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AB S TRACT

We investigate several approaches for constructing Monte Carlo realizations of the merging

history of virialized dark matter haloes (`merger trees') using the extended Press±Schechter

formalism.We describe several unsuccessful methods in order to illustrate some of the dif®cult

aspects of this problem. We develop a practical method that leads to the reconstruction of the

mean quantities that can be derived from the Press±Schechter model. This method is

convenient, computationally ef®cient, and works for any power spectrum or background

cosmology. In addition, we investigate statistics that describe the distribution of the number of

progenitors and their masses as a function of redshift.

Key words: galaxies: clusters: general ± galaxies: formation ± cosmology: theory ± dark

matter.

1 INTRODUCTION

In the standard picture of modern structure formation, small-

amplitude Gaussian density ¯uctuations, which perhaps arose

from quantum ¯uctuations and were ampli®ed by a period of

rapid in¯ation, become more overdense with respect to their

surroundings as the Universe expands. Eventually the self-gravity

acting on these regions becomes larger than the pressure of the

expansion, and they collapse to form bound, virialized structures. In

hierarchical models, such as the cold dark matter (CDM) family of

models, the amplitude of the ¯uctuations decreases with increasing

scale. Thus small-mass objects form ®rst, and are then incorporated

into larger structures as time progresses. These dense, gravitation-

ally bound structures provide the environments where galaxies can

form. Hierarchical structure formation thus gives a natural explana-

tion for the very complex observed large-scale structure of the

Universe, i.e., clusters, superclusters, ®laments, etc.

One way to study this process is with N-body simulations.

However, numerical simulations have familiar drawbacks. They

are computationally expensive, so it is dif®cult or impossible to

explore a wide range of models or different realizations of the same

model. In addition, memory and time limitationsmake it impossible

to attain the mass and force resolution required to study simulta-

neously objects from dwarf galaxies (,109M() to clusters

(,1015M(). Semi-analytic methods are therefore an important

alternative.

The model developed by Press & Schechter (1974) provides a

simple but relatively effective framework for the description of the

mass history of particles in a hierarchical universe with Gaussian

random-phase initial perturbations. The focus of the original Press±

Schechter model was the derivation of the multiplicity function of

non-linear objects (`haloes') as a function of redshift, i.e., the `mass

function' or number density of haloes of a given mass at a redshift z.

This prediction has been tested quite extensively and found to be in

relatively good agreement with N-body simulations (Efstathiou et

al. 1988; Gelb & Bertschinger 1994; Lacey & Cole 1994; Ma 1996;

Gross et al. 1998). The Press±Schechter theory was extended to

give the conditional probability that a particle in a halo of massM0

at z0 was in a halo of massM1 at an earlier redshift z1, leading to an

expression for the conditional mass function (Bond et al. 1991;

Bower 1991). The extended Press±Schechter formalism can also be

manipulated to obtain expressions for halo survival times, forma-

tion times, and merger rates (Lacey & Cole 1993, hereafter LC93),

which have also been shown to agree reasonably well with the

results from N-body simulations (Lacey & Cole 1994).

The computation of these mean quantities within the Press±

Schechter model is straightforward. However, for certain purposes

one would like to go beyond this. In particular, the semi-analytic

approach to modelling galaxy formation (cf. Kauffmann, White &

Guiderdoni 1993, Cole et al. 1994) attempts to describe the

formation history of galaxies and gas within dark matter haloes,

including simpli®ed hydrodynamics, star formation, supernova

feedback, galaxy±galaxy merging, and stellar population synthesis.

These models rely on the construction of a `merger tree', which

involves predicting the masses of progenitor haloes and the red-

shifts at which they merge to form larger haloes. Galaxies initially

form in their own halo and are traced as they are incorporated into

larger haloes, and eventually perhaps merge with other galaxies. A

halo of a given mass may have a variety of merging histories, and

the properties of galaxies that form within this halo presumably

depend to some extent on the details of this history.

Most of the previous work using semi-analytic models has

focused on reproducing or predicting mean quantities and qualita-

tive trends. However, as observational data continue to improve,
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one would like to be able to investigate whether the broader

properties of the predicted distribution of model galaxies are

consistent with the observations. For example, there has already

been some investigation of whether the scatter in the observed

Tully±Fisher relation (Eisenstein & Loeb 1996), and in the colour±

magnitude and line strength versus velocity dispersion (Mg±j)

relations (Kauffman 1996), in merger models is consistent with

observations. Before we can trust the models for evaluating these

kinds of questions, we must ensure that the merger trees not only

satisfy themean properties readily predicted by the extended Press±

Schechter model, but ideally also the full distribution function. As

we shall see, accomplishing this goal is far from straightforward,

and it has not been thoroughly investigated in previous work on this

subject.

