker
sets the source IP address in the IP header as a non-existent node, the upstream node of the broken
link will launch a local repair process and re-establish a route to the victim node. Because this
upstream node may cache the data packets from other nodes to the victim nodes for some time6,
after establishing the route to the victim node, these data packets can be forwarded to it.

The simulation result of RREQs MF NI is shown in Figure 7(a). We can see that RREQs MF NI is
not effective in isolating the victim node, the main reason is due to the random delay7 before a
node broadcasts or forwards a RREQ message. Before the faked RREQ messages reaches other
nodes, other nodes may have established a route to the victim node and sent out data packets to
the victim node.

RREQs MF RC: An inside attacker may form a RREQ broadcast flooding by modifying and re-
broadcasting RREQ messages. Specifically, whenever an inside attacker receives a RREQ message,
it increases the RREQ ID and/or source IP address to make the RREQ message appear to be fresh,
and rebroadcasts the RREQ message to its neighbors. Because a node will drop a RREQ message
if the TTL field in the IP header decreases to 0, the attacker also needs to reset the TTL to the
maximum value. The neighbors will accept and rebroadcast the faked RREQ messages. When
the attacker receives the faked RREQ messages from its neighbors, it repeats the same action as
described earlier. As a result, each valid RREQ message will be forged and rebroadcasted many
times. By repeating this manipulation, the attacker can form a RREQ broadcast flooding in the
ad-hoc network, thus consuming the network bandwidth as well as other nodes’ resources.

The simulation result of RREQs MF RC is shown in Figure 3(d). In the simulation, node 2 contin-
ues to increase the RREQ ID and forward the RREQ message. The fragment of the trace file is as
follows:
...

s 5.668618722 0 AGT — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

r 5.668618722 0 RTR — 0 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [0] 0 0

s 5.668618722 0 RTR — 0 AODV 48 [0 0 0 0] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

r 5.669519388 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

6In the CMU wireless extensions to ns2, the default cache size is 64, and the default cache time is 30 seconds.
7The average delay for broadcasting RREQ message is 10ms.

33

0

200

400

600

800

1000

0 0.5 1 1.5 2 2.5 3 3.5
Mobility Rate (m/s)

o

f
re

ce
iv

ed
 d

at
a

p
ac

ke
ts

NORMAL RREQs_MF_NI RREQs_AF_NI

(a) Node Isolation by RREQs

0
100
200
300
400
500
600
700
800

0 0.5 1 1.5 2 2.5 3 3.5
Mobility Rate (m/s)

o

f
d

at
a

p
ac

ke
ts

 s
en

t
b

y
vi

ct
im

 n
o

d
e

NORMAL RREPs_AF_NI RREPs_FR_NI

(b) Node Isolation by RREPs

0

100

200

300

400

500

0 0.5 1 1.5 2 2.5 3 3.5
Mobility Rate (m/s)

o

f
d

at
a

p
ac

ke
ts

th

ro
u

g
h

 a
tt

ac
ke

r

Total # of data packets without Misuse With RREPs_AF_RI

(c) Route Invasion by RREPs AF RI

Figure 7: Experimental Results about Compound Misuses

r 5.669519467 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 30 0] [0x2 1 1 [1 0] [0 4]] (REQUEST)

s 5.669661435 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

s 5.670400694 2 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [2:255 -1:255 29 0] [0x2 2 3 [1 0] [0 4]] (REQUEST)

r 5.670561768 2 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.670562102 1 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

r 5.670562102 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [1 0] [0 4]] (REQUEST)

s 5.670562102 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 0:255 30 3] [0x4 1 [1 2] 10.000000] (REPLY)

r 5.674625768 3 RTR — 0 AODV 44 [13a 3 1 800] ——- [1:255 0:255 30 3] [0x4 1 [1 2] 10.000000] (REPLY)

f 5.674625768 3 RTR — 0 AODV 44 [13a 3 1 800] ——- [1:255 0:255 29 0] [0x4 2 [1 2] 10.000000] (REPLY)

r 5.678308102 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 3 [1 0] [0 4]] (REQUEST)

s 5.678308102 3 RTR — 0 AODV 44 [0 0 0 0] ——- [3:255 0:255 30 0] [0x4 2 [1 2] 9.000000] (REPLY)

r 5.678308435 4 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 3 [1 0] [0 4]] (REQUEST)

r 5.678308514 1 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 3 [1 0] [0 4]] (REQUEST)

r 5.678308514 0 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 29 0] [0x2 2 3 [1 0] [0 4]] (REQUEST)

