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ABSTR ACT

“How to perform contrast-enhanced ultrasound (CEUS)” pro-

vides general advice on the use of ultrasound contrast agents 
(UCAs) for clinical decision-making and reviews technical pa-

rameters for optimal CEUS performance. CEUS techniques vary 
between centers, therefore, experts from EFSUMB, WFUMB 
and from the CEUS LI-RADS working group created a discussion 
forum to standardize the CEUS examination technique accord-

ing to published evidence and best personal experience. The 
goal is to standardise the use and administration of UCAs to 
facilitate correct diagnoses and ultimately to improve the man-

agement and outcomes of patients.

sion washout. Reducing microbubble destruction is therefore im-

portant. Using optimal low MI settings reduces microbubble de-

struction to a minimal level. A useful sequence is to scan continu-

ously and record a cine loop from the earliest arrival of the 
microbubbles to include the peak of arterial enhancement, and up 
to 60 s. Thereafter scanning should be intermittent, with storage 
of single images or short loops at about 30–60 s intervals to show 
the presence of washout.

The main diagnostic features are:
1. Vascular architecture (evaluated in the early wash-in phase).
2. Contrast enhancement of the lesion compared to the adjacent 

tissue (time course of wash-in and wash-out).
The combined evaluation of above diagnostic features makes it 

possible to characterize focal liver lesions (FLL) in healthy paren-

chyma [29–32] as malignant ▶Fig. 1 or benign ▶Fig. 2.

The combined evaluation of the above diagnostic features 
makes it possible to characterize focal liver lesions (FLL) in patients 
with liver cirrhosis as typical for HCC according to the LI-RADS sys-

tem (see below) [33–36].
Some contrast agents (such as Sonazoid™, BR14, BR38) are 

phagocytosed by cells of the mononuclear phagocyte system (re-

ticulo-endothelium, e. g., Kupffer cells in the liver). Phagocytosis 
may start as early as the arterial phase and becomes pronounced 
in the late phase. This results in accelerated clearance of the agents 
from the vascular distribution volume [37]. These UCAs persist sig-

nificantly longer in the liver parenchyma than purely vascular agents 
so that a fourth phase, the post-vascular phase (also known as the 
Kupffer cell phase), can be defined. For these reasons, transit times 
and time intensity curves (TIC) differ for purely blood pool versus 
reticuloendothelial UCAs. The latter should not be used to evaluate 
hepatic transit times, as they do not reflect the hepatic kinetics.

Introduction

An introduction to terminology
The acronym CEUS refers to contrast-enhanced ultrasound tech-

niques in general [1–11]. Dynamic contrast enhanced ultrasound 
(DCE-US) refers to quantitative time intensity curve (TIC) analysis 
[11–13] using either bolus injection of microbubbles [13–16] or 
intravenous infusion with disruption-replenishment technique [17] 
which are used for treatment response evaluation in oncology [18] 
and for activity assessment in inflammation of the bowel wall in in-

flammatory bowel disease [19–22]. 3D CEUS refers to image ac-

quisition of data volumes. Introduced in 2002 [9], 3D CEUS is avail-
able in certain systems but it is still under investigation [23–26].

CEUS phases
CEUS allows real-time recording and evaluation of the wash-in and 
wash-out phases of the ultrasound contrast agent (UCA) over several 
minutes. When examining the liver, this provides dynamic visualis-

ation of different vascular phases. Owing to the specific supply of blood 
to the liver three different phases have been defined: the arterial (AP), 
the portal venous (PVP), and the late (sinusoidal) phases (LP) [27, 28].

All clinically approved microbubbles, regardless of whether they 
are reticuloendothelial or purely blood pool, can easily be destroyed 
by ultrasound energy. This occurs most often by excessive or con-

tinuous scanning in a single plane, though it may also occur if the 
acoustic power is changed from the recommended value (typical-
ly less than 1 %) to a higher acoustic power. Once the shell is dis-

rupted, the gas from the microbubbles diffuses, and microbubbles 
lose their scattering properties and are no longer effective contrast 
agents. Microbubble destruction, therefore, results in time- and 
depth-dependent loss of contrast, which not only reduces image 
quality but can also lead to spurious signal loss that may mimic le-
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Enhancement (degree and timing)
The contrast behaviour of a lesion or region of interest in the liver 
described in terms of the degree (relative to the adjacent paren-