In this paper we discuss some of the practical and theoretical

dif®culties of using the extended Press±Schechter model to create

Monte Carlo merger histories of dark matter haloes. We mention

some limitations of the previously proposed methods for the

construction of merger trees, and the motivation for developing a

new approach. We discuss several unsuccessful approaches, in an

attempt to clarify some aspects of this problem as well as to prevent

others from following the same dead ends. In addition, the form-

alismwe present may be useful in future work on this subject, as the

®nal approach that we present seems to be effective and convenient,

but it is still not rigorous. A primary motivation for embarking on

this project was to develop a method that reproduces the full joint

probability distribution, rather than just themean. Ourmethod is not

guaranteed to do so, and further investigation of this question

requires a comparison with N-body simulations. This will be

presented in a companion paper (Somerville et al. in preparation).

In Section 2 we give a brief introduction to the Press±Schechter

formalism. In Section 3 we summarize some of the previous

methods for creating merger trees. In Section 4 we describe the

source of some dif®culties one encounters in attempting to use the

extended Press±Schechter formalism to construct merger trees. We

develop a simple model of the joint probability distribution in

Section 5 and attempt to use it to construct merger trees. In Section 6

we present a completely different approach which eventually leads

to our successful method, described in Section 6.3. In Section 7 we

investigate the distribution of progenitor number and mass given by

our successful method. We summarize and conclude in Section 8.

Readers who are interested only in the successful method may

skip to Section 6.

2 THE PRESS ± SCHECHTER FORMALISM

The Press±Schechter model (Press & Schechter 1974) is based on a

combination of linear growth theory, spherical collapse theory, and

the properties of Gaussian random ®elds. Suppose that we have

smoothed the initial density distribution on a scale R using some

spherically symmetric window function WM�r�, where M�R� is the

average mass contained within the window function. There are

various possible choices for the form of the window function (cf.

LC93), and the relation betweenM andRwill clearly depend on this

choice. We use a real-space top±hat window function,

WM�r� � Q�Rÿ r��4pR3
=3�ÿ1, where Q is the Heaviside step

function. In this case M � 4pr0R
3
=3, where r0 is the mean mass

density of the universe. The mass variance S�M�; j
2
�M� may be

calculated from

j
2
�M� �

1

2p2

�

P�k�W
2
�kR�k

2
dk ; �1�

where P�k� is the mass power spectrum, and W�kR� is the Fourier

transform of the real-space top-hat:

W�kR� �
3�sin�kR� ÿ kR cos�kR��

�kR�3
: �2�

The `excursion set' derivation due to Bond et al. (1991) leads

naturally to the extended Press±Schechter formalism that we will

use extensively in this paper. The smoothed ®eld d�M� is a Gaussian

random variable with zero mean and variance S. The value of d

executes a random walk as the smoothing scale is changed.

Adopting an ansatz similar to that of the original Press±Schechter

model, we associate the fraction of matter in collapsed objects in the

mass interval M;M � dM at time t with the fraction of trajectories

that make their ®rst upcrossing through the threshold q; dc�t� in

the interval S; S� dS. This may be translated to a mass interval

through equation (1). The halo multiplicity function (here in the

notation of LC93) is then

f �S;q�dS �
1
������

2p
p

q

S3=2
exp ÿ

q
2

2S

� �

dS : �3�

The conditional mass function, the fraction of the trajectories in

haloes with mass M1 at z1 that are in haloes with mass M0 at z0
(M1 < M0, z0 < z1) is

f �S1;q1 | S0;q0�dS1 �

1
������

2p
p

�q1 ÿ q0�

�S1 ÿ S0�
3=2

exp ÿ
�q1 ÿ q0�

2

2�S1 ÿ S0�

� �

dS1 : �4�

The probability that a halo ofmassM0 at redshift z0 had a progenitor

in the mass range �M1;M1 � dM1� is given by (LC93)

dP

dM1

�M1; z1 |M0; z0�dM1 �

M0

M1

f �S1;q1 | S0;q0�
dS

dM

�

�

�

�

�

�

�

�

dM1 ; �5�

where the factorM0=M1 converts the counting from mass weighting

to number weighting.

