
How to orchestrate a distributed OpenStack
David Haja1, Marton Szabo1, Mark Szalay1, Adam Nagy1, Andras Kern2, Laszlo Toka1,3, Balazs Sonkoly1,4

1Budapest University of Technology and Economics, 2Ericsson Research, Hungary
3MTA-BME Information Systems Research Group, 4MTA-BME Network Softwarization Research Group

{david.haja, marton.szabo, mark.szalay, adam.nagy, sonkoly, toka}@tmit.bme.hu, andras.kern@ericsson.com

Abstract—We see two important trends in ICT nowadays: the
backend of online applications and services are moving to the
cloud, and for delay-sensitive ones the cloud is being extended
with fogs. The reason for these phenomena is most importantly
economic, but there are other benefits too: fast service creation,
flexible reconfigurability, and portability. The management and
orchestration of these services are currently separated to at
least two layers: virtual infrastructure managers (VIMs) and
network controllers operate their own domains, it should consist
of compute or network resources, while handling services with
cross-domain deployment is done by an upper-level orchestrator.
In this paper we show the slight modification of OpenStack, the
mainstream VIM today, which enables it to manage a distributed
cloud-fog infrastructure. While our solution alleviates the need
for running OpenStack controllers in the lightweight edge, it
takes into account network aspects that are extremely important
in a resource setup with remote fogs. We propose and analyze
an online resource orchestration algorithm, we describe the
OpenStack-based implementation aspects and we also show large-
scale simulation results on the performance of our algorithm.

I. INTRODUCTION

Cloud-edge (or fog) computing [1] and mobile edge com-
puting (MEC) [2] are novel concepts extending traditional
cloud computing by deploying compute resources closer to
customers and end devices. This approach, closely integrated
with carrier-networks, enables several future 5G applications
and network services, such as novel Industry 4.0 use-cases,
Tactile Internet, or remote driving [3]. Edge resources provide
execution environments close to users in terms of latency (e.g.,
in mobile base stations). By these means, on the one hand,
customers’ devices can offload computational tasks to this
environment instead of consuming their local resources. On
the other hand, latency critical functions can also be offloaded
from central clouds to the edge enabling critical machine
type communication which is required by various envisioned
services.

A dedicated component, namely the resource orchestrator
(RO), is in charge of finding the proper placement of software
components realizing the service. Following ETSI’s terminolo-
gies on Network Function Virtualization (NFV) [4], the soft-
ware modules composing the network service are referred to as
Virtual Network Functions (VNFs). RO can be considered as
a component encompassing orchestration related tasks, and in
ETSI’s architecture it appears both in the Virtual Infrastructure
Manager (VIM) and in the NFV Orchestrator (NFVO). In
general, RO assigns VNFs composing the service to compute
resources and also allocates paths between connected VNFs.

A novel RO (or a hierarchy of ROs) which can effi-
ciently manage underlying resources in cloud-edge/mobile
edge/distributed cloud computing environments is an in-
evitable future component with challenging tasks. It must be
able to jointly handle compute and network resources in a
tightly integrated framework and it must be aware of network
characteristics besides compute capabilities. Furthermore, the
requested network services have to be created on-the-fly within
seconds. Two different design approaches can be applied to
achieve such features. On the one hand, on top of VIMs and
network controllers, a higher level orchestrator, i.e., the NFVO,
can be added which is able to integrate different resource
domains. This solution results in a hierarchy of ROs and the
cooperation of VIMs and NFVO yielding larger deployment
time and the need for strictly defined external APIs. However,
multi-provider scenarios require this approach [5]. On the
other hand, the VIM itself can be extended with network
awareness and with the detailed view on network resources.
With such an upgrade, the additional NFVO becomes unnec-
essary for single-provider setups where resources belong to
the same operator and by these means, the orchestration and
deployment time can be reduced significantly.

Today’s most widely deployed open-source VIM is Open-
Stack, a cloud computing platform, used as the operating
system of both private and public clouds. OpenStack provides
Infrastructure as a Service (IaaS) and it is responsible for
the management of large pools of compute, storage and
networking resources.