...

r 5.753825234 2 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [4:255 -1:255 16 0] [0x2 15 15 [1 0] [0 4]] (REQUEST)

r 5.756005567 0 RTR — 0 AODV 44 [13a 0 3 800] ——- [3:255 0:255 30 0] [0x4 2 [1 2] 9.000000] (REPLY)

r 5.758320900 3 RTR — 0 AODV 44 [13a 3 1 800] ——- [1:255 0:255 30 3] [0x4 1 [1 2] 10.000000] (REPLY)

s 5.759154219 2 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [2:255 -1:255 15 0] [0x2 16 17 [1 0] [0 4]] (REQUEST)

r 5.760054552 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 15 0] [0x2 16 17 [1 0] [0 4]] (REQUEST)

s 5.760054552 3 RTR — 0 AODV 44 [0 0 0 0] ——- [3:255 0:255 30 0] [0x4 2 [1 2] 9.000000] (REPLY)

r 5.760054886 4 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 15 0] [0x2 16 17 [1 0] [0 4]] (REQUEST)

r 5.760054964 1 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 15 0] [0x2 16 17 [1 0] [0 4]] (REQUEST)

r 5.760054964 0 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 15 0] [0x2 16 17 [1 0] [0 4]] (REQUEST)

...

34

E F GHI JK L M E N GHI JK L M E F GHI JK L M
Figure 8: Route Invasion by RREQs AF RI.

RREQs AF RD: An attacker can disrupt a route using RREQ AF RD. After the source node notices
that the route is broken, it may initiate another route discovery process. To make the effect
persistent, the attacker needs to disrupt the routes by repeating RREQ AF RD many times. In our
simulation, the attacker repeatedly sends out faked RREQ messages in a fixed interval (20pkt/s)
to disable the routes between two nodes. The simulation result is shown in Figure 3(a).

RREQs AF RI: An inside attacker may invade into a route by sending out two RREQ messages
actively. Consider the scenario shown in Figure 8(a). Suppose node 2 is a malicious node, and the
other nodes are normal. Further assume there is a route from node 0 to node 1 through nodes 3,
4, and 5. The attacker at node 2 may forge the first RREQ message as follows:

• Set the source IP address as node 1;

• Set the destination IP address as node 0;

• Set the source sequence number to a number greater than node 1’s current sequence number;

• Set the source IP address in IP header as node 2.

Node 2 may then broadcast the faked RREQ message. After receiving this message, nodes 3 and
4 will both set node 2 as the next hop to node 1, as Figure 8(b) shows. At this time, node 2 may
have no route to the destination node 1. In addition, even if node 2 already has a route to node 1,
there exists a loop between node 2 and node 4. In order to further establish the route from node 2
to node 1, the attacker may generate the second RREQ message as follows:

• Set the source IP address as node 2;

• Set the destination IP address as node 1;

• Set the destination sequence number to a number greater than node 1’s current sequence
number;

• Set the source IP address in the IP header as node 2.

Node 2 broadcasts the second faked RREQ message, when node 4 receives this RREQ message,
because it has no fresh enough route to node 1, it just rebroadcasts the RREQ message. When
node 1 receives the RREQ message, it generates a RREP message which will be forwarded back to
node 2. So node 2 establishes a route to node 1, as Figure 8(c) shows.

The fragment of the trace file is as follows:
...

s 0.229922340 0 RTR — 0 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [0] 0 0

r 0.232123200 3 RTR — 0 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [0] 1 0

35

f 0.232123200 3 RTR — 0 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 4] [0] 1 0

r 0.234145200 4 RTR — 0 cbr 68 [13a 4 3 800] ——- [0:0 1:0 29 4] [0] 2 0

f 0.234145200 4 RTR — 0 cbr 68 [13a 4 3 800] ——- [0:0 1:0 28 5] [0] 2 0

r 0.236206318 5 RTR — 0 cbr 68 [13a 5 4 800] ——- [0:0 1:0 28 5] [0] 3 0

f 0.236206318 5 RTR — 0 cbr 68 [13a 5 4 800] ——- [0:0 1:0 27 1] [0] 3 0

r 0.238648318 1 AGT — 0 cbr 68 [13a 1 5 800] ——- [0:0 1:0 27 1] [0] 4 0

...

