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Abstract

In modern rail-rail transshipment yards huge gantry cranes spanning all rail-
way tracks allow for an e�cient transshipment of containers between di�erent
freight trains. This way, multiple trains loaded with cargo for varying des-
tinations can be consolidated to a reduced number of homogeneous trains,
which is an essential requirement of hub-and-spoke railway systems. An im-
portant problem during the daily operations of such a transshipment yard
is the train location problem, which assigns each train of a given pulse to a
railway track (vertical position) and decides on each train's parking position
on the track (horizontal position), so that the distances of container move-
ments are minimized and the overall workload is equally shared among cranes.
For this problem a mathematical model is presented, di�erent heuristic solu-
tion procedures are described and tested in a comprehensive computational
study. The results show that our procedures allow for a remarkable reduction
of train processing time compared to typical real-world train location policies.

Keywords: Railway systems; Transshipment yards; Container handling; Park-
ing positions
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1 Introduction

In spite of the extraordinary initiatives of the European Union (EU) and other national
authorities, the fraction of the overall freight tra�c moved by train decreased from 20%
(1970) to 10% (2005) within the last 35 years (EU, 2007). Major handicaps of rail
transport are missing the �exibility and a lack of reliability, e.g., caused by the general
right of way of passenger tra�c in many European countries. Moreover, trains cause
high �xed cost, so that freight tra�c is only pro�table if large trains are moved over long
distances. With traditional point-to-point tra�c such high demands for freight transport
merely exist between large cities, so that areas of lower population density are excluded
from freight transport by rail. Only recently, hub-and-spoke systems (which are used in
road and air tra�c since many years) have been identi�ed as a possibility to pro�tably
move smaller freight volumes (see Ballis and Golias, 2004). In such a system, multiple
trains loaded with containers for varying destinations are consolidated to full trains in
a hub terminal, which are then moved on long-haul routes to their speci�c destinations.
This way, economies of transportation can be realized.
To successfully realize hub-and-spoke railway systems, crane-based rail-rail transship-

ment yards are required, which allow for an e�cient transshipment of containers among
trains. Traditional shunting (or classi�cation) yards, where railcars are reshu�ed via
shunting hills and switches, considerably slow down the transshipment process and, thus,
jeopardize on-time deliveries. In modern yards, huge rail-borne gantry cranes spanning
the railway tracks move containers between di�erent freight trains, while the railcars
remain untouched. Some of these hub yards have already been build in the EU (e.g.,
Port-Bou at the border between France and Spain, see Martinez et al., 2004) and others
are currently under construction (e.g., the German �Mega Hub� in Hannover-Lehrte, see
Alicke, 2002; Rotter, 2004) or in design phase. Figure 1 gives a schematic representation
of such a rail-rail transshipment yard.

Figure 1: Schematic representation of a rail-rail transshipment yard

A modern rail-rail transshipment yard consists of multiple parallel railway tracks,
where successive pulses (one train per track) of freight trains are processed. Container
transshipment among trains is conducted by multiple rail-borne gantry cranes spanning
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the railway tracks. All cranes share dedicated rail tracks for their horizontal movement
along the yard, so that interferences occur whenever an actual container move is blocked
by another crane. To eliminate interferences and to avoid cost-intensive online control
systems which schedule crane movements, it is a common real-world policy to assign
each crane a �xed and separate yard area (see Boysen and Fliedner, 2009). This way,
each crane can simply be scheduled by the respective crane operator in a decentralized
manner. However, some containers are to be transshipped between railcars which are
located in di�erent crane areas. To enable container processing in this case, an additional
sorting system is applied, where automated guided vehicles (Bostel and Dejax, 1998) or
some rail-mounted vehicles (Alicke, 2002) move and preposition containers. To allow
containers overtaking each other within the sorter, a typical system consists of separate
moving and bu�er lanes (see Rotter, 2004).
In addition to these technical requirements e�cient scheduling procedures coordinating

the elements of a transshipment yard are required, so that train processing is accelerated.
An important decision problem in this context, is to determine the parking positions of
trains on the yard. Each train of a given pulse has to be assigned to a track (vertical
position) and for each track a parking position (horizontal position) of its respective
train must be determined. If trains are parked appropriately, the overall distances of
container moves and, thus, processing times of trains can be reduced. Moreover, parking
positions determine the division of labor among cranes. As all cranes process trains in
parallel, it is the most busy crane which determines the makespan of the current pulse.
Thus, the parking positions are to be chosen, so that the maximum workload of cranes
is minimized.
The paper on hand investigates the aforementioned train location problem. A math-

ematical model is presented and di�erent heuristic solution procedures are developed
and tested. Furthermore, we compare our optimization approaches to common opera-
tional policies typically applied in real-world transshipment yards in a comprehensive
simulation of yard operations.
For this purpose the remainder of the paper is organized as follows. In Section 2 exist-

ing literature on transshipment yards is reviewed. Then, a detailed problem description
with a mathematical model is presented (Section 3) and di�erent heuristic solution pro-
cedures are described (Section 4). Section 5 contains the computational part, where the
performance of our heuristic solution procedures is tested (Section 5.2) and compared to
real-world parking policies in a yard simulation (Section 5.3). Finally, some extensions
of the base model are presented (Section 6) and future research needs are summarized
(Section 7).

2 Literature Review

Transshipment yards are speci�c entities in railway systems and especially utilized as
part of intermodal container transport. Detailed reviews on railway optimization and
intermodal transport are provided, e.g., by Cordeau et al. (1998), Bontekoning et al.
(2004), Macharis and Bontekoning (2004) as well as Crainic and Kim (2007). A �rst
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stream of research directly related to transshipment yards deals with strategic problems.
For instance, in-depth descriptions of technical and structural properties of transshipment
yards are investigated by Ballis and Golias (2002) as well as Rotter (2004). Meyer (1998),
Abacoumkin and Ballis (2004), Ballis and Golias (2004) as well as Wiegmans et al. (2006)
speci�cally address the design process of an optimal terminal layout. However, only very
few research papers deal with the scheduling problems perpetually arising during the
daily operations of a transshipment yards. As the overall scheduling task seems far too
complicated to allow for a simultaneous solution, a hierarchical decomposition seems
recommendable (see Boysen and Pesch, 2008):

(i) Schedule the succession of trains by assigning them to pulses.

(ii) Decide on the containers' positions on trains.

(iii) Determine �xed crane areas.

(iv) Decide on the trains' vertical and horizontal parking positions.

(v) Decide on the sequence of container moves per crane.