chyma) and timing (phase) of enhancement is discussed in [4, 38]. 
It is important to know in advance if the liver is healthy or diseased 
(e.g, liver cirrhosis, fibrosis or steatosis). This may affect the con-

trast behavior of the lesion and liver parenchyma as well.
Enhancement refers to the intensity of the signal relative to the 

adjacent parenchyma as isoenhancing, hyperenhancing and hy-

poenhancing. Sustained enhancement refers to continuation of 

the same or greater intensity of enhancement in the lesion relative 
to the adjacent parenchyma over time. It applies to lesions that are 
iso- or hyperenhancing in the arterial phase. Complete absence of 
enhancement can be described as non-enhancing [4, 38, 39].

Describing the degree of enhancement is preferred although 
some authors designate the degree of vascularity of a region rela-

tive to adjacent liver as hypervascular, isovascular, hypovascular. 
The term “vascular” may be incorrect from a histologic, as well as 
physiologic, point of view. It should be clarified that imaging major 
vessels, likewise by Doppler technique, is defined as vascularization. 

E4

a

b

▶Fig. 1 Malignant focal liver lesions in healthy liver parenchyma show a variable arterial enhancement pattern according to their etiology (rim 
enhancement in the case of some metastases a and as decisive criteria hypoenhancement in the portal venous (sinusoidal and “liver specific”) phase 
in comparison to the surrounding liver parenchyma b.
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The definition of perfusion is “volume of blood per time per mass 
of tissue” (unit: ml/min/g tissue)”. To know this is relevant for tis-

sues with volume pulsation (e. g., the myocardium). By using CEUS, 
both vascularization and relative perfusion can be imaged. Both 
terms are sometimes used interchangeably without clarification.

The enhancement pattern should be described separately for 
the different phases discussed above. Conventional, but imprecise 
time points separate these different phases (see also “contrast 
phases of enhancement”) [40]. By convention, however, the tim-

ing of events on CEUS is routinely recorded by its actual time in sec-

onds as shown on a visible timer on the scanner screen.

“Wash-in” and “wash-out”
“Wash-in”, used for both qualitative and quantitative analyses, re-

fers to the progressive enhancement within a region of interest 
from the arrival of microbubbles in the field of view, to “peak en-

hancement”, and “wash-out” to the reduction in enhancement 
which follows peak enhancement [4, 38]. As explained above, the 
timing (early versus late onset, fast versus slow), degree (complete, 
incomplete) and pattern should be described in comparison to the 
surrounding “normal” parenchyma. The characteristic features of 
a TIC analysis are shown in ▶Fig. 3 [11, 41]. This model for quanti-
fication of tumor vascularization was applied in multicentric stud-

ies validating the AUC as predictive marker [42, 43].

a

b

▶Fig. 2 Benign focal liver lesions in healthy liver parenchyma show a variable arterial enhancement pattern according to their etiology a and as decisive 
criteria iso- or hyper-enhancement in the portal venous (sinusoidal and “liver specific”) phase in comparison to the surrounding liver parenchyma b.
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Imaging mode
Only machines that offer nonlinear imaging modes designed for 
contrast imaging should be used. Where there is a choice of modes, 
those designed for low MI abdominal scanning should be selected. 
While in these modes, settings like “high resolution” or “penetra-

tion” are often available. These change a host of parameters to-

gether and can help adjust the scanner when optimizing a particu-

lar examination. These settings should be tried before attempting 
to adjust the MI or the dose of agent (see below). Once in a low MI 
contrast mode and the agent is in the patient, reverting to a 
non-contrast mode will immediately raise the MI and destroy the 
agent. This should therefore be avoided.

Choice of transducer
Transducers that have specific CEUS optimized settings are recom-

mended. For liver imaging, curvilinear arrays are preferred for most 
cases. Linear probes with higher transmit frequencies may be use-

ful in cases of superficial lesions and when more spatial resolution 
is necessary. In this case, higher contrast doses may be beneficial 
(e. g., thyroid, breast, lymph nodes, prostate), as the agents be-

come less efficient nonlinear scatterers at higher frequencies.