s 30.668618722 2 RTR — 0 AODV 48 [0 0 0 0] ——- [2:255 -1:255 30 0] [0x2 1 1 [0 0] [1 12]] (REQUEST)

r 30.669519323 4 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 1 [0 0] [1 12]] (REQUEST)

r 30.669519323 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 1 [0 0] [1 12]] (REQUEST)

s 30.669672137 4 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [4:255 -1:255 29 0] [0x2 2 1 [0 5] [1 12]] (REQUEST)

r 30.670572510 5 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [4:255 -1:255 29 0] [0x2 2 1 [0 5] [1 12]] (REQUEST)

r 30.670572738 2 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [4:255 -1:255 29 0] [0x2 2 1 [0 5] [1 12]] (REQUEST)

r 30.670572804 3 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [4:255 -1:255 29 0] [0x2 2 1 [0 5] [1 12]] (REQUEST)

s 30.672068172 5 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [5:255 -1:255 28 0] [0x2 3 1 [0 5] [1 12]] (REQUEST)

r 30.672968545 4 RTR — 0 AODV 48 [0 ffffffff 5 800] ——- [5:255 -1:255 28 0] [0x2 3 1 [0 5] [1 12]] (REQUEST)

r 30.672968839 1 RTR — 0 AODV 48 [0 ffffffff 5 800] ——- [5:255 -1:255 28 0] [0x2 3 1 [0 5] [1 12]] (REQUEST)

s 30.677045310 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [0 5] [1 12]] (REQUEST)

r 30.677945596 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [0 5] [1 12]] (REQUEST)

s 30.677945596 0 RTR — 0 AODV 44 [0 0 0 0] ——- [0:255 1:255 30 3] [0x4 1 [0 6] 10.000000] (REPLY)

r 30.677945911 2 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [0 5] [1 12]] (REQUEST)

r 30.677945976 4 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 1 [0 5] [1 12]] (REQUEST)

r 30.679490457 3 RTR — 0 AODV 44 [13a 3 0 800] ——- [0:255 1:255 30 3] [0x4 1 [0 6] 10.000000] (REPLY)

f 30.679490457 3 RTR — 0 AODV 44 [13a 3 0 800] ——- [0:255 1:255 29 2] [0x4 2 [0 6] 10.000000] (REPLY)

r 30.684037663 2 RTR — 0 AODV 44 [13a 2 3 800] ——- [0:255 1:255 29 2] [0x4 2 [0 6] 10.000000] (REPLY)

D 30.684037663 2 RTR NRTE 0 AODV 44 [13a 2 3 800] ——- [0:255 1:255 28 2] [0x4 2 [0 6] 10.000000] (REPLY)

...

s 30.742036536 0 RTR — 124 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [123] 0 0

r 30.743773397 3 RTR — 124 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [123] 1 0

f 30.743773397 3 RTR — 124 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 2] [123] 1 0

r 30.746095199 2 RTR — 124 cbr 68 [13a 2 3 800] ——- [0:0 1:0 29 2] [123] 2 0

D 30.746095199 2 RTR NRTE 124 cbr 68 [13a 2 3 800] ——- [0:0 1:0 28 2] [123] 2 0

...

s 33.868618722 2 RTR — 0 AODV 48 [0 0 0 0] ——- [2:255 -1:255 30 0] [0x2 1 2 [1 14] [2 0]] (REQUEST)

r 33.869519323 4 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 2 [1 14] [2 0]] (REQUEST)

r 33.869519323 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [2:255 -1:255 30 0] [0x2 1 2 [1 14] [2 0]] (REQUEST)

s 33.873094625 4 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [4:255 -1:255 29 0] [0x2 2 2 [1 14] [2 0]] (REQUEST)

r 33.873994998 5 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [4:255 -1:255 29 0] [0x2 2 2 [1 14] [2 0]] (REQUEST)

r 33.873995226 2 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [4:255 -1:255 29 0] [0x2 2 2 [1 14] [2 0]] (REQUEST)

r 33.873995292 3 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [4:255 -1:255 29 0] [0x2 2 2 [1 14] [2 0]] (REQUEST)