Problem (i) is treated by Boysen and Pesch (2008). Here, a given set of trains to be
processed is to be assigned to di�erent pulses. In such a setting, revisits of trains in a
later period to receive remaining containers not delivered up to the train's �rst stay in the
yard and double handling of containers are to be avoided. Bostel and Dejax (1998) as well
as Corry and Kozan (2006, 2008) treat problem (ii) and provide scheduling procedures
to determine the optimal positions of containers on freight trains so that crane moves at
the yard are minimized. Fixed crane areas (problem (iii)) are determined by Boysen and
Fliedner (2009) as well as Boysen et al. (2009). For a given pulse of trains (with given
parking positions) optimal yard areas are determined, so that the maximum workload of
cranes is minimized. Problem (v) � the sequencing of crane moves in a transshipment
yard � is treated by Alicke (2002). Related problems also occur within seaports (see,
e.g., Ng, 2005; Zhu and Lim, 2006; Moccia et al., 2006; Lim et al., 2007; Sammarra et
al., 2007).
This paper treats problem (iv) and determines vertical and horizontal parking positions

of trains, so that the maximum workload of multiple cranes is minimized. Up to now, only
Alicke and Arnold (1998) investigate a train location problem in a transshipment yard.
However, they merely model the track assignment of trains (vertical position) in a very
basic fashion without, e.g., considering horizontal parking positions, sorter operations
and multiple cranes.

3 Detailed Problem Description

The train location problem (TLP) is an operational problem, which has to be solved
perpetually for every pulse of trains arriving at a transshipment yard. The TLP assigns
each train of the given pulse a track (vertical parking position) and additionally decides
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on each train's horizontal parking position along the yard. It is the aim of the TLP
to evenly spread the overall workload among the given gantry cranes of the yard, so
that by minimizing the maximum workload of cranes train processing of a given pulse is
accelerated. This basic decision problem relies on the following premises:

• A rail-rail transshipment yard is typically operated in successive pulses (Bostel
and Dejax, 1998) or bundles (Alicke, 2002; Rotter, 2004) of trains, which means
that |G| trains (one per track) are simultaneously processed and jointly leave the
system not before all container moves are executed, which are required for the
respective bundle of trains. Then, another pulse of trains enters the yard. The
assignment of trains to pulses is typically conducted in a previous planning step
by the respective network operator, because network-wide timetable requirements
need to be considered (see Boysen and Pesch, 2008). Thus, it is assumed that the
TLP receives the composition of pulses as input data. Note that in Section 6.2 this
assumption is relaxed and overlapping service times are assumed. Furthermore,
w.l.o.g. we assume that the number of trains equals the number of tracks, which
can be easily ensured by inserting �empty� trains.

• Furthermore, it is assumed that all container moves for the given pulse of trains are
already speci�ed, so that each move already has a �xed start and target position
on its related trains. Train planning, which decides on the location of containers on
trains (problem (ii) in Section 2), is a very complex optimization problem by itself,
since multiple restrictions, e.g., restrictions on dangerous goods, weight limitations
of wagons and train height, need to be considered (see Corry and Kozan, 2006,
2008). Thus, it seems recommendable to solve both optimization problems in a
successive manner. We assume that train planning is executed prior to the TLP,
so that all container moves are already speci�ed.

• To allow for a better coordination between locomotive engineers and crane oper-
ators a typical transshipment yard is subdivided into slots of equal length, whose
numbers are painted on the ground along the length of the yard. For instance, Ger-
man yards typically have a slot length of 14 meters to exactly cover standardized
railcars carrying one forty feet (FEU) or two twenty feet (TEU) containers (Boysen
and Fliedner, 2009). We presuppose that each freight train can be parked so that
any container exactly falls into one slot.

• As gantry cranes share a dedicated rail track for their horizontal movement along
the yard, crane interferences threaten. To avoid congestions of cranes, typical real-
world yards assign exclusive yard areas to each crane (see Boysen and Fliedner,
2009; Boysen et al., 2009). We assume that these yard areas are already de�ned,
so that TLP receives these crane areas as input data. Note that in Section 6.4 this
assumption is relaxed and parking positions and crane areas are simultaneously
optimized.

• If start and target position of a container move fall into a single crane's yard area,
the move can directly be processed by the respective crane, so that a single pick
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and drop operation is required. Such a direct move is depicted on the left-hand-side
of Figure 2. However, if start and target position are separated by at least one area
border a split move occurs. The crane which covers the start position has to move
the container onto some vehicle waiting in the same slot on the moving lane of the
sorter. Then, the container is moved to the slot of its target position, where the
second crane (covering the target position) �nally moves the container from the
sorter to the container's �nal destination on train. The right-hand-side of Figure 2
depicts the double handling required for such a split move.

Figure 2: Direct move vs. split move

• Finally, only loaded crane moves which actually carry containers are considered
in the optimization, whereas empty crane moves connecting two loaded moves are
excluded from approximating each crane's workload. Otherwise, a detailed crane
scheduling (problem (v) in Section 2) has to be included into the TLP, which con-
siderably complicates the solution process since two complex optimization problems
are to be solved simultaneously. Crane scheduling resembles an asymmetric trav-
eling salesman problem, which is known to be NP-hard in the strong sense (see
Garey and Johnson, 1979). With multiple cranes connected via split moves and
the sorting system, the problem becomes even more di�cult to handle. Thus, to
ease the solution process we presuppose that a crane's workload exclusively re-
sulting from loaded moves is strongly positively correlated to its overall workload
(consisting of loaded and empty moves), so that minimizing the surrogate objective
considerably reduces the underlying objective, as well. This assumption is tested
in the computational study of Section 5.3, where the impact of TLP on actually
reducing the overall workload is captured in detail.

With these premises on hand, the impact of each train i's parking position p in rela-
tion to any other train j's parking position q on the workload of crane c can be stored
in a parameter dipjqc by an appropriate preprocessing, which is clari�ed by the following
example.

Example: Consider a transshipment yard consisting of two tracks and four slots, so that
parking positions can be numbered from one to eight: P = {1, 2, . . . , 8}. The yard is
operated by two cranes, whose distinct yard areas are depicted by the vertical dashed
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line in part (a) of Figure 3. The distances among tracks and sorter are also depicted in
Figure 3. The given pulse of trains to be processed in the yard consists of two trains,
where the container moves between both trains are depicted as arcs in part (a) of Figure
3. The grey box on train 1 represents a railcar, which is to be loaded with a container
already waiting in the sorting system. Note that such direct moves to or from the sorter
occur, whenever containers are to be transshipped between trains of di�erent pulses.
First, for any train i ∈ I, the set Pi of possible parking positions can be determined.

Train 1 can only be parked in the �rst slot, so that P1 = {1, 5}. Otherwise, the train
would outreach the yard. Possible parking positions of train 2 amount to P2 = {1, 2, 5, 6}.
If for both trains, any train's possible parking positions is combined with any other train's
positions, eight possible combinations exist. However, since no two trains can take the
same positions on a track there are only 4 feasible parking patterns: (1,5),(1,6),(5,1) and
(5,2). Two of these patterns are depicted as solutions 1 and 2 in part (b) and (c) of
Figure 3, respectively. For a given parking pattern, the resulting workload can be easily
determined. Note that cranes can simultaneously be moved in horizontal and vertical
direction by applying separate engines, so that it is the maximum distance of both di-
rections which determines each move's length. For instance, the direct move in solution
1 from parking position 1 to 6, covers a horizontal and vertical distance of 14 and 7
meters, respectively, so that the maximum of 14 meters is applied as the moves weight.
In total, the resulting workloads for cranes 1 and 2 in solution 1 amount to d11251 = 31
and d11252 = 26, respectively. In solution 2, workload parameters result to d11261 = 29
and d11262 = 24. A comparison of both solutions reveals that solution 2 with a maxi-
mum workload of 29 is preferable. Instead of distances, workload parameters d can also
be assigned detailed processing times of cranes which is described in detail within the
simulation study of Section 5.3.