All of the results presented in this paper have been calculated for

an Q � 1 universe with H0 � 50 km sÿ1 Mpcÿ1. The power spec-

trum is obtained from the ®tting formula of Bardeen et al. (1986)

with G � 0:21 and j8 � 0:6. This is the tCDMmodel of Efstathiou,

Bond&White (1992), and has been chosen because the slope of the

power spectrum on galaxy scales is consistent with observations.

However, our results are equally valid for any assumed power

spectrum or cosmology. The one exception that we know of is the

case of a universe with a `hot' dark matter component, such as a

massive neutrino (CHDM- or MDM-type models). The standard

extended Press±Schechter formalism does not properly treat the

evolution due to the changing free-streaming length of the neutrino

in such models. All of the expressions given are valid for a general

cosmology unless otherwise noted.

3 PREVIOUS METHODS

The development of techniques for constructing Monte Carlo

realizations of the merging history of dark matter haloes (Cole &

Kaiser 1988; Cole 1991; Kauffmann & White 1993; LC93) using

the extended Press±Schechter formalism has allowed a great deal of

progress to be made in the use of semi-analytic methods for

studying galaxy formation and evolution. Kauffmann & White

developed a method for constructing merger trees which addresses

the problem of simultaneously reproducing the average number of

haloes given by equation (5) and imposing the constraint that the

2 R. S. Somerville and T. S. Kolatt
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mass of a halo be equal to the sum of the masses of its progenitors at

every stage. To do this, they impose a grid in mass and redshift. For

the ®rst step in redshift, they then create a list of haloes, where the

number of haloes with mass Mi is given by N�Mi� �

NensdN=dM�Mi�DMi, rounded to the nearest integer. Nens is some

large number of ensembles, typically Nens , 100. The progenitors

are randomly assigned to ensembles, starting with the largest and

working in order of decreasing mass. The probability of assignment

is proportional to the amount of remaining free mass, with the

constraint that the total mass of the progenitors cannot exceed the

mass of the parent1. This process is repeated for all the steps in the

redshift grid.

This algorithm is guaranteed to reproduce exactly the mean

number of haloes of each mass at each redshift for the set of

ensembles. However, it is possible to encounter a situation in which

the next halo does not ®t into any of the ensembles. In order to get

around this problem, mass conservation is enforced only in an

approximate way (G. Kauffmann, private communication). There

are also some practical drawbacks to this method. It is necessary to

generate a large number of ensembles and store them, which is

somewhat inconvenient. An arbitrary grid in halo mass and redshift

must be imposed. Also, because the function dN=dM is very sharply

peaked around M0 for small M0 or small redshift intervals Dz, the

algorithm as described in Kauffmann &White (1993) is sensitive to

the binning used and is prone to numerical problems. The algorithm

breaks down for certain choices of power spectrum. Finally,

although the mean of the distribution is reproduced by construction,

the partitioning of the haloes into individual ensembles is ad hoc and

may or may not reproduce the higher moments of the distribution.

A different approach, referred to as the `Block model', has been

proposed by Cole & Kaiseer (1988) and Cole (1991). A major

drawback with this approach is that the halo masses always grow in

discrete steps of factors of 2. This is problematic for the purpose of

semi-analytic galaxy formation modelling, in which one would like

to follow individual galaxies with fairly ®ne time resolution. LC93

propose a generalization of the block model which removes this

condition, but we show in Section 6.1 that this method produces

halo mass distributions that are severely discrepant with the Press±

Schechter model.

4 D IFF ICULTIES OF TREES

The ®rst choice we must make if we want to construct a merger tree

is whether to start from high redshift and merge together small

clumps until the desired redshift is reached (as in an N-body

simulation or, presumably, in the real Universe), or to start from

the present day and work backwards in time, `disintegrating' the

haloes into their progenitors like a ®lm run backwards. The

extended Press±Schechter formalism provides expressions applic-

able to both situations. An important consideration is that we would

like to eventually anchor our approach using the observed z � 0

properties of galaxies, which are presumably the most secure. In

addition, because we lack any information about spatial correla-

tions, if we go forward in time, we do not know which small clumps

to combine with which. It may be possible to get around this

problem somehow, but for now we pursue the `disintegration'

approach, in which we postulate the existence of a `parent' halo

of a given mass M0 at redshift z0 and break it into its `progenitors'

working backwards in time.