In this paper, we propose a novel extension to OpenStack
which makes it a network aware resource orchestrator. More
specifically, we define and implement the key building blocks
which enable efficient and dynamic orchestration of compute
and network resources over distributed cloud environments
belonging to a single provider. Our goals are fourfold. First, we
give a general model for cloud-fog infrastructure. Second, we
propose and analyze an online embedding algorithm, named
DARK, making use of greedy heuristics, which solves a gener-
alized version of Virtual Network Embedding (VNE). Third,
we implement a proof-of-concept prototype as an extension
to OpenStack. And finally, we evaluate the concept via large-
scale simulations to confirm the scalability of our approach.

The rest of the paper is organized as follows. In Sec. II, a
brief summary on the related work is given. Sec. III introduces
our model. Sec. IV is devoted to our novel online embedding
algorithm. Our proof-of-concept prototype is described in
Sec. V. Sec. VI summarizes our main findings gained from



the large-scale simulations. And finally, Sec. VII concludes.

II. RELATED WORK

As NFV technology matures, multiple NFV orchestration
solutions have emerged; we list here the most important ones.
The OpenSource MANO (OSM) [6] project, hosted by ETSI,
targets delivering an open source management and orchestra-
tion (MANO) framework that is aligned with ETSI’s NFV
reference architecture. The project ONAP (Open Network
Automation Platform) [7] aims to enable end-to-end service
provisioning and orchestration across multiple domains using
NFV and SDN technologies combined in a common platform.
The NFV-related components of ONAP are conform with
ETSI’s reference model: all the key elements, such as NFVO,
VNFM and VIM can be found in their architecture. The goal of
the CORD (Central Office Re-architected as a Datacenter) [8]
project is to combine NFV, SDN and commodity datacenter
environments to bring the agility of the clouds to the Telco
Central Office. Another platform, Cloudify [9], was originally
designed to drive orchestration and application deployment in
clouds, then the platform was later expanded, thus the Telecom
Edition of the Cloudify platform emerged. This combines the
NFVO and VNFM functionalities of the MANO architecture.

In OpenStack, nova-scheduler is responsible for managing
the computational resources on the hypervisor of each phys-
ical host. The applied simple placement strategy called filter
scheduler [10] is affected by several limitations. For example,
the sequential processing of virtual machine requests makes
it impossible to define more complex placement constraints
that affect more than one instance. Much effort have been
made to make nova-scheduler more efficient in terms of
network-awareness. In [11] an extension is presented that
enables a network-aware placement of instances by taking
into account bandwidth constraints to and from nodes by
keeping track of host-local network resource allocation. In [12]
a new filtering step is proposed, that takes into account the
actual load (CPU, network I/O, RAM) of the physical node.
Authors of [13] discuss the extensions required to introduce
a network-aware scheduler: the solution aims to optimize the
VM placement from a networking perspective, which is essen-
tial for the efficient deployment of VNF service graphs. They
used OpenDayLight (ODL) [14] to collect network topology
information and to configure traffic steering. The solution
tries to minimize bandwidth utilization of the physical links,
however the definition of an efficient scheduling algorithm was
not in the scope of their work.

VNE (or more exactly, a generalized version of VNE) is
the process that maps multiple service graphs (SGs) [15] com-
posed of different VNFs to a common physical infrastructure,
represented by the Resource Graph (RG); VNE is known to
be NP-hard [16], which means finding the optimal solution
cannot be done within reasonable time in case of large input,
e.g., many services to be deployed in a large infrastructure.
Two different approaches exist to solve the VNE problem:
i) exact solutions that find the optimum but these can be

applied to limited scale problems only, ii) approximation-
based algorithms that trade the optimal solution for better
runtime. [17] summarizes many solutions for both.

III. DISTRIBUTED CLOUD INFRASTRUCTURES

In this section we summarize two different approaches that
can be considered for the orchestration of a distributed cloud
system. After that, we describe our resource topology model.