Image depth consideration
Typically, at low MI FLL up to 12–15 cm in depth can be imaged. At 
larger depths (and depending on the system used, and the patient’s 
condition, e. g., cirrhosis) it may be difficult to visualize lesions. 
Lower transmit frequency can be selected using the same trans-

ducer or lower frequency transducers allowing better penetration 
with the disadvantage of lower spatial resolution, eventually result-

ing in suboptimal imaging of small superficially located lesions. In-

creasing the MI may improve penetration but at the expense of mi-
crobubble destruction especially in the nearfield. In general, where 
there is a choice of amplitude or power modulation imaging modes, 
these will have better depth penetration (though somewhat poor-

er resolution) than pure pulse inversion modes.

Focus

The focus should be positioned just deep to the target lesion for 
most ultrasound scanners [44]. Deeper focal zones might be used 
to achieve a more uniform acoustic field, which improves sensitiv-

ity to the agents and lessens the risk of bubble disruption. Other 
focus positions have been proposed for quantification studies [45].

Gain
Gain refers to the received signal amplification. For CEUS the gain 
usually is set very slightly above the noise floor so that before mi-
crobubbles arrive, the image is dark and with a “hint” (very low 
level) of noise. If the gain is set too low (image starts out too dark), 
weak microbubble signals are not detected and only signals from 
larger vessels are recorded. If the gain is set too high (image starts 
out bright and grainy even before the microbubbles arrive) the re-

ceived echoes from the bubbles are clipped after a certain ampli-
tude (signal saturation ▶Fig. 4).

Acoustic shadowing is the depth-dependent reduction in ultra-

sound amplitude due to excessive scattering from microbubbles. 
The nearfield microbubbles obscure and “shadow” the far field 
ones. Acoustic shadowing is due to excessive dose of UCA or in-

creased microbubble concentration. The UCA dose should be 
adapted to the patient and the clinical indication. CEUS is always 
performed with low MI to avoid bubble destruction and harmonic 
signal generation from tissues. Typically, modern high-end diag-

nostic ultrasound scanners should effectively suppress tissue sig-

nals at low MI’s over the entire depth to enhance the visualization 
of microbubbles.

Background signal (noise)
The use of a dual-image display format is essential in CEUS studies 
and it is recommended especially in examining small lesions. In this 
display format, a conventional B-mode low MI fundamental image 
and a bubble-only contrast image are displayed side-by-side. The 
reason this is useful is that the nonlinear image is almost complete-

ly black (before contrast administration and under ideal conditions) 
making it difficult to keep the lesion of interest in the image plane. 
Having the conventional image displayed simultaneously allows 
the operator to keep the lesion in the imaging plane. Using the 

B-mode image for guidance, place calipers on the target lesion on 
both screens simultaneously to facilitate enhancement character-

ization. It is also possible to overlay the contrast and low MI funda-

mental B-mode plane image. For quantitative studies, it is critical 
to maintain the transducer at the same place and avoid motion. 
Pronounced hyperechoic lesions may still be visible on the contrast 
image before the arrival of the agent. TIC will help to better define 
the wash-out characteristics in these cases. It should be noted that 
in most systems, the quality of the B-mode image in dual-image 
displays is inferior to that obtained with the same settings in 
non-contrast mode.

Dynamic range
The compression or dynamic range of the ultrasound system also 
plays a key role in microbubble visualization. A small dynamic range 
is preferred in cases of very low signal and a wide dynamic range is 
preferred when the objective is to perform quantification (to avoid 
signal saturation). The dynamic range should be set to optimise the 
expected enhancement pattern. The dynamic range is the range 
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▶Fig. 3 Time-intensity curve for a bolus injection in a tissue mim-

icking flow phantom. A lognormal curve (solid line) is fitted to the 
data and it is used to calculate the important quantification parame-

ters (44) (PI, RT, MTT, and AUC).
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of signal intensities to be displayed. A wide dynamic range increas-

es the number of signal levels (“grey levels”), allowing for better 
differentiation between different degrees of enhancement. A small 
dynamic range will decrease the number of “colours” in the image 
and increases visual contrast but can limit the differentiation be-

tween areas of variable enhancement. For example, in a vascular 
metastatic lesion there is often a rim of increased signal surround-

ing the lesion. If the dynamic range is set too narrow - the rim will 
be displayed in the same “colour” as the lesion and the increased 
signal in this area may not be appreciated. Lowering the dynamic 
range will let the vessels stand out brighter, but it should not be too 
low that the gray or colorized bubble image suffers in contrast res-

olution. With a large dynamic range, the increased rim of signal can 
be better identified.