It might appear a simple matter to construct a merger tree by

simply picking the masses of the progenitors of our parent halo at

some earlier redshift z1 from the expression for dP=dM

�M1; z1jM0; z0� given by equation (5) above, then repeating this

process starting from each progenitor in turn for the next step back

in time. Two dif®culties immediately arise in implementing this

approach. First, from inspection of equation (5), the number of

haloes clearly diverges as the mass goes to zero. However, note that

the mass contained in small haloes (equation 4) does not diverge as

M ! 0. In order to pick masses from the number-weighted prob-

ability function numerically, it is necessary to introduce a cut-off

mass, or effective mass resolution, Ml.

The second problem is that the progenitor masses must simulta-

neously be drawn from the distribution dP=dM�M� and add up to the

mass of the parent, M0. The problem is that dP=dM is just the

average number of haloes that one can make out of the mass

M0f �M� dM. What we really want is the joint probability function

for the set of progenitors fM1; . . . ;Mng, dPn=dM

�fM1; . . . ;Mng; z1 |M0; z0� with any value of n < M0=Ml
2. An

obvious problem with the use of the single halo probability rather

than the joint probability is that there is no guarantee that we will

not at some stage pick a progenitor that does not `®t' in the halo: i.e.,

M > M0 ÿ
P

i Mi, where Mi are the masses of all the previously

picked progenitors. In addition, since the expression P�M� gives

only the probability that there was a progenitor of mass M at an

earlier time, we do not know a priori how many progenitors were

present at the redshift z1.

Having noted these points, we can write down some basic

requirements for our merger tree construction algorithm.

(i) The procedure must account for the mass contained in haloes

below themass resolutionMl, which wewill refer to as the `accreted

mass'. However, the results must be independent of the value ofMl.

(ii) The procedure should treat all progenitors equally, indepen-

dently of the sequence in which they are chosen.

(iii) The procedure must simultaneously reproduce the distribu-

tion of the number of progenitors and their masses, while conser-

ving mass.

(iv) The algorithm should be numerically robust and must be

possible to implement in a computationally ef®cient and convenient

way.

We now demonstrate some problems that arise in several see-

mingly straightforward approaches to building the trees. The bold

solid line in Fig. 1 shows the prediction of the extended Press±

Schechter model for the quantity dN=dM, the number of progenitors

with massM for a parent halo withM0 � 5Ml after a single step in

redshift from z0 � 0 to z1 � 0:2 (also called the conditional mass

function). This is the quantity that a successful merging tree method

must reproduce. In this ®gure and hereafter unless otherwise noted,

all masses are given in units of the mass resolutionMl. Herewe have

used Ml � 1:0 ´ 1010M(, but the results are independent of this

value.

In our ®rst attempted method, the progenitor masses are chosen

from equation (5) until the mass reservoir M0 is exhausted. The

probability is set to zero for M < Ml. We have tried two ways of

addressing the problem of mass `over¯ow' described above. One

approach is to choose progenitors until the total mass exceeds M0,

How to plant a merger tree 3
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1 Note that in our terminology, the `parent' is younger than its `progenitors',

because we always work backwards in time.

2
From now on we will drop the differential notation dP=dM and refer to the

probability given by eqution (5) as simply P�M�. We will also frequently

drop the explicit dependence on the redshift and the parent massM0 where

this is unambiguous.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
0
5
/1

/1
/9

8
5
2
3
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



and then to truncate the mass of the last progenitor. We will refer to

this as the Naive Method with Truncation'. Another approach is to

impose an upper mass cut-off, so that the probability is effectively

set to zero for any values of M that exceed the available mass. In

effect, we then choose the ith progenitor from the modi®ed

distribution

Pi�Mi� � P�Mi�Q�Mi ÿMl�Q�M0 ÿ
X

i

j�1

Mj� ; �6�

where P�M� is the original probability function from equation (5)

renormalized for its new range. No attempt is made to compensate

for the contribution of masses below Ml. We refer to this as the

`Naive Method with Cut-off'. The results for the quantity dN=dM

(averaged over many ensembles) is shown by the histograms

marked a (Cut-off) and b (Truncation) in Fig. 1.

Both procedures clearly fail to reproduce correctly the condi-

tional mass function predicted by the extended Press±Schechter

model (equation 5). Although the introduction of the upper mass

cut-off to prevent choosing masses that are too large to ®t in the

current ensemble is somewhat more elegant than the brute force

truncation, we see that it produces a shift towards smaller masses,

which leads to large excess of small-mass haloes. It should be noted

that this ®gure shows only one step in redshift. The excess multi-

plies with each subsequent step in redshift, so that even a relatively

small discrepancy quickly becomes very serious. It should also be

noted that these problems are most pronounced when M0 <Ml (as

in the case shown in the ®gure). IfM0qMl, the disagreement is not

as bad.