A. Orchestration methods in a distributed cloud environment

Two different solutions can be considered when orchestrat-
ing a distributed cloud. In the first case, each computing cluster
has its own VIM with the associated RO that manages the
resources locally. In order to implement inter-domain resource
orchestration functionality, a higher level entity is necessary
(e.g., an NFVO), which connects the underlying remote do-
mains in a common view. This results in an orchestration
hierarchy which increases the deployment time. The other pos-
sible way is to integrate the orchestration logic into the VIM,
thus eliminating the need for the upper level orchestrator. It is
feasible only for single provider use-cases where the resources
are owned by the same operator. In this case, the architecture
is simpler, the VIM handles all the internal and external
topology information, but only homogeneous technologies can
be managed this way. In the first case, the architecture is
more complex, well-defined interface definitions are required
between the components. The underlying domains may hide
some important information about the real features when the
abstraction level is not refined enough, but it supports different
technology and administrative domains. In our paper, we focus
on the second case, thus we provide a novel extension for
OpenStack’s scheduling algorithm.

B. Topology model

Based on the previously described considerations we created
our own network model for the three-tier Edge Computing
architecture: a network consists of a given number of edge
clusters and central clouds. Each cluster contains a pre-defined
number of servers with given computing capabilities (CPU,
RAM and storage) and two gateway nodes. Each of them
has a SAP (Service Access Point) attached to it via the SAP-
Gateway. The SAP works as a connection point to the network.
The end devices can consume the remote resources through
this interface (e.g., a mobile base station). Within a cluster
the nodes are connected in a full mesh topology. The clusters
and the central data centers are connected with each other
via the core network. A topology may contain any number
of central clouds and we assume that they have unlimited
compute, storage and memory capacity. The model is able to
capture use-cases when the central cloud resources are owned
by another operator (e.g., Amazon). Then the service provider
has to pay a fee for consumed resources according to a cost
model. In the rest of the paper, we assume a single provider
using only its own resources. The topology is shown in Fig. 1.



Figure 1. Our resource model for cloud-fog infrastructures

IV. DARK: OUR ORCHESTRATION ALGORITHM

In this section we propose a novel orchestration algorithm,
called DARK, that aims to cope with the new challenges of
distributed cloud architectures. VNF migration is an important
feature of our approach, which gives option to migrate a
given set of network functions to the cloud, thus freeing up
network resources in the edge layer in order to serve more
latency and bandwidth sensitive service deployment requests.
The main steps of our algorithm, taking into account VNF
migration costs, are described in the following, and pseudo-
code is provided in Alg. 1 and Alg. 2.

A. Service Graph preprocessing

In the first step of our algorithm, we calculate the order
of execution. The ORDERSUBCHAINS method splits the
incoming service request to the list of triplets containing
the links and their connected nodes, i.e., the VNFs. The
method starts with the first available SAP and collects all the
neighboring nodes and connected edges, then appends the link
with the strictest bandwidth requirement to the list together
with its endpoints. After that it collects the available nodes
and edges that became reachable via the new node.

B. VNF mapping

The next step is the mapping of the service requests to the
physical infrastructure. The MAP method iterates through the
previously ordered list of edges. Depending on the status of the
nodes connected by the link, three different cases are possible.
If both ends have already been allocated to a computing
resource previously, then only a suitable path for the virtual
edge needs to be found. To achieve this we run a Dijkstra
algorithm between the hosts in the physical topology.

If one of the end nodes is not in mapped_vnodes yet and it
is not a SAP either, then the node needs to be mapped. In the
MAPVNF method the program tries to find a suitable place for
the VNF. First, it filters the available physical nodes based on
computing resources, and after that it checks if the candidate

Algorithm 1 Service graph mapping to resource graph
1: running ← copy(RG)
2: mapped_vnodes← ∅
3: map_list←ORDERSUBCHAINS(SG)
4: mapped_vnodes.insert(%s.first)
5: rollback_level = 0
6: for all (u, v, link) ∈ map_list do
7: if (u, v) ∈ mapped_vnodes then
8: success← MAPVIRTUALLINK(link)
9: else if u 6∈ %s then