For visualisation of lesions with low perfusion, a narrow dynam-

ic range is preferred. For perfusion quantification studies, a wide 
dynamic range should be used to avoid signal saturation. It should 
be noted that reducing the dynamic range can increase the appar-

ent difference between lesional and parenchymal enhancement. If 
acquiring a series of cases whose appearances are to be compared, 
it may be advantageous to keep the dynamic range and other post-

processing settings constant.

Frame rate
A frame rate  ≥ 10 Hz is recommended for adequate visualization 
and recording of the wash-in patterns when characterizing focal 
liver lesions (FLL). The contrast wash-in may only be visualized for 
about a second in some highly vascularized lesions and is best ap-

preciated using retrospective frame-by-frame cine review. Moreo-

▶Fig. 4 Low gain setting results in underestimation of the microbubbles located in the microcirculation (a). The proper gain setting results in a 
correct display of microbubbles in both micro- and macrovessels (b). High gain results in signal oversaturation and the image is too bright making 
the distinction between macro and micro-vasculature more difficult (c).
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ver, a high frame rate is also important during sweeps of the liver 
to detect lesions so as to avoid skipping significant regions of the 
organ [40]. However, increased frame rates can augment bubble 
destruction, and decreasing the frame rate in the late vascular phas-

es will prolong the enhancement time.

Acoustic amplitude (AA) and mechanical index (MI)
The Acoustic Pressure Amplitude (P) refers to the peak negative 
amplitude of the ultrasound pulse used for imaging. It is measured 
in Pa and is used in the calculation of the Mechanical Index (MI). 
The MI is an estimate of the maximum peak negative acoustic pres-

sure in the tissue within the acoustic field scaled by the square root 
of the center frequency. MI is related to the likelihood of cavitation 
and the US Food and Drug Administration (FDA) limits the maxi-
mum MI to a value of 1.9 [when P is measured in MPa and frequen-

cy in MHz]. In addition to the MI, which refers to the highest value 
in the acoustic field, some manufacturers also estimate and display 
the MI at the focus zone or the percentage of maximum acoustic 
power that allows finer tuning of the acoustic energy delivered [40]. 
It is important to note that there is a direct linear relationship be-

tween P and the MI (within linear acoustics). Choosing the appro-

priate MI is important for effective CEUS because as summarized 
in [40] this parameter affects several processes relevant to image 
quality and microbubble behaviour. These parameters are listed 
below and discussed in more detail later.

 ▪ The degree and rate of microbubble destruction.
 ▪ The depth of ultrasound beam penetration.
 ▪ The ability to separate signals scattered from background 

tissue versus those scattered by microbubbles, since tissue 
scattering is linear at low amplitudes (low MIs) while micro-

bubble scattering is non-linear at all amplitudes.
While the MI on-screen labelling is mandated by the FDA, man-

ufacturers nonetheless use different calculations to arrive at this 
number. In practice, for contrast imaging, the number is not trans-

ferrable between machines. Thus, an optimal MI for a particular pa-

tient scanned with one machine may not be the same as for the 
same patient scanned with another.

Contrast Enhanced Ultrasound

Ultrasound contrast agents (UCA)
UCAs consist of gas microbubbles coated with a shell, usually com-

prised of phospholipid or albumin. Microbubbles act as resonant 
scatterers, increasing the backscatter signal by up to 30 dB, and 
producing echoes with characteristic harmonics. All UCAs are blood 
pool agents, but – as discussed earlier – some are pure blood pool 
agents while others are phagocytosed by reticulo-endothelial cells, 
causing their appearance to differ in the liver-specific late phases.

No need for laboratory tests prior to CEUS
UCAs are extremely safe with low incidence of side effects [46] and 
no cardio-, hepato- or nephrotoxic effects. Therefore, it is not nec-

essary to perform laboratory tests to assess liver or kidney function 
prior to their administration [47].

Pre-contrast examination
The pre-contrast examination preparations include the identifica-

tion of the best position of the patient, the identification of the tar-
get lesion and the optimal scan plane along the axis of the respira-

tory movements (usually longitudinal) to minimize out-of-plane 
motion from respiration. The optimal patient breathing position is 
determined and practiced with the patient prior to the contrast in-

jection. Quiet breathing and breath suspension in neutral are pre-

ferred over breath hold in full inspiration or expiration.