s 33.877073906 3 RTR — 0 AODV 48 [0 ffffffff 2 800] ——- [3:255 -1:255 29 0] [0x2 2 2 [1 14] [2 0]] (REQUEST)

r 33.877974192 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 2 [1 14] [2 0]] (REQUEST)

r 33.877974507 2 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 2 [1 14] [2 0]] (REQUEST)

r 33.877974572 4 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [3:255 -1:255 29 0] [0x2 2 2 [1 14] [2 0]] (REQUEST)

s 33.878099286 5 RTR — 0 AODV 48 [0 ffffffff 4 800] ——- [5:255 -1:255 28 0] [0x2 3 2 [1 14] [2 0]] (REQUEST)

r 33.879709292 4 RTR — 0 AODV 48 [0 ffffffff 5 800] ——- [5:255 -1:255 28 0] [0x2 3 2 [1 14] [2 0]] (REQUEST)

r 33.879709586 1 RTR — 0 AODV 48 [0 ffffffff 5 800] ——- [5:255 -1:255 28 0] [0x2 3 2 [1 14] [2 0]] (REQUEST)

s 33.879709586 1 RTR — 0 AODV 44 [0 0 0 0] ——- [1:255 2:255 30 5] [0x4 1 [1 16] 10.000000] (REPLY)

36

r 33.881255586 5 RTR — 0 AODV 44 [13a 5 1 800] ——- [1:255 2:255 30 5] [0x4 1 [1 16] 10.000000] (REPLY)

f 33.881255586 5 RTR — 0 AODV 44 [13a 5 1 800] ——- [1:255 2:255 29 4] [0x4 2 [1 16] 10.000000] (REPLY)

r 33.883604704 4 RTR — 0 AODV 44 [13a 4 5 800] ——- [1:255 2:255 29 4] [0x4 2 [1 16] 10.000000] (REPLY)

f 33.883604704 4 RTR — 0 AODV 44 [13a 4 5 800] ——- [1:255 2:255 28 2] [0x4 3 [1 16] 10.000000] (REPLY)

s 33.884133848 0 RTR — 0 AODV 48 [0 ffffffff 3 800] ——- [0:255 -1:255 28 0] [0x2 3 2 [1 14] [2 0]] (REQUEST)

r 33.885273906 3 RTR — 0 AODV 48 [0 ffffffff 0 800] ——- [0:255 -1:255 28 0] [0x2 3 2 [1 14] [2 0]] (REQUEST)

r 33.889951741 2 RTR — 0 AODV 44 [13a 2 4 800] ——- [1:255 2:255 28 2] [0x4 3 [1 16] 10.000000] (REPLY)

...

s 34.162887855 0 AGT — 141 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [137] 0 0

r 34.162887855 0 RTR — 141 cbr 48 [0 0 0 0] ——- [0:0 1:0 32 0] [137] 0 0

s 34.162887855 0 RTR — 141 cbr 68 [0 0 0 0] ——- [0:0 1:0 30 3] [137] 0 0

r 34.164624715 3 RTR — 141 cbr 68 [13a 3 0 800] ——- [0:0 1:0 30 3] [137] 1 0

f 34.164624715 3 RTR — 141 cbr 68 [13a 3 0 800] ——- [0:0 1:0 29 2] [137] 1 0

r 34.167066518 2 RTR — 141 cbr 68 [13a 2 3 800] ——- [0:0 1:0 29 2] [137] 2 0

f 34.167066518 2 RTR — 141 cbr 68 [13a 2 3 800] ——- [0:0 1:0 28 4] [137] 2 0

r 34.169328321 4 RTR — 141 cbr 68 [13a 4 2 800] ——- [0:0 1:0 28 4] [137] 3 0

f 34.169328321 4 RTR — 141 cbr 68 [13a 4 2 800] ——- [0:0 1:0 27 5] [137] 3 0

r 34.171469439 5 RTR — 141 cbr 68 [13a 5 4 800] ——- [0:0 1:0 27 5] [137] 4 0

f 34.171469439 5 RTR — 141 cbr 68 [13a 5 4 800] ——- [0:0 1:0 26 1] [137] 4 0

r 34.173891439 1 AGT — 141 cbr 68 [13a 1 5 800] ——- [0:0 1:0 26 1] [137] 5 0

...