Figure 3: Example: (a) Input data, (b) and (c) solutions
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I set of trains (indices i and j)
C set of cranes (index c)
G set of parallel tracks within transshipment yard (index g)
P set of all parking positions (indices p and q)
Pg set of parking positions on track g
Pi set of park positions available for train i
dipjqc total distance (or time span) to be processed by crane c be-

tween train i at position p and train j at position q
xip binary variable: 1, if train i is assigned at position p; 0,

otherwise

Table 1: Notation

With suited parameters dipjqc on hand and the additional notation summarized in
Table 1 the train location problem (TLP) can be formalized by a quadratic program
consisting of objective function (1) subject to constraints (2) to (4):

(TLP) Minimize F (X) = max
c∈C

∑
i∈I

∑
j∈I

∑
p∈Pi

∑
q∈Pj

dipjqc · xip · xjq

 (1)

subject to

∑
p∈Pi

xip = 1 ∀ i ∈ I (2)

∑
i∈I

∑
p∈Pg

xip = 1 ∀ g ∈ G (3)

xip ∈ {0, 1} ∀ i ∈ I, p ∈ Pi (4)

In objective function (1) the maximum workload of all cranes c ∈ C is to be minimized,
where each crane's workload is determined by summing up the respective workload pa-
rameters dipjqc whenever crane i is parked on position p (with xip = 1) and another
crane j is parked on position q (with xjq = 1). Equalities (2) ensure that each train i of
the given pulse I is assigned to exactly one parking position out of its possible positions
Pi. On the other hand, it is to be ensured (constraints (3)) that each track g receives
exactly one train, where Pg ⊂ P comprises all parking positions of track g. Finally,
binary variables xip are de�ned by (4).

Obviously, TLP with facultative weights dipjqc is NP-hard in the strong sense, since
any instance of the quadratic assignment problem (QAP) can be easily reduced to an
instance of TLP with a single crane C = {1} where the length of all trains is equal to
the length of the yard, so that only one parking position per track is feasible. QAP was
proven to be NP-hard in the strong sense by Sahni and Gonzalez (1976).

8



Algorithm 1: Myopic search procedure (MSP)

/* vertical assignment;1

order train set I according to descending number of container relations: R =< i1, i2, . . . , i|I|];2

assign train i1 to central track t = d(G+ 1)/2e;3

for j = 1 to d(G− 1)/2e do4

assign train i2·j to track t− j;5

for j = 1 to b(G− 1)/2c do6

relocate train i2·j+1 to track t+ j;7

/* horizontal assignment;8

assign all trains to �rst slot s = 1;9

while an improvement of the solution was obtained during the last iteration do10

for j ∈ I do11

determine the best possible parking slot s∗ ∈ {1, . . . , S − lj + 1} in relation to all other currently12

�xed trains;

return track and slot assignment for all trains;13

4 Algorithms

As the problem is complex, e�cient heuristic solution procedures are required for solving
problem instances of real-world size. In this work, we present a myopic heuristic proce-
dure and two meta-heuristics, a simulated annealing approach and a genetic algorithm.

4.1 Myopic heuristic procedure

In our myopic search procedure (MSP) assigning vertical and horizontal parking posi-
tions is decomposed into two separate steps. In the �rst step each train is assigned
to a track. This assignment decision is guided by the consideration that trains having
multiple container relations, i.e., a large number of containers to be processed, are es-
pecially promising when located on central tracks. Thus, we order trains according to
descending container relations and assign them one after another starting from central
track t = d(G+ 1)/2e going outwards. In a second step, horizontal parking positions are
determined iteratively. Initially, all trains are assigned to the �rst slot (s = 1) at the be-
ginning of the yard. Then, each train is moved individually to its best horizontal position
in relation to all other (currently �xed) trains. Clearly, each train can only be moved to
feasible slots s ∈ {1, . . . , S− li+1}, where S and li denote the overall number of slots and
the length (in slots) of train i, respectively. Such a stepwise relocation of the complete
train set I is repeated until no improvement of the objective function is obtained. Note
that when applying this procedure to the 810 instance of our computational study (see
Section 5) on average 3.16 iterations need to be executed before the solution converges
and the procedure is stopped. A formal description of MSP is given by Algorithm 1.

Example: Consider the yard layout and train set depicted in Figure 4. Here, three
trains are to be parked on a yard having three tracks and four slots. First, MSP sorts
trains according to decreasing container relations: R =< 3, 1, 2], where minimum train
number is applied as tie-break rule. As train 3 has four container relations, i.e., two
containers need to be loaded and unloaded respectively, it is assigned to the central track
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2. Then, with all trains parked in slot 1, interim solution 1 on the left-hand side of Figure
5 and a maximum workload of 47 (crane 2) results. After having iteratively evaluated
parking positions of trains, the �nal solution 2 on the right-hand side of Figure 5 with a
maximum workload of 45 (crane 2) is returned by MSP.

Figure 4: Example with G = 3 tracks and |I| = 3 trains

Figure 5: Solutions evaluated by the myopic heuristic procedure

4.2 Simulated annealing

Simulated annealing (SA) is a stochastic local search meta-heuristic that is able to over-
come local optima. Speci�cally, it de�nes the acceptance of a modi�ed neighboring
solution on the basis a probabilistic scheme inspired by thermal processes for obtaining
low-energy states in heat baths (e.g., Kirkpatrick et al., 1983; Aarts et al., 1997).
As solution encoding, our SA approach operates on a vector π where elements πi =

(g, s) (with i = 1, . . . , |I| ) store the current parking position of train i, i.e., consisting of
track g and slot s. For our example in Figure 5 the vectors representing solutions 1 and 2
are π(1) = {(1, 1), (3, 1), (2, 1)} and π(2) = {(1, 1), (3, 2), (2, 1)}, respectively. The initial
solution is randomly determined by assigning each train a separate track g ∈ G and a
feasible horizontal slot s ∈ {1, . . . , S − li + 1}. Two di�erent neighborhood-functions are
applied to modify a current solution, where both kinds of moves are chosen with equal
probability:
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• A swap move interchanges the track assignment of two randomly determined trains,
whereas horizontal parking positions remain unchanged. Consider the example of
Figure 5. Here, a swap move of trains 2 and 3 would change current solution 2
(with π(2) = {(1, 1), (3, 2), (2, 1)}) to π′ = {(1, 1), (2, 2), (3, 1)}.