Catheter
The best position of the patient should be determined during the 
pre-contrast examination and this may affect which arm is chosen 
for injection. In most circumstances, the cannula should be insert-

ed in the left arm, preferably the antecubital vein, to avoid interac-

tion of the injector with the right-sided examiner. Be aware of other 
important influencing factors, e. g., avoid the side of breast (or ax-

illary) surgery to minimise the risk of worsening lymphedema.
Ideally, the diameter of the venous line should be 20 gauge or 

larger to minimize microbubble destruction during passage 
through the cannula, with its length as short as possible. Central 
line and port systems can be used as long as there is no filter requir-
ing a high injection pressure. Their use will shorten contrast arrival 
time [48].

In cases of difficult venous cannulation, US guided needle place-

ment using a high frequency linear probe is recommended.
The catheter can be removed after exclusion of any kind of pseu-

doanaphylactic, e. g., 15 min after contrast injection.

3-way stopcock
A three-way stopcock may be valuable, especially if multiple injec-

tions are anticipated, as this facilitates sequential administration 
of the contrast material and then the saline flush, without removal 
of either syringe.

Injection
The injection bolus for SonoVue™ is given at about 1–2 ml/s. Avoid 
high pressure (risk of microbubble destruction). Immediately after 
injecting the contrast agent, a (5-) 10 ml saline bolus should be 
given to flush the line at about 2 ml/s [4, 38].

Central venous line and “port”
Central venous lines and ports may be used for CEUS if necessary 
if safety and aseptic requirements are met, but their use is discour-
aged if a peripheral vein can be accessed. Injecting UCAs through 
a central venous line or port requires a higher level of expertise to 
ensure a successful injection. Bubble disruption may also be in-

creased necessitating a dose increase. The use of a central venous 
line requires a 3-way stopcock. Contrast arrival times are usually 
significantly shorter in case of a central-venous administration, a 
fact which might favour starting the timer earlier, at the beginning 
of the contrast injection.

Contrast agent dose
Using the optimal dose is important. Too high a contrast agent dose 

results in artefacts, particularly in the early phases of enhancement. 
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These include acoustic shadowing, over-enhancement of small 
structures and signal saturation, which is also detrimental for quan-

tification. On the other hand, too low a dose causes the concentra-

tion of microbubbles to be subdiagnostic in the late phase, chal-
lenging the detection of wash out. If the liver washes out early, the 
dose was probably too low or inherent significant intrahepatic 
shunting may prevent a longer enhancement time. Again, it is im-

portant to evaluate the status of the liver as being healthy or dis-

eased. In difficult cases, a second (higher) dose may be adminis-

tered, with no or only limited scanning in the early phases [40] to 
reduce bubble destruction. The exact dose depends on the UCA, 
ultrasound equipment (software version, transducer), type of ex-

amination, organ and target lesion, size and age of the patient and 
other factors.

For SonoVue™/Lumason™, 2.4 ml (1/2 vial) is recommended for 
most indications in the liver (detection, characterisation) but many 
investigators are now using 1.2 ml (this topic has been controver-

sially discussed with co-authors and the reviewers).
For SonoVue™/Lumason™, 2.4 ml (1/2 vial) is the standard dose 

for most indications in the pancreas, spleen and kidney. For the 
pancreas, spleen and kidney, 1.2 ml often suffices. Depending on 
scanning conditions and depth of the lesion (organ) even lower 
doses can be used. For high frequency applications 4.8 ml is sug-

gested. In particular, endoscopic ultrasound usually requires the 
complete vial of 4.8 ml [51–53]. For the extravascular (intralumi-
nal) use only few drops diluted in normal saline solution are neces-

sary. For Definity™ and Optison™ a standard dose is 0.2–0.3 ml for 
an adult. For Sonazoid™ a dose of 0.015 ml/kg (e. g., 0.5–1.0 ml) 
of the reconstituted suspension is recommended.

Repeated injection
Multiple injections of UCA are variably indicated and influenced 
mainly by the manufacturing of the different solutions and the vol-
ume needed to provide good visualization of the liver and a focal 
liver mass. SonoVue™/Lumason™, supplied in a 4.8 ml aliquot may 
allow for two or possibly three or four injections per vial, whereas 
Definity™, supplied in a 1.3 ml vial, which expands to 1.8 ml in solu-

tion may allow for multiple injections as needed (easily 6 or 7) as a 
standard bolus would generally be only 0.2–0.3 ml. For Sonazoid™ 
supplied in a 2 ml vial, a dose of 0.5–1.0 ml per injection (0.015 ml/
kg) is recommended.