RREQs AF NI: By RREQ AF NI, an attacker can prevent a victim node from receiving data packets
for a short time. If the attacker repeats broadcasting faked RREQ message , it can isolate the
victim node from receiving data packets for a long time. In the faked RREQ messages, the attacker
may set the source IP address in IP header as a non-existent node, the upstream node of the
broken link will launch a local repair process and attempt to establish a route to the victim node.
Because this upstream node may cache the data packets from other nodes to the victim nodes, after
establishing the route to the victim node, these data packets can be forwarded to the victim node.
In order to isolate the victim thoroughly, the attacker can use its own IP address as the source
IP address in the IP header, so it is in the routes from other nodes to the victim node. When
the attacker receives data packet destined to the victim node, it just drops them. It is a kind of
blackhole attack.

In the simulation, the attacker sends out 20 faked RREQ messages per second. The simulation
result of RREQs AF NI is shown in Figure 7(a). RREQs AF NI is better than RREQs MF NI in isolating
a node from receiving data packets. The victim node still can receive some data packets due to
the random delay for a node to broadcast a RREQ message. Before the faked RREQ messages
reaches other nodes, other nodes may have received RREP messages and sent out data packets to
the victim node.

RREQs AF RC: An attacker may consume the resource of the network and the other nodes by
broadcasting faked RREQ messages actively. The attacker may also spoof the source IP address in
both the routing message and the IP header to conceal itself. In the simulation, the attacker sends
20 faked RREQ messages per second. The simulation result of RREQs AF RC is shown in Figure
3(d).

RREPs DR DR: If an inside attacker is the only node that connects two parts of an ad-hoc network,
it can prevent routes between the two parts from being established by dropping the RREP messages.

37

RREPs MF RD: A source node may initiate route discovery process several times, and an inside
attacker can disrupt the route by applying RREP MF RD several times. In the AODV protocol, inter-
mediate nodes can send RREP messages if they have fresh enough routes to the destination nodes,
so the source node may receive several RREP messages after broadcasting one RREQ message. In
order to disrupt the routes, the attacker increases the destination sequence number of the receiving
RREP messages and sets the source IP address in IP header to a non-existent IP address.

RREPs MF RI: An inside attacker can invade several routes by applying RREP MF RI several times.
In RREP MF RI, to suppress other RREP messages for the same RREQ message, the attacker may
increase the destination sequence number by a small number, so the source node will choose the
route which goes through the attacker.

RREPs FR RD: Whenever the attacker receives RREQ messages from a source node to a destination
node, it can disrupt the route by applying RREP FR RD. The simulation result is shown Figure 3(b).
In another case, the attacker can cause a “Black Hole” in the ad-hoc network if she invades the
routes by applying RREP FR RI and drops the data packets through it.

RREPs FR RI: Because the mobility of the mobile nodes, the route between two nodes may be
lost after some time, the source node may send RREQ message again. The attacker can apply the
misuse RREPs FR RI to keep invading the route. To achieve good result, the attacker should follow
the source node in its transmission range. The simulation result is is shown in Figure 3(c).

RREPs FR NI: In some time, an inside attacker can isolate a victim node from sending out data
packets by applying RREPs FR NI. Whenever the attacker receives a RREQ message originated from
the victim node, it sends a faked RREP message to the victim node to disrupt the route, just as
described in RREP FR RD. Therefore, the victim node cannot send data packets to the other
nodes successfully. However, if a destination node broadcasts a RREQ message and the victim
node receives this RREQ message, the victim node may have a route to the destination node. The
simulation result is shown in Figure 7(b). We can see RREPs FR NI misuses do not always succeed.

RREPs AF RD: The attacker may apply RREP AF RD several times to disrupt a route. The simula-
tion result is shown in Figure 3(b).

RREPs AF RI: The simulation result is shown in Figure 7(c).

RREPs AF NI: Assume an inside attack is in the transmission range of a victim node, the attacker
can prevent the other nodes from receiving data packets from the victim node by sending faked
RREP messages to the victim node. To achieve this goal, the attacker impersonates other nodes
to send faked RREP messages to the victim node. The faked RREP messages are forged in the
following way:

• Set the destintion IP address to one of the other nodes’ IP address;

• Set the source IP address to the victim node’s IP address;

• Increase the destination sequence number by at least one;

• Set the source IP address in the IP header to the attacker’s IP address.