• Alternatively, a shift move does not alter the track assignment of a randomly de-
termined train i, but renews the slot assignment of the train by randomly choosing
(with equal distribution) a new feasible horizontal slot out of interval [1, S− li+1].
For instance, a shift move could relocate train 2 within solution 2 of Figure 5 to slot
1, so that current solution π(2) = {(1, 1), (3, 2), (2, 1)} is modi�ed to neighborhood
solution π′ = {(1, 1), (3, 1), (2, 1)}.

The objective value of any solution vector π can simply be determined by summing
the respective weights dijklc for each crane and identifying the maximum workload over
all cranes:

F (π) = max
c∈C

∑
i∈I

∑
j∈I

di,p(g,s)πi ,j,p(g′,s′)πj ,c

 , (5)

where p(g, s)πi denotes the parking position of a train i (depending on track g and
slot s) in solution vector π. Clearly, a more e�cient way to determine these objective
values is to merely consolidate diverging weights of those trains i and/or j changed in a
neighboring solution. The decision about whether a neighboring solution π′ obtained by
a move is accepted is decided according to the traditional probability scheme (cf. Aarts
et al., 1997):

Prob(π′ replacing π) =

{
1, if F (π′) ≤ F (π)

exp
(
F (π)−F (π′)

C

)
, otherwise

. (6)

If accepted, current solution π is replaced by π′, so that it becomes the starting point
for further local search moves.
Our SA is guided by a simple static cooling schedule (see Kirkpatrick et al., 1983). The

initial value for control parameter C is chosen as the objective value of the �rst random
solution (C0 = F (πstart)). In the course of the procedure, C is continuously decreased
by multiplying it with a factor of 0.9999 in each iteration. SA is terminated as soon
as control parameter C reaches its stop value C ≤ C0 · 0.001. Then, the best solution
π∗ found with minimum objective value F (π∗) is returned. Within our computational
study, we only report results for the values of control parameters described above. Note
that preliminary studies have indicated that this parameter constellation outperforms
other settings and has obtained promising results.

4.3 Genetic algorithm

A genetic algorithm (GA) � originally developed by Holland (1975) � is a probabilis-
tic heuristic search procedure, whose solution process emulates evolution in nature. In
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analogy to biological evolution, GA operates on a population of individuals, which rep-
resent solutions (encoded by a string of genes) for the problem considered. Iteratively,
populations are constructed through a number of generations by replacing parent solu-
tions with newly generated child solutions. Following Darwin's concept of �survival of
the �ttest�, each individual's probability of �contributing� to the next generation rises
with increasing �tness (better objective value). This is achieved by a probabilistic se-
lection operator, which chooses individuals in proportion to their �tness. Then, using a
crossover operator, features of the chosen parent individuals are recombined to form new
(child) individuals. Finally, by mutation some properties of an individual are modi�ed
randomly. Customizing these basic steps of a GA for TLP is described in the following
paragraphs.

Representation and �tness function: The �rst step in designing a genetic algo-
rithm for a particular problem is to devise a suitable representation scheme. An ob-
vious choice would be to reuse the encoding of our SA approach, where a vector π stores
track and slot assignment for each train. However, such a representation su�ers from
infeasible child solutions during reproduction, which is explained in more detail in the
next paragraph. Thus, we apply a slightly modi�ed solution string: Solution vector µ
contains elements µi = (g, f)∀ i = 1, . . . , |I|, which store track assignment g ∈ G and a
�oating point number f ∈ [0, 1] for each train i. Floating number f rede�nes a horizontal
slot assignment as a fraction of each train i's feasible track length, so that the relation
between train i's track fraction value f(µi) and its slot assignment s(µi) is de�ned as
follows:

s(µi) = min
{
τ = 1, . . . , S − li + 1

∣∣∣∣f(µi) ≤
τ

S − li + 1

}
∀ i ∈ I. (7)

Consider our example of Figure 4. Here, train 2 with a length of three slots is parked in
slot 1, if 0 ≤ f(µ2) ≤ 0.5 holds. If this fraction value is changed to 0.5 < f(µ2) ≤ 1, the
train moves to slot 2. Once the slot assignment is determined for each train, the �tness
value of each individual can easily be calculated by applying equation (5).

Crossover operators: During crossover, bits from each parent string are �combined�
to create a child string. The idea is that by creating new strings from substrings of
�t parent strings, new and promising areas of the search space will be explored. Many
crossover techniques exist in the literature. We chose the widespread one-point crossover
with order preservation (also referred to as C1, see Reeves, 1993). Here, a crossover point
is randomly drawn out of [1, |I|] and the left-hand side of the �rst parent is copied to the
o�spring, with the solution vector being completed by taking in order each element from
the second parent. Consider our example problem of Figure 4 and individuals µ(a) =
{(1, 0.87), (2, 0.13), (3, 0.41)} and µ(b) = {(3, 0.27), (2, 0.97), (1, 0.34)} being selected for
recombination. If position 1 is drawn as crossover point the resulting child solution
is µ(c) = {(1, 0.87), (3, 0.27), (2, 0.97)}. Note that by combining C1 crossover and our
fraction encoding infeasible solutions are avoided with certainty. On the one hand, it
is ensured that each track is assigned exactly one train, whereas, for instance, simple
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one-point crossover would have led to two trains assigned to track 1 and an empty track
3 for our example. On the other hand, infeasible horizontal positions are eliminated
by the fractional encoding. With a direct encoding of each train's slot assignment, C1
crossover would have led to an assignment of infeasible slot 2 to train 3 for our example,
whereas the fraction encoding translates f(µ(c)3) = 0.97 to a feasible assignment of slot
1 for train 3.

Mutation operators: Mutation is generally seen as a guard against loss of valuable
genetic information by reintroducing information lost due to premature convergence and
thereby expands the search space. Two types of mutation procedure are used in our GA
(chosen with equal probability): a swap move, i.e., two randomly drawn trains change
track, and a shift move in analogy to the SA procedure. Within the shift move the
horizontal parking position of a train is varied by randomly drawing a new fraction value
f ∈ [0, 1]. As mutation rate, i.e., the probability of each individual being subject to
mutation, preliminary computational tests showed a value of 0.15 as best �tted.

Heuristic improvement operator: By combining the properties of parents to a new
solution it is likely that a child solution misses a local optimum. Thus, it is a widespread
tradition in the design of meta-heuristics to couple a GA with a local search procedure.
We apply such a heuristic improvement operator to the best ten individuals of each
generation: First, with given horizontal positions the track assignment of trains is inter-
changed in a best-�t 2-opt search, which chooses the best track change with improving
objective value for a current train, where trains are considered according to decreasing
container relations. Then, the horizontal location of each train is iteratively improved
as described for MSP (see Section 4.1). The search is aborted if no improvement can be
realized within the last iteration.

Parent selection method: Parent selection is the task of assigning an opportunity
for reproduction to each individual in the population based on their relative �tness. We
decided for a traditional roulette wheel selection (see, e.g., Reeves, 1997). Here, to build
a new individual (child), two anterior individuals (parents) of the current population will
be chosen for reproduction by a probabilistic choice procedure. Each individual has a
roulette wheel slot (choice probability) sized in proportion to its �tness value divided by
the total �tness over all individuals of the current population. The two chosen individuals
and the aforementioned crossover operator are then applied for reproduction.