Repeated injection may occur in the following circumstances:
 ▪ There are additional nodules or observations, which require 

characterization.

 ▪ The initial injection may not provide the full answer to the 
characterization of a lesion, requiring a second injection to 
allow for assessment of missing information.

 ▪ A wash-out region may be identified on sweeps of the liver in 
either the PVP or the LP. Even if a corresponding nodule is not 
visible on the conventional B-mode images, arterial phase 
enhancement in the wash-out region can be characterized by 
re-injecting contrast material while keeping that region in the 
field of view.
For the first two indications above, the examiner usually should 

wait before reinjecting until the bubbles from the previous injec-

tion have disappeared or least greatly reduced, which usually re-

quires 10 to 15 min for SonoVue™/Lumason™ and Definity™ also 

depending on patient age and constitution. The waiting period is 

much longer for Sonazoid™, the disappearance of bubbles may 
take longer than one hour. To expedite bubble destruction and re-

duce the delay for re-injection, continuous scanning at high MI, 
such as B-mode or colour Doppler can be performed including the 
heart and kidney. To assess arterial enhancement of a wash-out re-

gion that does not have a correlate on B-mode imaging, by com-

parison, the examiner should re-inject before bubbles have disap-

peared so as to maintain visibility of the wash-out region.

Continuous Infusion
Dynamic real-time characterization of focal liver masses with CEUS 
is best performed with a bolus technique. However, measurement 
of blood flow parameters for assessment of oncologic response to 
therapy is also possible with an infusion and the destruction-re-

plenishment technique. The agent is, depending on the contrast 
agent, suspended in saline or other media and intravenously in-

fused with controlled pressure, to avoid bubble destruction and at 
a constant rate to permit prolonged scanning. This technique pro-

vides a steady-state bubble concentration which can be used with 
the burst and replenish mode (manoeuvre) to generate multiple 
measurements. For Definity™, where bubble flotation is not usu-

ally an issue, the agent can be mixed in a 50 ml saline bag. For Sono-

Vue™, a dedicated infusion pump is recommended. For more de-

tails see the EFSUMB guidelines [11].

Contrast timer
All ultrasound scanners must have a visible timer. This timer should 
be started at the time of the beginning of the UCA injection for 
SonoVue™/Lumason™. With Definity™, no CA enters the body 
prior to the flush. The authors controversially discussed when to 
start the timer. Most (but not all) of the group agreed that the timer 
should be started at the beginning of the contrast injection. The 
application via a central venous line with much shorter arrival time 
is a good reason for this. It should be noted that in special situations 
(e. g., right heart insufficiency) contrast phases may appear at un-

usual time points including potential initial retrograde inflow via 
the liver vein.

Artefacts

Nonlinear propagation artefact
A pseudo-enhancement of tissue has been reported in the litera-

ture where targets in tissue are registered as bubble signals [54–
56]. It has been suggested that the artefact is the result of nonlin-

ear propagation of ultrasound in tissue perfused with a high con-

centration of microbubbles. The presence of microbubbles 
effectively increases the nonlinear coefficient of the “bulk” medi-
um causing some nonlinear propagation to occur despite using low 

MI to prevent this phenomenon. Thus, when bright targets are en-

countered in the ultrasound path they produce echoes with non-

linear components caused by nonlinear propagation rather than by 
microbubble scattering. This pseudo-enhancement can be differ-

entiated from true bubble signals by recognizing their non-physi-
ologic nature, or by comparing the bubble image with the tissue 
image and identifying the same bright targets in both images. A 
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way to reduce this artefact is to avoid high doses of contrast agents, 
and/or avoid having a large vessel in the ultrasound path proximal 
to the area/lesion of interest. In clinical practice, this is problemat-

ic most often in the follow up of treatment sites following ablative 
therapy for liver tumours [57]. A bright echogenic focus within the 
treatment zone may show linear artefact which may be mistaken 
for residual or recurrent tumour. Clues to the correct interpreta-

tion include lack of arterial phase enhancement dynamics, when a 
real tumour would be perfused, and increasing pseudoenhance-

ment in the portal and delayed phases attributed to the nonlinear 
artefact as bubbles fill the portal system.