After receiving date packets originated from the victim node, the attacker simply drops these
data packets. Here, we do not set the source IP address in the IP header to a non-existent IP
address, because in such case, the upstream node which forwards data packets to the non-existent
node will generate a new RREQ message or a RERR message. The attacker also needs to disrupt
the route from the upstream node to the destination node. The simulation result is shown in Figure
7(b).

38

O P QRS TU V WX O P QRS TU Y WXO P QRS TU Z WX [\] ^ _` ` a bO P QRS TU c WX [\] ^ _` ` a b
Figure 9: Form a Loop by Two Faked RREP Messages

It is rather difficult to prevent the victim node from receiving data packets from other nodes
by only sending faked RREP messages, because a faked RREP message is unicasted to a neighbor
of the attacker, and this neighbor node may not have a route to the destination node. However,
the attacker can prevent victim node from receiving from other nodes by sending faked RREQ
messages as described in RREQs AF NI.

RREPs AF RC: In RREP AF RC, the attacker can form a loop between two nodes, and in some
scenarios, by sending more than one faked RREP messages, an inside attacker can form a loop
containing more nodes. Suppose there is a route from node 0 to node 1 as Figure 9(a) shows. The
malicious node 2 unicasts the first faked RREP message and send it to node 5, as in Figure 9(b).
The attacker may forge the first RREP message as follows:

• Set the source IP address as node 0;

• Set the destination IP address as node 1;

• Set the destination sequence number to a number greater than node 1’s sequence number in
node 5’s route table;

• Set the source IP address in the IP header as node 3;

• Set the destination IP address in the IP header as node 5.

After receiving the faked RREP message, node 5 update node 3 as the next hop to node 1. If
the sequence number in the faked RREP message is greater than that in node 1’s route table, a
loop between node 3 and node 5 is formed. If not, the attacker may then unicast the second faked
RREP message to node 6, which it may forge the second RREP message as follows:

• Set the source IP address as node 0;

• Set the destination IP address as node 1;

• Set the destination sequence number to a number greater than node 1’s current sequence
number;

• Set the source IP address in the IP header as node 5;

• Set the destination IP address in the IP header as node 6.

After node 6 receives this faked RREP message, it will update node 5 as the next hop to node
1. As a result, nodes 3, 4, 5, and 6 are involved in a loop, as shown in Figure 9(d).

In table 8, we can see that the attacker consumes several times more energy of the nodes in the
loops than in the normal situations.

The fragment of the trace file is as follows:
...

39

Table 8: Power Consumption
Node Initial Energy (Watt) NORMAL End Energy (Watt) RREPs AF RC End Energy (Watt)

Node 3 100.00 98.913347 91.848227
Node 4 100.00 98.911936 91.993235
Node 5 100.00 99.958096 92.066205
Node 6 100.00 98.912195 92.063037

s 8.634117015 0 AGT — 4 cbr 48 [0 0 0 0] [energy 99.982528] ——- [0:0 1:0 32 0] [4] 0 0

r 8.634117015 0 RTR — 4 cbr 48 [0 0 0 0] [energy 99.982528] ——- [0:0 1:0 32 0] [4] 0 0

s 8.634117015 0 RTR — 4 cbr 68 [0 0 0 0] [energy 99.982528] ——- [0:0 1:0 30 3] [4] 0 0

r 8.635854015 3 RTR — 4 cbr 68 [13a 3 0 800] [energy 99.980330] ——- [0:0 1:0 30 3] [4] 1 0

f 8.635854015 3 RTR — 4 cbr 68 [13a 3 0 800] [energy 99.980330] ——- [0:0 1:0 29 4] [4] 1 0

r 8.637935776 4 RTR — 4 cbr 68 [13a 4 3 800] [energy 99.979754] ——- [0:0 1:0 29 4] [4] 2 0

f 8.637935776 4 RTR — 4 cbr 68 [13a 4 3 800] [energy 99.979754] ——- [0:0 1:0 28 6] [4] 2 0

r 8.639937537 6 RTR — 4 cbr 68 [13a 6 4 800] [energy 99.979178] ——- [0:0 1:0 28 6] [4] 3 0

f 8.639937537 6 RTR — 4 cbr 68 [13a 6 4 800] [energy 99.979178] ——- [0:0 1:0 27 1] [4] 3 0