Population replacement scheme: In order to insert a newly generated child solution
into the population, room must be made for the child, which means we must have a
method for selecting a population member to be deleted. We implemented di�erent
replacement strategies, e.g., applying di�erent ideas of elitism and population overlaps
(see Reeves, 1993). However, limited computational experience showed a tournament

replacement as best �tted. For each child solutions an individual of the current population
is randomly drawn (with equal probability). Then, by comparing �tness values of child
and anterior individual the better one is identi�ed and (re-)inserted into the population
while discarding the other one.
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These basic steps are repeated for a population of 200 individuals for 700 generations
until the best solution found during the solution process is returned. Within our com-
putational study, we only report results for the values of control parameters described
above. Note that promising results could be obtained in preliminary studies where this
parameter constellation clearly outperformed other settings.

5 Computational study

In addition to the question for the performance of our solution procedures, the computa-
tional study has to answer two other research questions: (i) Is minimizing the maximum
workload, which only considers loaded moves (see Section 3), a valid surrogate objec-
tive for the actual crane scheduling problem consisting of loaded and empty moves? (ii)
What is the advantage of optimized parking positions compared to widespread rules of
thumb often applied in real-world yards? However, before answering these questions we
elaborate on the setup of our computational study.

5.1 Instance generation and setup of simulation study

To derive test instances for simulating yard operations some assumptions on the yard
layout, the container moves to be processed, technical parameters of gantry cranes and
the sequencing of crane movements are required. All assumptions are described in detail
in the following.

Yard Layout: With regard to the yard layout, we base the study on the typical setting of
German transshipment yards. A typical yard length is 700 meters and slots are adjusted
to accommodate standard railcars with a total length of 14 meters. Thus, we assume a
yard length of T = 50 slots, with a horizontal distance of dh = 14 meters between any
two adjacent slots. Furthermore, we assume a vertical distance of dv = 7 meters between
neighboring tracks and the sorter, which is located below the �nal track. The number |G|
of parallel tracks and the number |C| of gantry cranes are varied as follows: |G| ∈ {4, 6, 8}
and |C| ∈ {2, 4, 6}, so that di�erently sized transshipment yards are investigated.

Container moves: The train length (in slots) is randomly determined, where di�erent
scenarios (short trains only, long trains only and mixed train lengths) are generated by
drawing li out of intervals [15−25], [35−45] and [15−45], respectively. Furthermore, we
aim to investigate di�erent workload settings, namely low, medium and high workload.
Therefore, γ = r ·Mmax container moves are determined by randomly drawing trains
i and j and train positions k and l (counted from the engine) for each move, where
i 6= j must hold. Mmax and r denote the maximum number of container moves (for
given train lengths) and a fraction value randomly drawn from intervals [0.1, 0.2] (low),
[0.4, 0.6] (medium) and [0.8, 0.9] (high workload), respectively.

Technical crane parameters: The gantry cranes move in horizontal and vertical direc-
tion simultaneously driven by independent engines. In horizontal direction the whole
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crane moves on special rail tracks, whereas vertically merely the steeple cab carrying
the spreader is moved. Thus, the maximum time span for executing the vertical and
horizontal movement determines the processing time of a container move. We assume a
velocity of crane and steeple cab of ve = 3 meters per second, if the crane moves empty,
whereas the velocity reduces to vl = 2 meters per second, if a container is carried. Once
positioned, picking and dropping of containers requires additional processing time. Es-
pecially, locating the spreader is precision work, so that we assume a typical time span
of td = 45 seconds for picking or dropping a container. See Alicke (2002) and Martinez
et al. (2004) for comparable parameters.

Crane Movement: A typical real-world policy to determine the division of labor among
cranes is to partition the yard into equally sized areas (Boysen and Fliedner, 2009). Thus,
we follow this widespread approach and assign each given crane the same number of slots
(accounting for rounding di�erences). Note that this assumption is relaxed in Section
6.4. If a bundle of trains is parked and, thus, all container moves are �xed and assigned
to gantry cranes, sequencing moves per crane remains a complex optimization problem.
In our case, for each crane an asymmetric traveling salesman problem would need to be
solved while considering the interdependencies among cranes resulting from split moves.
However, the sequence of container moves is typically not optimized by a scheduling
procedure but locally determined by the respective crane operator. Thus, to simulate a
human decision rule we apply a simple nearest neighbor heuristic. Each crane's starting
position is the left hand border of its area, while the steeple cab is positioned over the
sorter. From there it consecutively executes the container move closest to its current
position. Split moves, e.g., from yard area A to B, are considered by updating crane
B's list of unprocessed container moves, not before the respective container arrived in
the sorter-segment of crane B. Thus, the list is updated just after crane A processed the
�rst part of the split move (from train into the sorter) and a vehicle (with sorter velocity
vs = 3) moved the container into yard area B. With regard to the sorting system it is
assumed that vehicles are not a bottleneck and congestions do not occur.

The aforementioned parameters of instance generation are summarized in Table 2. All
parameters are combined in a full-factorial design and for each parameter constellation
10 replications are generated, so that 3·3·3·3·10 = 810 di�erent instances were obtained.

symbol description values

|G| number of tracks 4 6 8
|C| number of cranes 2 4 6
li length of trains short long mixed

[15− 25] [35− 45] [15− 45]
r fraction of container moves small workload medium workload large workload

[0.1, 0.2] [0.4, 0.6] [0.8, 0.9]

Table 2: Parameters for instance generation
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For each of these instances a preprocessing has to be executed, which determines
weights dijklc of total workload resulting from loaded moves for each train pair i and j
and feasible parking positions of trains. If feasible positions of a train pair are presumed,
the workload wD of a direct container move from track t and slot s to track t′ and slot
s′ can be determined as follows:

wD((t, s), (t′, s′)) = 2 · tp + max

{
|s− s′| · dh

vl
;
|t− t′| · dv

vl

}
(8)

If processed as a direct move, a container move ((t, s), (t′, s′)) requires a pick and a
drop operation (2 · tp). Additionally, the time for the actual move is to be added, which
amounts to the maximum of the crane's horizontal and vertical distance each weighted
with velocity vl (for a loaded move).
Split moves into (with weight wIN ) and out of (with weight wOUT ) the sorter also

require a pick and drop operation and the actual movement time, which is required for
the vertical movement between rail track and sorter track ts:

wIN ((t, s), (ts, s)) = 2 · tp +
(ts − t) · dv

vl
(9)

wOUT ((ts, s′), (t′, s′)) = 2 · tp +
(ts − t′) · dv

vl
(10)

The sum of resulting workload weights w for the respective container moves between
two trains amount to weights dijklc. Note that the workload of empty moves required
for the yard simulation can be calculated in the same fashion. Then, the three heuristic
solution procedures described in Section 4 are applied to determine parking positions
of trains. First, with regard to the solution performance these results are compared
to optimal TLP objective values, so that the gap of our heuristic procedures can be
determined. Then, resulting parking positions of trains are passed over to our yard
simulation, where the schedules of cranes and sorter are determined. This way, the
workload of loaded moves (as considered in model TLP) can be compared to the real-
world workload (approximated by the simulation), so that the suitability of our surrogate
objective and the acceleration of container processing obtained by optimized parking
positions can be determined.