How to avoid artefacts?
The ideal is to find a good compromise between the contrast agent 
dose and the equipment-specific settings. The MI and the transmit 
frequency (“penetration mode”) play a crucial role here. This bal-
ances the signal intensity and penetration on the one hand, and 

the stability of the microbubbles on the other hand. A higher MI 
results in a stronger signal and better penetration but also in-

creased destruction of the microbubbles. The contrast agent dose 
balances the contrast enhancement intensity in the early phase 
(prevention of the over saturation of structures with shadowing) 
and the contrast enhancement duration (sufficient contrast agent 
concentration in the late phase).

The CEUS “circle of disaster” is characterized by the following 
criteria: Microbubble destruction → increase in contrast agent dose 
→attenuation (shadowing) → higher mechanical index → addition-

al microbubble destruction [40, 41, 58].
In conclusion, if the MI is too high, an increase of UCA dose to 

compensate may cause additional attenuation. Further influenc-

ing factors are gain, dynamic range, frame rate, transmission fre-

quency, and equipment software [40]. Most often, the default set-

tings on the machine provide an excellent starting point for begin-

ning CEUS studies of the liver. For more details on CEUS artefacts 
we refer to the current literature [40, 55–59].

Prolonged Liver Enhancement
Prolonged innocuous liver enhancement after the bolus injection 
of microbubble contrast agents appears as a heterogeneous en-

hancement in the liver during the performance of the CEUS exam-

ination, often beginning at around 2 min and lasting up to 5 h after 
contrast injection on both B-mode and contrast-specific modes. It 
is not destroyed by conventional B-mode imaging. The enhanced 
signals can also be observed in the portal and superior mesenteric 
veins, though not in the systemic circulation [60]. It is similar in ap-

pearance to the US finding of free portal venous gas.

Safety of CEUS
As mentioned earlier, UCAs are safe with a very low incidence of 
side effects. As there are no cardio-, hepato-, or nephro-toxic ef-
fects, it is not necessary to perform laboratory checks to assess 
liver, renal or thyroid function before administration. The incidence 
of severe adverse events is lower than with current X-ray contrast 
agents and is comparable to those encountered with MR contrast 

agents. Life-threatening anaphylactic reactions in abdominal ap-

plications have been reported with a rate of 0.001 %, with no death 
in a series of  > 23,000 abdominal patients [46]. Further studies have 
reproduced this very low adverse event rate [61, 62]. Nonetheless, 
investigators should be trained in resuscitation and have the ap-

propriate facilities available to react in cases of adverse events 
[4, 38]. In particular, each centre should be prepared with a crash 
chart and ability to treat anaphylactic shock if it occurs.

Paediatric Patients and Newborns
The use of CEUS in children, first reported in 2002, has been ad-

dressed in an EFSUMB position statement discussing the current 
status of CEUS and its further development in children [63]. Cur-

rently sulphur hexafluoride gas microbubbles (SonoVue™/Luma-

son™, Bracco SpA, Milan) has been approved in the United States 
by the Food and Drug Administration (FDA) as Lumason™ for char-
acterising focal liver lesions in children [“Lumason is indicated for 
use with ultrasound of the liver in adult and pediatric patients to 
characterize focal liver lesions”] and vesico-ureteral reflux. In Eu-

rope, CEUS in children is mostly “off-label” use, except for a few in-

dications including vesico-ureteral reflux [64]. The same is true for 
many drugs, which are used off-label in paediatric practice and the 
question of “off label use” has been widely discussed [65, 66]. The 
recent approval of SonoVue™/Lumason™ for use in paediatrics in 
the United States is a welcome first step towards the acceptance of 
this technique in the non-ionising imaging of children [67].

CEUS-guided Interventions
CEUS-guided interventions for practical considerations is per-

formed very much like a standard US guided procedure except that 
two injections of UCAs are used, one to plan the procedure and a 
second to guide the actual intervention. In some cases, a continu-

ous infusion may be the better choice while in other cases the pro-

cedure may be performed without a second contrast injection if 
the perfusion conditions are adequately demonstrated with the 
first CEUS to allow for a standard ultrasound guided procedure. 
CEUS-guided biopsy has been reported to increase the diagnostic 
accuracy rate by up to 10 % either by directing the biopsy towards 
contrast-enhanced – and thus viable – tissue inside the tumour and 
thereby avoiding sampling of necrotic material, or by identifying 
previously not-visualised lesions more accessible for biopsy [4, 68–
72]. Furthermore, CEUS may visualise active bleeding, hemobilia 
or segmental liver infarction.