r 8.642238537 1 AGT — 4 cbr 68 [13a 1 6 800] [energy 99.980896] ——- [0:0 1:0 27 1] [4] 4 0

s 8.668618722 2 AGT — 5 cbr 48 [0 0 0 0] [energy 99.982518] ——- [2:0 4:0 32 0] [0] 0 0

r 8.668618722 2 RTR — 5 cbr 48 [0 0 0 0] [energy 99.982518] ——- [2:0 4:0 32 0] [0] 0 0

f 8.668618722 2 RTR — 0 AODV 44 [0 0 0 0] [energy 99.982518] ——- [3:255 0:255 30 5] [0x4 1 [1 2] 10.000000] (REPLY)

f 8.668618722 2 RTR — 0 AODV 44 [0 0 0 0] [energy 99.982518] ——- [5:255 0:255 30 6] [0x4 1 [1 20] 10.000000] (REPLY)

r 8.672759727 6 RTR — 0 AODV 44 [13a 6 2 800] [energy 99.976835] ——- [5:255 0:255 30 6] [0x4 1 [1 20] 10.000000]

(REPLY)

f 8.672759727 6 RTR — 0 AODV 44 [13a 6 2 800] [energy 99.976835] ——- [5:255 0:255 29 4] [0x4 2 [1 20] 10.000000]

(REPLY)

r 8.674609006 5 RTR — 0 AODV 44 [13a 5 2 800] [energy 99.980090] ——- [3:255 0:255 30 5] [0x4 1 [1 2] 10.000000]

(REPLY)

f 8.674609006 5 RTR — 0 AODV 44 [13a 5 2 800] [energy 99.980090] ——- [3:255 0:255 29 3] [0x4 2 [1 2] 10.000000]

(REPLY)

r 8.676679305 4 RTR — 0 AODV 44 [13a 4 6 800] [energy 99.975798] ——- [5:255 0:255 29 4] [0x4 2 [1 20] 10.000000]

(REPLY)

f 8.676679305 4 RTR — 0 AODV 44 [13a 4 6 800] [energy 99.975798] ——- [5:255 0:255 28 3] [0x4 3 [1 20] 10.000000]

(REPLY)

r 8.679535358 3 RTR — 0 AODV 44 [13a 3 5 800] [energy 99.975174] ——- [3:255 0:255 29 3] [0x4 2 [1 2] 10.000000]

(REPLY)

s 8.679535358 3 RTR — 0 AODV 44 [13a 3 5 800] [energy 99.975174] ——- [3:255 0:255 28 0] [0x4 3 [1 2] 10.000000]

(REPLY)

r 8.681544358 0 RTR — 0 AODV 44 [13a 0 3 800] [energy 99.976278] ——- [3:255 0:255 28 0] [0x4 3 [1 2] 10.000000]

(REPLY)

r 8.684179039 3 RTR — 0 AODV 44 [13a 3 4 800] [energy 99.973619] ——- [5:255 0:255 28 3] [0x4 3 [1 20] 10.000000]

(REPLY)

f 8.684179039 3 RTR — 0 AODV 44 [13a 3 4 800] [energy 99.973619] ——- [5:255 0:255 27 0] [0x4 4 [1 20] 10.000000]

(REPLY)

r 8.686588039 0 RTR — 0 AODV 44 [13a 0 3 800] [energy 99.975059] ——- [5:255 0:255 27 0] [0x4 4 [1 20] 10.000000]

(REPLY)

s 8.865538834 0 AGT — 6 cbr 48 [0 0 0 0] [energy 99.975059] ——- [0:0 1:0 32 0] [5] 0 0

r 8.865538834 0 RTR — 6 cbr 48 [0 0 0 0] [energy 99.975059] ——- [0:0 1:0 32 0] [5] 0 0