5.2 Algorithmic performance

All methods have been implemented in C# 2008 (Visual Studio 2008) and run on an
Intel(R) Core(TM) 2Quad 2.83 GHz CPU PC, with 3.23 GB of memory. First, we report
the solution performance for our heuristic procedures of Section 4: MSP (myopic search
procedure), SA (simulated annealing) and GA (genetic algorithm) compared with optimal
solutions gained by a full enumeration of all possible parking patterns of trains. These
optimal solutions could be gained for all 270 instances with four tracks (|G| = |I| = 4).
Table 3 displays these results, where solution quality is represented by the absolute
and relative deviations from optimum averaged over all small instances (labeled avg abs
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and avg gap and measured by F (δ) − F (O) and F (δ)−F (O)
F (O) · 100, where F (δ) and F (O)

are the objective values of our heuristic procedures with δ ∈ {MSP,SA,GA} and the
exact enumeration procedure, respectively). Additionally, maximum deviations (labeled
max abs and max gap) and the number of optimal solutions found (# opt) are reported.
These quality indicators are also reported for a widespread real-world policy (RWP). In
real-world yards, tracks are typically assigned according to a �rst-come-�rst-serve policy,
which we emulate by a simple random assignment of trains to tracks. Additionally, all
trains are typically parked in the �rst slot.

RWP MSP SA GA

# opt 0 0 173 178
avg abs 13.70 2.58 0.18 0.18
max abs 48.58 14.02 3.45 3.03
avg gap 68.69 13.07 1.26 0.76
max gap 178.87 55.22 34.53 17.68
avg cpu < 0.1 < 0.1 1.52 9.63

legend: avg and max abs [minutes],
avg and max gap [%], avg cpu [seconds]

Table 3: Solution performance compared to optimal solutions for all 270 instances with
|G| = 4

The results of Table 3 reveal a promising solution performance of our heuristic pro-
cedures, where, of course, a trade-o� exists between runtime and solution quality. Our
fastest procedure MSP produces an average gap of 13 % from the optimum, whereas
meta-heuristics SA and GA show an average relative deviation of merely 1.26 % and 0.76
%, respectively. On the other hand, solutions time increases from a negligible time span
(MSP) to an average of 1.52 (SA) and 9.63 (GA) CPU-seconds (denoted as avg cpu).
However, all three heuristic procedures show considerably superior to typical real-world
policy RWP. Here, additional maximum workload of cranes amounts to 13.7 minutes on
average and the gap averages to a remarkable 68.69 %.

RWP MSP SA GA

# best 0 41 211 305
avg abs 17.04 3.60 0.75 0.38
max abs 97.14 29.63 7.95 10.27
avg gap 42.16 9.25 2.89 1.35
max gap 173.52 101.65 83.54 61.84
avg cpu <0.1 < 0.1 2.09 27.86

legend: avg abs and max abs [minutes],
avg gap and max gap [%], avg cpu [seconds]

Table 4: Average solution performance over all 540 test instances with |G| > 4

Comparable results are listed in Table 4 for remaining instance with |G| > 4, where
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optimal solutions could not be gained. Instead, we report the number of best solutions
obtained by the respective procedure (# best). Furthermore, absolute and relative de-
viations are calculated in relation the best solution determined per instance. Deviations
are especially low for meta-heuristics SA and GA, whereas solution time increases to
2.09 (SA) and 27.86 (GA) CPU-seconds. However, Figure 6 shows that computational
time increases merely linear in the number |G| of tracks for all heuristic procedures. Fur-
thermore, TLP is an operational decision problem solved any couple of hours, so that it
seems unproblematic to spend half a minute of computational time.

Figure 6: Average solution time (in CPU seconds) of heuristic procedures with varying
number |G| of tracks

5.3 Results of yard simulation

In this section we report the results of our yard simulation. Here, parking positions
of trains obtained by TLP are passed over and real-world crane and sorter operations
are simulated. This way, the results of TLP can be compared with the resulting (ap-
proximate) real-world workload of cranes. While TLP minimizes the cranes' workload
merely on the basis of loaded moves (surrogate objective, denoted as SURR), the yard
simulation provides the actual workload consisting of loaded and empty crane moves
(actual objective, denoted as ACT). On average over all 810 instances, the workload of
SURR determined by our best-performing GA procedure already makes up 82,81 % of
the value of ACT, which results from the overproportional in�uence of time consuming
pick and drop operations. Moreover, the coe�cient of correlation (Pearson's product-
moment correlation) between both approaches amounts to a remarkable 0.9990. Thus,
the conclusion can be drawn, that our surrogate objective of merely considering loaded
moves is a suited simpli�cation. On the one hand, the actual objective of reducing the
overall workload is strongly supported and, on the other hand, the solution process is
considerably alleviated by excluding a detailed crane scheduling.
Furthermore, we aim at investigating the question whether optimized parking posi-

tions enable a considerable reduction of train processing time compared to real-world
policy RWP. Recall that RWP assigns tracks according to a �rst-come-�rst-serve policy
and parks all trains in slot 1. As performance measures, we report the average abso-
lute deviation (labeled avg abs) between both policies with regard to the makespan of
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processing the current bundle of trains as approximated by our simulation study. Avg
abs denominates the acceleration of train processing if improved parking positions are
applied instead of RWP in minutes averaged over all instances of the respective param-
eter constellation. Furthermore, the average relative deviation (labeled avg rel) of both

policies in percent is reported, where the deviation is measured by F (RWP )−F (δ)
F (δ) · 100

with F (RWP ) and F (δ) being the makespan of our yard simulation when parking posi-
tions are determined by a real-world rule of thumb or improved with one of our heuristic
procedures δ ∈ {MSP,SA,GA}, respectively. Table 5 lists both performance measures
in dependency of the parameters: number |G| of tracks and number |C| of cranes, which
together re�ect the size of a transshipment yard.

|C|
|G| 2 4 6 total

4 MSP 15.81/32.11 8.78/35.99 6.73/33.23 10.44/33.78
SA 20.78/51.38 10.33/44.05 8.06/42.30 13.06/45.91
GA 20.74/51.14 10.23/43.63 8.30/45.22 13.09/46.67

6 MSP 24.31/36.31 15.25/43.59 11.54/45.21 17.03/41.70
SA 31.84/56.15 17.03/53.19 13.27/54.58 20.71/54.64
GA 31.87/56.91 17.48/55.33 13.52/57.70 20.96/56.65

8 MSP 33.09/39.28 21.09/47.75 15.73/47.13 23.30/44.72
SA 42.39/59.94 24.26/59.02 17.85/56.61 28.17/58.52
GA 43.22/62.49 25.08/64.63 18.84/64.07 29.05/63.73

total SH 24.40/35.90 15.04/42.54 11.33/41.86 16.93/40.07
SA 31.67/55.82 17.20/52.09 13.06/51.16 20.64/53.02
GA 31.94/56.85 17.60/54.53 13.55/55.66 21.30/55.68

legend: avg abs [minutes]/avg rel [%]