10: success← MAPVNF(u, v, link)
11: else . This means actual_element is a SAP
12: success← MAPVLINK2SAP(u, v, link)
13: end if
14: if ¬success and rb_level ≥ max_rb then
15: success← MIGRATINGEDGE2CORE(cable, u, v)
16: else
17: success← ROLLBACK(u, v, link)
18: rollback_level+ = 1
19: end if
20: if success then
21: mapped_vnodes.insert(v)
22: end if
23: end for

is reachable from the previous node via any sequence of
edges. If the path does not satisfy the latency requirement,
or any of the edges does not have enough bandwidth, then
the node is removed from the list of candidates. When the
list of compatible nodes is available, they are sorted based on
the resource cost of hosting the actual VNF. After the host
node is determined, the link can also be mapped with the
previously seen method. In that case, when the actual element
is a SAP, then the algorithm calculates the path with the lowest
latency, where the required bandwidth is available on all edges.
If the path fulfills the latency requirement between the previous
mapped VNF and the SAP, then the link mapping is performed.

It may occur, that one of the steps above fails. For example,
none of the nodes have enough resource to host a given VNF,
or the network related requirements cannot be met. In that
case, the algorithm tries to step back to a previous state. This
step is performed by the ROLLBACK method. In order to
ensure better runtime, limiting the number of rollback steps
may be necessary. We can do that by setting the max_rollback
constant to an appropriate value. The ROLLBACK method
restores the state when the previous VNF was mapped, then
chooses another candidate from the list of the suitable nodes,
and continues the mapping from the modified state. If the
number of rollbacks exceeds the limit, then the algorithm tries
to migrate one or more already mapped VNFs to the central
cloud, thus freeing up resources in the edge. The migration
process is described in the next section.

C. Migrating VNFs

The MIGRATING method is responsible for the migration
of the already mapped VNFs to free compute resources and
map the actual VNF. The three arguments are the list of non-
delay-sensitive network functions (migratables), actual VNF
needed to implement (u) and the previous VNF (v) which is
connected to the actual VNF and already mapped to a physical
node. The migration procedure is the following.

First, it iterates through the list containing migratable func-
tions and checks the compute constraints using ISBIGGER



Algorithm 2 VNF migration
1: procedure MIGRATING(migratables, u, v)
2: mig_vnf_try = 0
3: for migratable_vnf ∈ migratables do
4: if ISBIGGER(migratable_vnf ,u) then
5: if mig_vnf_try < max_vnf ) then
6: poss_nodes← GETCOMPNODES(migratable_vnf )
7: mig_try = 0
8: for n ∈ poss_nodes do
9: if mig_try < max_try then

10: backup_rg ← GETRUNNINGRG()
11: backup_sgs← GETMAPPEDSGS()
12: success← TRYMIGRATE(n,migratable_vnf ,u,v)
13: if success then
14: return True
15: else
16: RESETRG(backup_rg)
17: RESETSGS(backup_sgs)
18: end if
19: mig_try+ = 1
20: end if
21: end for
22: mig_vnf_try+ = 1
23: else
24: return False
25: end if
26: end if
27: end for
28: return False
29: end procedure

method. If the migratable VNF reserves more compute re-
source (CPU, RAM, and storage) than the requirements of the
actual VNF, then the actual VNF would be mapped to physical
node if it did not contain that migratable VNF. If it is true,
the GETCOMPNODES method returns the physical nodes
which contain sufficient free resources for the migratable VNF.
The second part of the method iterates through these possible
physical nodes.

Secondly, the TRYMIGRATE method tries to execute the
migration process, which means the migratable VNF is re-
moved from the original physical node and placed in the
possible target node, in addition the connected vlinks are
reconfigured to use another physical link path between the
VNFs. Furthermore the method maps the actual VNF to the
original server where the migratable one was moved from, and
determines the physical links which will implement the virtual
link between the actual and the previous VNF. So far only the
compute constraints of the VNFs have been checked, however,
the network requirements can fail during the mapping.

Finally, the method checks in each iteration if the migration
was successful. If the remapped physical paths fulfill the cor-
responding virtual link requirements, then the TRYMIGRATE
method returns true, thus the procedure of migrating was suc-
cessful. Otherwise, in RESETRG and RESETSGS we restore
the previous state of the resource and the already mapped
service graphs, and continue with the next migration option
from the list. Instead of checking all the possible migration
options (migratable VNFs and possible physical nodes), in
order to reduce runtime we only test a sufficient amount of
them. This iteration number can be controlled by defining the
value of max_try and max_vnf environment values.