40

s 8.865538834 0 RTR — 6 cbr 68 [0 0 0 0] [energy 99.975059] ——- [0:0 1:0 30 3] [5] 0 0

r 8.867275834 3 RTR — 6 cbr 68 [13a 3 0 800] [energy 99.972006] ——- [0:0 1:0 30 3] [5] 1 0

f 8.867275834 3 RTR — 6 cbr 68 [13a 3 0 800] [energy 99.972006] ——- [0:0 1:0 29 4] [5] 1 0

r 8.869397595 4 RTR — 6 cbr 68 [13a 4 3 800] [energy 99.971843] ——- [0:0 1:0 29 4] [5] 2 0

f 8.869397595 4 RTR — 6 cbr 68 [13a 4 3 800] [energy 99.971843] ——- [0:0 1:0 28 6] [5] 2 0

r 8.871839357 6 RTR — 6 cbr 68 [13a 6 4 800] [energy 99.971373] ——- [0:0 1:0 28 6] [5] 3 0

f 8.871839357 6 RTR — 6 cbr 68 [13a 6 4 800] [energy 99.971373] ——- [0:0 1:0 27 5] [5] 3 0

r 8.876818119 5 RTR — 6 cbr 68 [13a 5 6 800] [energy 99.973494] ——- [0:0 1:0 27 5] [5] 4 0

f 8.876818119 5 RTR — 6 cbr 68 [13a 5 6 800] [energy 99.973494] ——- [0:0 1:0 26 3] [5] 4 0

r 8.878880030 3 RTR — 6 cbr 68 [13a 3 5 800] [energy 99.968454] ——- [0:0 1:0 26 3] [5] 5 0

f 8.878880030 3 RTR — 6 cbr 68 [13a 3 5 800] [energy 99.968454] ——- [0:0 1:0 25 4] [5] 5 0

r 8.881001791 4 RTR — 6 cbr 68 [13a 4 3 800] [energy 99.968291] ——- [0:0 1:0 25 4] [5] 6 0

f 8.881001791 4 RTR — 6 cbr 68 [13a 4 3 800] [energy 99.968291] ——- [0:0 1:0 24 6] [5] 6 0

r 8.883223553 6 RTR — 6 cbr 68 [13a 6 4 800] [energy 99.967446] ——- [0:0 1:0 24 6] [5] 7 0

f 8.883223553 6 RTR — 6 cbr 68 [13a 6 4 800] [energy 99.967446] ——- [0:0 1:0 23 5] [5] 7 0

r 8.885385165 5 RTR — 6 cbr 68 [13a 5 6 800] [energy 99.970614] ——- [0:0 1:0 23 5] [5] 8 0

f 8.885385165 5 RTR — 6 cbr 68 [13a 5 6 800] [energy 99.970614] ——- [0:0 1:0 22 3] [5] 8 0

...

r 99.832444195 6 RTR — 377 cbr 68 [13a 6 4 800] [energy 92.063037] ——- [0:0 1:0 4 6] [375] 27 0

f 99.832444195 6 RTR — 377 cbr 68 [13a 6 4 800] [energy 92.063037] ——- [0:0 1:0 3 5] [375] 27 0

r 99.834865808 5 RTR — 377 cbr 68 [13a 5 6 800] [energy 92.066205] ——- [0:0 1:0 3 5] [375] 28 0

f 99.834865808 5 RTR — 377 cbr 68 [13a 5 6 800] [energy 92.066205] ——- [0:0 1:0 2 3] [375] 28 0

r 99.837027718 3 RTR — 377 cbr 68 [13a 3 5 800] [energy 91.848227] ——- [0:0 1:0 2 3] [375] 29 0

f 99.837027718 3 RTR — 377 cbr 68 [13a 3 5 800] [energy 91.848227] ——- [0:0 1:0 1 4] [375] 29 0

r 99.839429480 4 RTR — 377 cbr 68 [13a 4 3 800] [energy 91.993235] ——- [0:0 1:0 1 4] [375] 30 0

D 99.839429480 4 RTR TTL 377 cbr 68 [13a 4 3 800] [energy 91.993235] ——- [0:0 1:0 0 4] [375] 30 0

....

RERRs AF RD: If the attacker is in the transmission range of a victim node, the attacker can
disable all the route entries in the victim node’s route table by sending out several faked RERR
messages. RERRs AF RD does not require the attacker be the only neighbor of the victim node.
Because the victim node may use different neighbors to different destination nodes, the attacker
just impersonates all the neighbors to send a faked RERR message to the victim node. In the
faked RERR message, the attacker includes all the mobile nodes in the ad-hoc networks as the
unreachable destination and increases their sequence number by a small number. When the victim
node receives these faked RERR messages, it will disable the routes to all other nodes.

41