Table 5: Absolute and relative speed-up of container processing time depending on yard
size

The results reveal a remarkable potential for accelerating train processing. Depending
on the size of the yard, possible absolute accelerations (avg abs) of our best-performing
GA procedure deviate between 43.22 minutes with eight tracks (high overall workload)
and two cranes (low division of labor) and 8.3 minutes with four tracks (low overall
workload) and six cranes (high division of labor). Interestingly, the relative acceleration
(avg rel) of train processing performs somewhat contrarily. This is explained by the fact,
that with a high division of labor the average makespan tends to be lower in value, because
a pulse of trains is processed much faster. As a consequence a comparable absolute
reduction in makespan leads to a higher relative reduction. In relative terms, train
processing is accelerated by between 43.63 % and 64.63 % whenever parking positions
are determined by GA.
Further conclusions (in terms of a sensitivity analysis) can be drawn if the speed-up of

improved parking positions (determined with GA) is related to the parameters of instance
generation. Therefore, Figure 7 displays the average relative deviation (avg rel in %) and
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the average absolute deviation (avg abs in minutes) in dependency of the parameters:
number |G| of tracks, number |C| of cranes, interval of train lengths li and interval of
fraction value r, which determines the number of containers (workload) to be processed,
respectively.

Figure 7: Absolute and relative speed-up in dependency of parameters of instance
generation

The following conclusion can be drawn from varying these parameters:

• With an increasing number |G| of tracks the overall workload is increased and, thus,
the absolute and relative speed-up of optimal parking positions also rises. The
increase of relative speed-up (avg rel) is less distinct, because it is counterbalanced
by an overall increasing workload level.

• The higher the division of labor (more cranes |C|), the lower absolute (avg abs)
speed-ups of optimal parking positions, whereas relative speed-up remains almost
una�ected by additional cranes.

• With shorter trains more degrees of freedom exists with regard to �nding feasible
parking positions within a yard, so that an improvement of parking position be-
comes even more desirable. Furthermore, with short trains real-world policy RWP,
obviously, leads to an unleveled division of labor among cranes. If all trains' hor-
izontal parking positions start in slot one, cranes operating in the front region of
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the yard are fully occupied, whereas trains seldom extend into the back of the yard
leaving respective cranes idle. Clearly, with longer trains this e�ect diminishes and
improved parking positions lead to less distinct absolute and relative speed-ups.

• With an increasing fraction value r the number of containers to be transshipped
rises. Thus, the absolute speed-up of train processing (avg abs) increases, too.
However, with regard to the relative speed-up this e�ect is counterbalanced by an
increasing workload level, so that avg rel remains on a constant level.

It can be concluded that a more leveled workload evenly spread over the yard and
especially longer trains leaving only a few degrees of freedom for the parking decision
reduce the disadvantage of real-world rule of thumb RWP. However, as the results indicate
an absolute speed-up of 21.3 minutes (or 55.68%) averaged over all instances optimizing
parking positions with one of our procedures can clearly be recommended in a wide range
of real-world transshipment yard settings.

6 Extensions of base model

In this section, extensions of the basic parking problem are considered by de�ning re-
sulting model modi�cations and lining out the necessary modi�cations for solving these
problems with the solution procedures of Section 4. Especially, we investigate (i) the
rotation of trains, (ii) overlapping service times of trains, (iii) multiple trains per track
and (iv) the integration of optimizing crane areas.

6.1 Rotation of trains

If respective holding and switching tracks are available in a transshipment yard (see, e.g.,
Ballis and Golias, 2002, for the track layout of terminals), trains may enter transshipment
tracks bi-directionally. In this case, the direction of each train becomes an additional
decision variable. This decision can be integrated in our basic TLP model of Section 3 by
substituting constraints (2), which assign each train exactly one parking position, with:∑

p∈Pi

xip +
∑
q∈Pj

xjq = 1 ∀ (i, j) ∈ Ω. (11)

Here, it is assumed that each real-world train is duplicated (along with its respective
weights d), so that a separate train is stored for each direction within train set I. Fur-
thermore, set Ω contains all pairs of trains (i, j) representing the same real-world train.
With these adoptions of the input data, constraints (11) ensure that each real-world train
can be parked in either direction.

Clearly, the additional decision on each train's direction is to be integrated into the
solution vectors of our SA and GA procedures. Speci�cally, the binary information ki
(ki = 0: train i parks with engine in front and ki = 1 engine at last) stored with each
train in the solution vector and an additional �ip move, which changes the direction of a
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randomly chosen train, are required to extend our procedures. The latter can be applied
as an additional neighborhood function within SA and as a mutation operator within
GA, respectively.

6.2 Overlapping service times of trains

Typically, terminal operators aim at processing trains in disjunct bundles of trains (see
Section 3), so that a rapid and direct exchange of containers is enabled. However, terminal
policies might also allow for varying and, thus, overlapping service times of trains (see
Rotter, 2004). As the assignment of service times to trains is typically decided by the
network operator in a prior decision step (see Section 3), we presuppose given arrival
times ai and departure times di for each train i. Note that while planning these service
times it is to be ensured, that the joint service window of interrelated trains is long enough
to transship all containers to be exchanged between the respective trains. Within TLP
it is to be ensured that trains simultaneously processed in the yard may not be assigned
the same track, which can easily be ensured by exchanging constraints (3) with:

∑
p∈Pg∩Pi

xip ·
∑

q∈Pg∩Pj

xjq · (dj − ai) · (di − aj) ≤ 0 ∀ g ∈ G; i, j ∈ I with i 6= j. (12)

For solving TLP with overlapping service times an adoption for our heuristic MSP
procedure is readily available. In addition to the successive steps of (i) assigning a track
and (ii) a slot to each train as described for basic TLP, in an initial step a feasible train
schedule needs to be determined. Generating a feasible schedule is formally de�ned by
Algorithm 2. Here, after sorting all trains by departure time, trains are successively
assigned to tracks. Any train is assigned to an available track with latest departure time
of currently assigned trains. If no track is available, no feasible solution exists for the
problem instance (see Ding et al., 2005, for a similar approach for a related problem).
Such a feasible train schedule is then passed over to the aforementioned steps of MSP.
First, the tracks are interchanged (together with all trains assigned) by sorting them
according to decreasing container relations and reassigning them to tracks, i.e., starting
from the central track going outwards. Then, in a �nal step each train is successively
moved into its best horizontal parking position in relation to all other currently �xed
trains until no improvement of the objective function can be obtained. Note that TLP
with overlapping service times is closely related to the gate assignment problem (e.g.,
see Dorndorf et al., 2007), where airplanes with given service times need to be assigned
to gates of an airport, so that walking distances of passengers are minimized. Thus, for
adopting our SA and GA approaches the neighborhood functions and moves, e.g., de�ned
by Ding et al. (2005) can directly be applied.