5 THE ACCRETION MODEL

We must introduce a self-consistent way of treating progenitors

above and below the cut-off mass, Ml. It should be noted that

although the contribution of masses M < Ml may be negligible for

haloes with M0qMl, as the mass of the parent approaches the

resolution limit it necessarily becomes a signi®cant fraction of the

total progenitor mass. Because every halo, regardless of its size,

must be broken down into smaller and smaller pieces until all of the

pieces fall below themass resolution (this is what makes the process

®nite), the correct treatment of small haloes is crucial for recon-

structing the formation history of haloes of all masses out to

arbitrarily high redshift.

The basic idea behind this approach is never to treat any mass

below Ml in terms of progenitor number, but rather to ®nd a

complimentary description for it as accreted diffuse matter. We

now introduce an arbitrary distinction in terminology to re¯ect this

division. Let progenitors by de®nition have mass greater than the

®xed mass resolution Ml. The aggregate contribution of all haloes

with M < Ml will be referred to as accreted mass. A fully rigorous

procedure should use the joint probability for progenitor number

(not mass) above Ml, and accreted mass (not number of haloes)

below this mass scale.

We can now de®ne a few more useful quantities. Given the mass

of the parent halo M0 and the redshift step z0 ! z1, the average

number of progenitors (recalling our de®nition above), is

ÅN ; hNp�M jM0�i �

�

M0

Ml

dM
M0

M
P�M; z1jM0; z0� : �7�

We can also calculate the average fraction of M0 that dwelt in the

form of progenitor haloes of mass M > Ml:

Åfp �

�

¥

Ml

dMP�M; z1jM0; z0� ; �8�

and the complimentary quantity for the average fraction ofM0 that

came from `accreted' mass, Åfacc � 1ÿ Åfp.

Before we proceed, we would like to warn the reader that the

contents of the remainder of this section are rather detailed and

probably of interest only to the specialist. The formalism developed

in the rest of this section is not used directly in the successful

method that wewill eventually derive. We urge the impatient reader

to skip directly to Section 6.

From the above predictions we can try to evaluate what went

wrong with our previous procedures (the `Naive' methods). The

predicted average number of progenitors for the case considered in

Fig. 1 (M0 � 5Ml, z0 � 0, z1 � 0:2) is ÅN � 1:14. The actual

average number for 100 Monte Carlo realizations using the Naive

Method with Truncation is ÅN � 2:1, and for the Naive Method with

Cut-off it is ÅN � 2:3. Thuswe see that themean of the distribution is

shifted towards larger numbers of small-mass haloes. This moti-

vates our goal in this section, which is to ®nd the probability

function PN of having N progenitors at redshift z1 given the mass

M0 at a later redshift z0, with the imposed cut-off of Ml.

GivenM0, z0, and z1, letM1;p be the mass of a progenitor, where

by de®nition M1;p > Ml. However, during the time interval

Dz; z1 ÿ z0, this progenitor accretes a massM1;acc due to merging

with small haloes of mass M < Ml which are not counted as

progenitors. Therefore its effective contribution to M0 is

M1 � M1;p �M1;acc. We now de®ne amodi®ed probability function

ÄP�M1jM0� �

�

M1

Ml

dM1;p P�M1;pjM0�Pacc�M1;accjM1;p�: �9�

4 R. S. Somerville and T. S. Kolatt
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Figure 1. The number of progenitors with mass mp (conditional mass

function) for a single step in redshift (z0 � 0 to z1 � 0:2). The bold solid

line is the prediction of the extended Press±Schechter theory (equation 5).

The histograms were obtained by picking masses from the distribution

P�M; z1 |M0; z0� until the parent mass M0 was exhausted. The dotted

histogram (a) shows the results using the Naive Method with Cut-off, and

the short-dashed histogram (b) shows the results of using the Naive Method

with Truncation (see text). The long-dashed histogram (c) uses Accretion

Model Method 1, and the dot-dashed histogram (d) uses Accretion Model

Method 2 (see text). All masses are in units of the minimum progenitor mass

Ml.
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The weighting function Pacc is proportional to the probability for

M1;p to accrete a mass M1;acc during the speci®ed redshift interval.

This probability is not simply P�M1;acc; z1jM0; z0�, becauseMacc will

in general be comprised of many small haloes. It should be noted

that for the same reason,Macc is not necessarily smaller thanMl. We

return to the determination of the function Pacc in a moment.