The computational complexity of the algorithm is polyno-
mial (for further details, see [18]).

V. IMPLEMENTATION - PROOF OF CONCEPT PROTOTYPE

As previously presented, our DARK algorithm gives us a
service graph mapping to our internal topology, which defines
the exact resources where the virtual service components
should be executed. As a proof of concept, we substituted
the default nova-scheduler of OpenStack with our own al-
gorithm, in order to support network-aware VNF placement.
This prototype is also able to run automated measurements to
determine the physical network characteristics. In this section,
we describe the required improvements that we have made.

A. Network status measurement

Since currently OpenStack does not provide any network
related metrics, it cannot take them into account during the
orchestration process. To solve this problem we implemented
a measurement method which is conform with our previously
introduced network model. Our tool is based on VMTP [19]
which is a data path performance measurement module for
OpenStack. It performs automatic measurements between the
different virtual networks, but can also be used to benchmark
native hosts. It connects to the given nodes via SSH, executes
the measurements by using the selected protocols (TCP, UDP,
ICMP), then returns the result to the management server.

Each OpenStack compute host in our reference cloud is
configured to belong to one custom Availability Zone. An
Availability Zone may represent an edge cluster or a central
cloud according to our terminology. As we assume that the
servers that are located in the same cluster are deployed
physically close to each other (e.g., in the same rack), it is
enough to measure the latency and bandwidth values between
1-1 selected servers in each zone. By applying this method we
can construct the delay and bandwidth matrices that describe
the parameters of the underlying physical network.

Furthermore, through the OpenStack API we also collect the
available compute node resources (CPU, RAM, storage) from
each hypervisor. From the previously gathered information, we
can build up the Resource Graph, that contains the compute
resources extended with the networking related features.

B. OpenStack scheduler algorithm and modifications

OpenStack’s physical resource orchestrator component is
Nova, which uses its filter scheduler for filtering and weighting
to make informed decisions on which compute node a new
instance should be created. During the virtual machine place-
ment nova-scheduler iterates over all compute nodes, evaluates
each of them against a set of filters. The list of resulting host
is sorted by the administrator-defined weights. This default
filtering operation cannot deploy properly our virtual services
because there is no standard filter class that tackles the network
resources (delay, bandwidth) between infrastructure nodes.
With Nova API it is possible to deploy a virtual machine
on a manually specified host. In our prototype we use this
possibility for executing our VNFs on the host given by our
resource orchestrator algorithm.

The next step in the prototype’s workflow is ensuring correct
traffic steering. OpenStack’s Pike release officially supports



Figure 2. Service Graph model of the generated services

network traffic steering with Neutron port chains provided by
the networking-sfc [20] module. Our code uses Neutron API to
create an ingress and an egress port for each virtual machine.
These ports are grouped into port pairs by the owner virtual
machine. The port pairs are grouped into Neutron port pair
groups by the virtual link connections. A port chain consists
of a set of Neutron port pair groups to define the sequence
of service functions. These Neutron objects make it possible
to deploy our traffic steering model for service chaining that
uses only Neutron ports.

C. Challenges and limitations of OpenStack

If the delay is too high between the controller and the com-
pute nodes, then the controller cannot execute the commands
properly on compute nodes. We conducted several experiments
with emulated delay between the controller and the compute
nodes. We could successfully deploy virtual machines even
with extreme, 10 seconds, delay value, naturally the spawning
method took couple of minutes till we got our VM in active
state. Consequently we assume that OpenStack compute ser-
vice is able to work in a distributed environment which has
relatively high delay among the nodes.

We used OpenStack’s latest (at the time of writing this
paper) release, i.e., Pike, because the official Neutron package
support for the service function chaining first appeared in
that one. Our orchestrator algorithm considers the possibility
of migrating VNFs between compute nodes, therefore we
implemented the migration API calls in our prototype code.
Migrating VMs between compute nodes is not trivial, if there
are different types of CPUs in the compute nodes. In this case
we have to make modifications in Nova’s configuration files
to avoid any issues. Note that to the best of our knowledge
there are no solutions to live-migrate VMs between different
OpenStack clouds, hence the importance of federating com-
puting clouds and fogs under one VIM. Furthermore, as only
one controller is needed in this case, our proposed setup does
not take hardware resources for controlling purposes from the
limited capacity edge compute nodes.