6.3 Multiple trains per track

If the operational policy of a yard allows multiple trains to be parked per track, it is
to be ensured that trains sharing a track do not overlap with regard to their horizontal
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Algorithm 2: Finding a feasible schedule for TLP with overlapping service times
order train set I according to earliest departure times di: R =< i1, i2, . . . , i|I|];1

initialize tg (current availability time of track g): tg = −1 ∀ g ∈ G;2

for each train i ∈ R do3

�nd track g ∈ G such that tg is maximized among those tracks for which tg < ai holds;4

if such track g exists, assign train i to track g and update tg = di;5

if no track g can be found, a feasible solution for the problem instance does not exist;6

return track assignment for all trains;7

parking positions. To integrate this extension within TLP, constraints (3) which ensure
that exactly one train is parked per track are to be substituted with:

xip · (s(p) + li) < xjq · s(q) +M · (1− xjq) ∀ g ∈ G; i, j ∈ I; p, q ∈ Pg with s(p) < s(q),
(13)

where s(p), li andM denote the slot of parking position p, the length (in slots) of train
i and a big integer, respectively. Note that, for instance, M = |Pg| can be chosen. These
inequalities ensure that for each pair of trains i and j, if parked on the same track g with
i on a prior slot than j, the ending slot of train i (start-up position plus train length) is
located prior to train j's initial position.

Proposition: With the extension of allowing multiple trains per track even �nding a
feasible solution for TLP becomes NP-hard in the strong sense.

Proof: As a straightforward reduction from the 3-Partition problem is available,
which is well known to be NP-hard in the strong sense (see Garey and Johnson, 1979),
we only de�ne the reduction scheme and sketch the proof. Given an instance P of
3-Partition de�ned by 3q positive integers ai (i = 1, . . . , 3q) and a positive integer
B with B/4 < ai < B/2 and

∑3q
i=1 ai = qB, does there exist a partition of the set

{1, 2, . . . , 3q} into q sets {A1, A2, . . . , Aq} such that
∑

i∈Aj ai = B ∀j = 1, . . . , q? The

instance P ′ of TLP with multiple trains per track is de�ned as follows: |I| = 3q, |G| = q,
|Pg| = B ∀ g ∈ G and li = ai ∀ i ∈ I. Clearly, any solution of P can be transformed into
a solution for P ′ by simply assigning each set of three elements to a separate track and
vice versa. In any solution for P ′ exactly three trains are parked per track due to the
restriction of integer values B/4 < li = ai < B/2. Moreover, any of the B slots per
track must be fully occupied by these three trains because an empty slot on one track
inevitably causes another overloaded track, which is impossible in a feasible solution due
to each track's restriction in length. �

As determining feasible solutions is no trivial task anymore, infeasible solutions, where
trains overlap or outreach the yard, are to be accepted within our solution procedures.
When calculating the �tness of these infeasible solutions penalty costs need to be in-
tegrated into the objective function, which penalize solutions proportionally the their
degree of infeasibility. Respective approaches, which are well-known extensions for sim-
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ulated annealing (e.g., Reeves, 1993) and genetic algorithms (e.g., Goldberg, 1989), can
be easily integrated into our solution approaches.

6.4 Integration of optimized crane areas

Up to now, it was presupposed that the yard is equally shared among cranes, so that
each crane receives its dedicated and equally sized yard area. Recall that the policy
of dedicated yard areas is a widespread real-world policy to avoid crane interferences
(see Boysen and Fliedner, 2009). However, dedicated crane areas must not be equally
shared but can variably be sized according to the workload of the current bundle of
trains. For any given assignment of trains to parking positions optimal yard areas can
e�ciently be determined in polynomial time, for instance by a Dynamic Programming
(DP) approach (see Boysen et al., 2009). This DP approach divides the solution process
into c = 1, . . . , |C| stages, where each stage represents a crane c (numbered from left to
right). The basic formula:

fcs = minc−1≤j≤s−1 {max {fc−1j ; W (j + 1, s)}} ∀c = 2, . . . , |C| − 1, s = c, . . . , c+ S − |C|
and c = |C|, s = S

,

(14)
recursively determines optimal partial objective values fcs for any crane c and feasible

right-hand border slot s, where current workload W (j+ 1, s) comprises all moves (direct
plus split moves) falling in the current area reaching from slot j + 1 to slot s. Figure 8
depicts the DP-graph and the resulting yard partition for our example of Figure 3 given
the parking parking positions of solution 2 (depicted as part (c) in Figure 3) and three
cranes. The maximum workload amounts to 24 and is processed by crane 3.

Figure 8: DP-graph and yard partition for three cranes

Clearly, TLP and the yard partition problem (YPP) are heavily interdependent. TLP
determines parking positions under given crane areas, whereas YPP partitions the yard
into crane areas for a bundle of trains with given parking positions. Thus, further accel-
erations of train processing might be gained if both problems are solved in an integrative
fashion. To evaluate this potential the following computational experiment is carried
out. For a representative parameter constellation (|G| = 4, |C| = 4, li ∈ [35, 45] and
r ∈ [0.4, 0.6]) 100 instances were generated as described within Section 5.1. Then, these
instances are solved by alternately solving TLP (with GA) and YPP (with DP), where
the results of TLP (parking positions) are passed over to YPP (yard partitions) and vice
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versa, until no improvement of train processing time (determined by the yard simulation)
could be obtained. Our integrative procedure is initialized with equally sized crane areas.
Such an integration of TLP and YPP leads to an average (absolute) speed-up of another
7.42% (9.4 minutes) compared to an isolated execution of TLP (with equal crane areas).
Note that the integrative approach converges quickly as on average over all 100 instances
merely 3.1 iterations are executed, which means that on average one instance of TLP
and YPP are solved before no improvement can be realized.

7 Conclusions

This paper investigates the train location problem, which decides on vertical and hori-
zontal parking positions of trains in a rail-rail transshipment yard, so that the workload
is evenly shared among gantry cranes and the makespan of train processing is minimized.
The problem is formalized by a mathematical program and di�erent heuristic solutions
procedures are presented. A comprehensive computational study reveals a promising
solution performance of these procedures. Furthermore, a simulation of real-word yard
operations shows a tremendous potential for accelerating container processing, when com-
paring our procedures with typical real-world rules of thumb. Depending on the speci�c
yard setting and workload between 8 and 43 minutes (44�65 %) of processing time per
bundle of trains can be saved.
There are several ways in order to build up on this study in future research. On the

one hand, further solution procedures could be developed. Especially, exact solution
procedures would be a valuable contribution as real-world problem dimensions (up to
8 tracks, 6 cranes and 50 slots) seem within reach for e�cient exact procedures. On
the other hand, a related parking problem of trains also exists in conventional rail-road
transshipment yards, which are applied in intermodal transport. In these yards, gantry
cranes transship containers between freight trains and truck (and vice versa) and, clearly,
parking positions of trains heavily a�ect the workload of cranes in such a setting as well.
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