The probability for having one and only one progenitor (with

additional accreted mass) given a halo of mass M0 is

P1 � ÄP�M0jM0� : �10�

The probability for exactly two progenitors is

P2 �

�

M0ÿMl

Ml

dM1
ÄP2�M1jM0� ; �11�

where

ÄP2�M1jM0�; ÄP1�M1jM0� ÄP1�M0 ÿM1jM0� : �12�

The generalization to N progenitors PN is obtained recursively via

PN �

�

M0ÿ�Nÿ1�Ml

Ml

dM1
ÄPN�M1; :::;MN jM0� �13�

�

�

M0ÿ�Nÿ1�Ml

Ml

dM1
ÄP1�M1jM0�

. . .

�

M0ÿ
P

jÿ1

i�1

Miÿ�Nÿjÿ1�Ml

Ml

dMj
ÄP1�MjjM0�

. . .

�

M0ÿ
P

Nÿ2

i�1

�Mi�ÿ�Nÿ2�Ml

Ml

dMNÿ1

´ ÄP1�MNÿ1jM0� ÄP1�M0 ÿ
X

Nÿ1

i�1

�Mi�jM0� : �14�

The probability of having no progenitors of mass bigger than Ml,

P0, is evaluated at the end by the requirement of

X

N

i�0

P i � 1 ; �15�

where N is suf®ciently large that PN ! 0. The average number of

progenitors must satisfy

hNpi �
X

N

n�0

nPn ; �16�

and may be compared with the independent prediction of equation

(7).

5.1 The accretion probability

The accretion weighting function Pacc�Macc |Mp; z1; z0� is an impor-

tant missing ingredient in these expressions. It is proportional to the

probability for a progenitor with mass Mp to accrete a mass Macc

during the redshift interval Dz � z1 ÿ z0. It should re¯ect our

expectation that it is very unlikely for a small-mass halo to accrete

a very large amount of mass, as this would require the simultaneous

merging of a very large number of haloes withM < Ml. Similarly, a

large halo will be unlikely to accrete a very small amount of mass,

because its cross-section for merging is large. In this section we

incorporate these qualitative expectations into a reasonable guess

for the accretion probability function Pacc.

Consider a halo with a mass M1 at a redshift z1. From the

spherical collapse model (e.g. White & Frenk 1991), we expect

the virial mass to increase due to the infall of previously

uncollapsed material. The mass at a later time corresponding to a

redshift z2 < z1 is

M2 � M1 �

�

z2

z1

dz
dM

dt
�M1�

dt

dz
; �17�

where the accretion rate from the spherical infall model is

dM

dt
�M� �

V
3
c

2pG
; �18�

where Vc is the circular velocity of the halo (the last formula is

strictly true only in a universe with no cosmological constant, but is

a good approximation even if LÞ 0). This change in mass includes

mergers with haloes of all masses. We still need to estimate how

much of the mass change DM � M2 ÿM1 is due to mergers with

haloes with mass less than the resolution limit, i.e., `accretion'. To

do this we use the expression for the mean fraction of accreted mass

(Åfacc ; 1ÿ Åfp), starting from the mass M2 and going back in time

from z2 to z1. In this way we estimate the average mass accreted by

M1 to be ÅMacc �
Åfacc�M2�M2.

For higher moments of the distribution function

Pacc�MaccjMp; z1; z0� we shall assume that the accretion is mainly

due to the infall of blobs (i.e., haloes of mass < Ml) with typical

mass MbpMl. For the average accretion of equation (17) we

expect

Nb .

ÅMacc

Mb

: �19�

For any total accreted mass, regardless of the value of Mb, the

number of blobs is proportional to the average accreted mass. If the

number of the blobs is Poisson-distributed, then the second moment

of the accreted mass distribution function is proportional to the total

mass accreted. In the limit Nbq 1 the distribution should approach

a Gaussian distribution. We have already argued that the mean of

this distribution should be ÅMacc. We can make a rough guess for the

width of the distribution, j2acc � b�DM ÿ ÅMacc�, where DM repre-

sents the mass change predicted by the spherical infall model. This

should be an upper limit on the accreted mass. Due to the

uncertainties involved in the derivation of this expression, the

parameter b is left free and can be tuned as needed (we used

b � 2 for the results presented here). We now have a reasonable

guess for the functional form of the accretion probability function

for a progenitor of mass Mp over the redshift interval z1 to z0:

Pacc�MaccjMp; z1; z0� ~
1

j1=2acc

exp ÿ
�Macc ÿ ÅMacc�

2

2j2acc

� �

: �20�

Although this expression is admittedly ad hoc, one can see that it

contains the correct qualitative behaviour. The mean accreted mass

increases with the progenitor mass and with Dz as expected.