VI. LARGE-SCALE SIMULATION RESULTS

We have run measurements in a simulator to demonstrate
how our algorithm performs in different topology setups
with various requests. The simulated three topology setups
contained different number of edge nodes, more precisely 10,
50, 100. We determined three types of network service (NS1,
NS2, NS3) and each of them contained a service access point,
and two VNFs in a logical service chain shown in Fig. 2. The
differences between them were in the latency constraints of
the virtual links, which are shown in Table I.

We generated three scenarios of service request sequences.
Each of them included different percentages of NS1, NS2 and

Table I
NETWORK AND COMPUTE REQUIREMENTS IN REQUEST SETS

NS1 NS2 NS3

VLink1 delay (ms) 8 - 10 80 - 150
bandwidth (Mbps) 100 - 500

VLink2 delay (ms) 8 -10 80 - 150
bandwidth (Mbps) 100 - 500

VNF1 & VNF2
CPU 1 - 4
RAM (GB) 1 - 8
Storage (GB) 10-100

NS3 which can be seen in Table II. We used these service
request sequences as inputs for the proposed algorithm for
mapping them into the generated topology models. During
our simulations we posted each network service (included
in a service sequence) one by one, and counted the number
of deployed service requests in which the mapping process
fulfills all the compute and network constraints. We indicated
failure when there was no way to deploy a service request
to the remaining available resource set, or in the case of
nova-scheduler algorithm, if the deployment did not satisfy
the service’s network requirements. Each simulation contained
1000 service requests and we differed three type of topology
with 10, 50, 100 edge nodes.

In Fig. 3 we demonstrate our obtained simulation results.
The incoming service requests arrived continuously one-by-
one while after every mapping we logged the number of
successfully mapped services. The examined strategies in-
cluded our proposed orchestration algorithm, the simulated
OpenStack’s nova-scheduler and an extended version of the
latter called nova smart, which takes into account the end-to-
end delay constraints.

The simulated OpenStack’s nova-scheduler has significantly
lower performance than others, in each scenario, on each
topology. This is not a surprising result since the original
scheduler operation does not take into account the network
requirements of the services, therefore after each iteration the
mapping solution will meet the constraints only randomly. The
more edge nodes are available, the greater the chance nova-
scheduler selects from those that do not meet the network
constraints. That is why it provides a performance close to
zero in case of 50 and 100 edge nodes (green lines in Fig. 3).

In case of Scenario 1, when the required services do
not contain many delay-sensitive virtual links, the proposed
orchestration algorithm DARK has obvious advantage over
the other solutions: in the absence of free resources on a
node, it migrates VNFs to another server. When the services
contain more delay-sensitive virtual links, then the migration

Table II
MEASUREMENT SCENARIOS

NS1
(%)

NS2
(%)

NS3
(%)

Scenario1 10 10 80
Scenario2 80 10 10
Scenario3 10 80 10



Figure 3. Number of mapped service requests depending on incoming requests

of VNFs is rarely possible anymore. As a consequence, DARK
is not able to free compute resources in order to offer enough
room for incoming services. That is why the performance
difference is smaller between DARK and nova-scheduler in
case of Scenarios 2 and 3, where the network services contain
more delay-sensitive links than in Scenario 1.

Finally, one would ask why nova smart performs better in
Scenario 2 as we increase the number of edge nodes. Nova
smart filters the nodes based on the end-to-end delay constraint
of the network service. Since in Scenario 2 most of the service
links are delay-sensitive, those servers will be kept by the
filtering from which the later random selection will be mostly
successful. Interestingly, in such cases this simple smartening
of the nova-scheduler is enough to reach high efficiency.