CEUS is also helpful in performing and follow-up for radiofre-

quency ablation or cryotherapy for hepatic and renal masses 
[37, 73, 74]. CEUS allows evaluation of the extent of the ablated 
zone at the end of the procedure. If residual tumour is identified, 
the ablation can be extended after repositioning the needle to the 
residual tumour using CEUS guidance. On follow-up studies, CEUS 
is able to identify - immediately following treatment - small 
amounts of residual tumour, which can be too small or too soon to 
detect with CECT or CTMRI [75, 76].
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Extravascular, Intracavitary
Extravascular (intracavitary) CEUS (EV-CEUS) is used for imaging 
physiological and non-physiological body cavities. Physiological 
cavities include the peritoneal cavity, pleural cavity, biliary tract, 
gastrointestinal tract, urinary tract, etc. and pathological cavities 
include abscesses, cysts, diverticula, etc. [68, 77]. The UCA is given 
through a needle or catheter, for instance, at cholangiography or 
nephrostomy. However, UCAs can also be given orally or as an 
enema for imaging the upper and lower gastrointestinal tract 
[78, 79].

The following clinical applications of EV-CEUS have been de-

scribed in case studies: percutaneous nephrostomy [80], biliary 
tract imaging via percutaneous transhepatic cholangiography and 
drainage (PTCD) [81], abscess drainage [82], swallow CEUS for im-

aging Zenker’s diverticulum, voiding vesicoureteral reflux sonog-

raphy [83, 84], salivary gland duct imaging [85], contrast-enhanced 
hysterosalpingo-sonography (CE-HyCoSy [86], biliary tract imag-

ing via endoscopic retrograde cholangiography (ERCP) [87] and fis-

tula imaging [88].
The transducer used in extravascular CEUS is the same as that 

used in conventional US. SonoVue™ is currently the most often 
used UCA for VUR [89] though it is not licensed for other extravas-

cular indications of CEUS. To date, no standard dosage of UCA has 
been established for extravascular CEUS. The reported range is 
0.1 ml–1 ml SonoVue™ (most commonly just a few drops) diluted 
in 50 ml or more of 0.9 % saline. A higher content of SonoVue™ may 
be needed for high frequency US probes [68]. Compared with X-ray 
contrast techniques, EV-CEUS does not require exposure to ioniz-

ing radiation and can be performed at the bedside.

Education, Qualification
The World Health Organization (WHO) estimates that 2/3 of the 
world’s population lacks access to medical imaging [90]. Ultra-

sound (US) with CEUS may provide a way forwards. Investigators 
and clinicians wishing to perform CEUS examinations should gain 
experience by observing contrast studies performed by experts in 
the field [91]. The diagnostic performance of CEUS is correlated 
with the observer's level of experience [58, 92]. The examiner 
should also verify that his or her equipment is optimized for con-

trast examination and that the volume and diversity of cases will 
suffice to maintain skills. Practitioners need to be competent in the 
intravenous administration of contrast agents, be familiar with con-

traindications and be able to manage any possible adverse effects 
within the medical and legal framework of their country [4, 38]. We 
refer to the educational activities of the collaborating societies of 
this paper, the World Federation of Ultrasound in Medicine and Bi-
ology (WFUMB) [9, 23, 93–102], the European Federation of Soci-
eties for Ultrasound in Medicine and Biology (EFSUMB) 
[1, 3, 4, 11, 37, 38, 49, 50, 74, 79, 103–119] and the CEUS LI-RADS 
Working Group for Liver Imaging Reporting and Data System (LI-
RADS®) [34–36, 120–124].

Conclusion
High-quality performance of CEUS is experience-dependent and 
requires regular use and understanding of the relevant physics, 

technical adjustments and contrast media variability. Each individ-

ual case requires detailed analysis of the enhancement patterns in 
all vascular and post-vascular phases. Despite the regulatory and 
practice obstacles for the use of UCAs for CEUS, the evidence indi-
cates that CEUS can provide unique and accurate diagnostic infor-

mation, in many cases also comparable and sometimes superior to 
the performance of CT and MRI [125–127].
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