5.2 Merger trees with the accretion model

We can now imagine a new approach for constructing the merger

trees which addresses the two main sources of the problems in the

previous approach: the failure to account for accreted mass, and the

incorrect distribution of the number of progenitors. Given the

probability function PN for each M0 and time-step, we pick the

number of progenitors from this distribution. We assign a mass to

each of these progenitors from the distribution Pi�M� (equation 6)

as before. The Q function prevents us from choosing a mass larger

than the available mass at any stage. The accreted mass is auto-

matically obtained from the residue of this procedure. The results of

this algorithm (which we will call Accretion Model Method 1) are

shown by the histogram c in Fig. 1. We see that the results have

How to plant a merger tree 5
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improved dramatically from the Naive Method with Truncation,

where the upper mass cut-off was also used but the number of

progenitors was not speci®ed. Also the average number of progeni-

tors is now ÅN � 1:08, in much better agreement with the expected

value of ÅN � 1:14. However, there is still an inconsistency in this

procedure, which leads to the remaining discrepancy. We have

still assigned the mass to the progenitors based on the single

halo probability function P�M�, when, as we have argued before,

we really should have used the joint probability

function Pn�fM1; . . . ;Mng�. This can, in principle, be calculated

using the same approach that we used to obtain the PN function.

For example, the joint probability for N � 2, taking into account

the accretion weighting, is just the integrand of the expression for

P2:

P2�fM1;M2g� � P�M1�P�M2�Q�M0 ÿM1 ÿM2�

´

�M0ÿM1ÿM2

0

dMacc Pacc�Macc |M1�

´ Pacc�M0 ÿM1 ÿM2 ÿMacc |M2� : �21�

This expression may be generalized to the N-halo joint probability

as before.

We now pick the number of progenitors from PN and assign the

masses from the joint probability function equation (21) (Accretion

Model Method 2). This approach goes a long way towards curing

the problems we have noted, as we see from histogram d in Fig. 1.

However, the shape of the mass function is not quite right. We

attribute this to the inconsistency introduced by our ad hoc accretion

probability weighting. We ®nd that changing the form of this

function signi®cantly affects the results obtained for the mass

function. We obtain better results for a lognormal distribution

than for the Gaussian distribution used here. If we could somehow

obtain some external information on the form of the accretion

weighting, for example from N-body simulations, it might be

possible to produce a successfully working method. However, this

scheme is also rather cumbersome and computationally expensive.

The calculation of PN involves the computation of �N ÿ 1�!

integrals, and must be repeated for every parent halo mass, M0

and redshift interval Dz. The joint probability function for the ith

progenitor will depend on the masses of the previously chosen

progenitors, and thus must be recalculated at each stage. This

quickly becomes prohibitively computationally expensive when

large numbers of progenitors are allowed.

We can address the second problem by reducing the time-step or

redshift interval Dz. As Dz is decreased, the form of PN steepens

and becomes peaked at smaller N. For a small enough choice of Dz,

PN$3 ! 0. We will refer to this condition as the two-progenitor

limit. The idea is not to allow any processes that involvemore than a

single bifurcation. This demand allows one to calculate only three

functions for each time-step (P0, P1, & P2), by using the analytic

model of equation (14). At each stage, the time-step will now

depend on the parent mass M0. The larger the halo, the smaller the

time-step necessary to satisfy this condition.

Although going to the two-progenitor limit might make the

procedure computationally feasible, for the moment our lack of

knowledge about the accretion probability weighting, and the

sensitivity of the results to this function, lead us to abandon this

approach. Perhaps the formalism we have developed here, and the

simple approach we have presented for modelling the joint prob-

ability function, can be re®ned in the future. However, we do not

pursue it in this paper.