VII. CONCLUSION

We are in the middle of a transformation process in which
online applications are now containerized and run in virtual
machines somewhere in the cloud instead of deploying code
on bare metal in-house. But in the near future, the progress
continues, and the phenomenon of fog and edge computing
will widely spread, and together with the advanced wireless
radio technology of 5G and the plethora of smart devices and
sensors of the Internet of Things, today’s cloud will descend
and surround us eventually providing ubiquitous computing.
We prepare for this vision by proposing a service orchestration
algorithm, which we call DARK, in order for an infrastructure
provider to be able to quickly map incoming requests for
virtualized service to physical resources. Our algorithm was
designed with the cloud-edge infrastructure topology in mind.
As a second contribution, we take the most widely applied
VIM of today, OpenStack, and investigate how to make
it compliant with the future’s requirements. We propose to
federate all the geographically scattered compute islands of a
provider under one controller in oder to save on resource usage
and to enable VM migration to remote nodes. We implemented
and successfully tested our OpenStack-based prototype. Third,
with numerical evaluation we compared DARK and an ad-
vanced nova-scheduler, showing that although DARK’s per-

formance is outstanding, depending on the delay-tolerance of
services, a simpler solution might perform well enough.

ACKNOWLEDGEMENT
This research was supported by H2020-ICT-2014 project 5GEx (grant

agreement no. 671636), which is partially funded by the European Commis-
sion. Project no. PD 121201 has been implemented with the support provided
from the National Research, Development and Innovation Fund of Hungary,
financed under the PD_16 funding scheme.

REFERENCES

[1] C. C. Byers, “Architectural imperatives for fog computing: Use cases,
requirements, and architectural techniques for fog-enabled iot networks,”
IEEE Communications Magazine, vol. 55, no. 8, pp. 14–20, 2017.

[2] P. Mach et al., “Mobile edge computing: A survey on architecture and
computation offloading,” IEEE Communications Surveys and Tutorials,
vol. 19, no. 3, pp. 1628–1656, 2017.

[3] P. Schulz et al., “Latency Critical IoT Applications in 5G: Perspective
on the Design of Radio Interface and Network Architecture,” IEEE
Communications Magazine, vol. 55, no. 2, pp. 70–78, 2017.

[4] ETSI, “White Paper: Network Functions Virtualisation (NFV),” 2013.
[Online]. Available: http://portal.etsi.org/nfv/nfv_white_paper2.pdf

[5] B. Gero et al., “The Orchestration in 5G Exchange - a Multi-Provider
NFV Framework for 5G Services,” in IEEE NFV-SDN, 2017.

[6] ETSI Open Source MANO. [Online]. Available: https://osm.etsi.org/
[7] ONAP. [Online]. Available: https://www.onap.org
[8] CORD. [Online]. Available: https://opencord.org/
[9] Cloudify. [Online]. Available: https://cloudify.co/

[10] OpenStack Nova Filter Scheduler. [Online]. Available: https://docs.
openstack.org/nova/latest/user/filter-scheduler.html

[11] M. Scharf et al., “Network-aware instance scheduling in openstack,” in
IEEE ICCCN, 2015.

[12] S. Sahasrabudhe et al., “Improved filter-weight algorithm for utilization-
aware resource scheduling in openstack,” in IEEE ICIP, 2015.

[13] F. Lucrezia et al., “Introducing network-aware scheduling capabilities
in openstack,” in IEEE NetSoft, 2015.

[14] OpenDayLight. [Online]. Available: https://www.opendaylight.org/
[15] B. Nemeth et al., “Efficient Service Graph Embedding: A Practical

Approach,” in IEEE NFV-SDN, 2016.
[16] E. Amaldi et al., “On the computational complexity of the virtual net-

work embedding problem,” Electronic Notes in Discrete Mathematics,
vol. 52, pp. 213 – 220, 2016, iNOC 2015.

[17] A. Fischer et al., “Virtual network embedding: A survey,” IEEE Com-
munications Surveys and Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[18] M. Szabo et al., “Resource Allocation Algorithm for Distributed
Cloud Environments,” Tech. Rep., 2018. [Online]. Available: https:
//sb.tmit.bme.hu/mediawiki/index.php/DARK

[19] VMTP. [Online]. Available: http://vmtp.readthedocs.io
[20] OpenStack Service Function Chaining. [Online]. Available: https:

//docs.openstack.org/newton/networking-guide/config-sfc.html