6 A PRACTICAL SOLUTION

6.1 Binary merger trees without accretion

In the absence of external information about the behaviour of the

accreted mass component, we are forced to treat it within ourMonte

Carlo procedure. As we have discussed, we do not want to use the

number-weighted probability for masses below Ml because of the

divergence of this expression at small masses. However, the mass-

weighted probability, equation (4), does not diverge. If we pick a

massM1 from the mass-weighted expression f �M1; z1 |M0; z0�, this

is equivalent to discovering that a single trajectory, or particle, from

the parent haloM0 was in a halowithmassM1 at z1. Once again, this

is the single trajectory probability, and if we continue to select

masses they will not in general ®t together in any sensible

combination that can lead toM0. We attempt to evade this problem

by choosing a very small time-step and so going to the two

progenitor limit, as before. It is convenient to use q; dc�z� �

dc;0=D�z� as our time variable, and S�M�; j
2
�M� as our mass

variable, as in LC93. These can be translated back to redshift and

mass by inversion of the appropriate expressions. The probability

for a step DS in a time-step Dq is (LC93, equation 2.29)

P�DS;Dq�dDS �
1
������

2p
p

Dq

�DS�3=2
exp ÿ

�Dq�
2

2DS

� �

dDS: �22�

If we make a change in variables, x; Dq=�2
������

DS
p

�, this becomes a

Gaussian distribution in xwith zero mean and unit variance.We can

see from this expression that if we choose the time-step such that

Dq&

��������������������������

dS

dM
�M0�DMc

r

; �23�

whereDMcpM0, then a stepDS corresponding to a change inmass

DM larger than the mass resolution becomes a 2j event. We must

choose this time-step carefully ± if it is too big, then the two-

progenitor approximation will break down badly. If it is too small,

then the results become dominated by numerical noise. The above

expression is approximate, but provides a rule of thumb. Note that it

scales withM0 through the differential dS=dM�M0�, so larger parent

haloes will require smaller time-steps.

In the simplest version of this algorithm, we start from a parent

halo with massM0 at z0 and obtain the time-step Dq from equation

(23). We work backwards in time from this point. We choose a

Gaussian random variable with unit variance and translate this to a

step DS using the transformation mentioned above. The new halo

mass at the earlier time t�q� Dq� is then M�S� DS�. LC93 argue

that for a small enough time-step, all mergers may be treated as

binary. This makes the process very simple ± at each stagewe break

the halo into two pieces with massM and DM ;M0 ÿM, whereM

is chosen from the probability function f �M�. If the progenitor

obtained in this way is larger thanMl, we treat it as the next parent

and repeat the procedure. If it is smaller thanMl, then we treat it as

accreted mass and do not follow its history. This is essentially the

same algorithm proposed in LC93 at the top of page 641, and is

similar to a generalized version of the blockmodel of Cole&Kaiser

(1988) and Cole (1991).

This approach has several advantages. It is simple and may be

coded recursively in a few lines. Because it mainly involves picking

Gaussian random deviates, it is also very fast. Rather than being

imposed on an arti®cial grid in redshift like previous methods, it

re¯ects the intrinsic merging time-scales of haloes of different mass

contained in the extended Press±Schechter theory. Unfortunately,

the mass function of haloes obtained in this way begins to develop

6 R. S. Somerville and T. S. Kolatt
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an excess of haloes compared to the extended Press±Schechter

model. This excess becomesmore andmore severe as the number of

steps increases.We show this for the conditional mass function for a

halo with an initial mass M0 � 500Ml in Fig. 2. This problem

becomes quite serious when we combine the merger histories of a

grid of haloes, with the appropriate Press±Schechter weighting for

the parent at z � 0, to obtain the totalmass function, shown in Fig. 3.

The mass function reconstructed in this way should yield exact

agreement with the original Press±Schechter expression for the

universal mass function. With this method, the number of haloes is

overpredicted by almost an order of magnitude by a redshift of

z, 6. This is especially troublesome as the Press±Schechter model

already gives an,30-50 per cent excess of small haloes compared

to N-body simulations (Lacey &Cole 1994; Gross et al. 1998). The

problem that we demonstrate here may explain why LC93 and

Lacey & Cole (1994) ®nd that a similar Monte Carlo method leads

to halo formation times that are 40 per cent higher than the analytic

predictions or the N-body results.

We believe that this problem is due to the simplifying assumption

of binary mergers. Because the merger rate of very small haloes

becomes effectively in®nite for CDM-like power spectra, non-

binarymergers, at least involving small haloes, cannot be neglected.

This statement is complementary to our original premise regarding

the importance of what we have called accreted mass. One might

think that we have simply not chosen a small enough time-step, but

if this were the case the results should improve steadily as we

decrease the time-step. We do not observe this behaviour even for

extreme reductions in the time-step.

Another way of stating the problem is that we have actually

violated item (ii) in our list in Section 4. The ®rst mass is chosen

from the distribution f �M�, but the mass of the second progenitor is

not; it is just assumed to be whatever mass is left over. This means

that for every progenitor with mass M we always get a progenitor

with mass M0 ÿM. It is easy to see that this will lead to incon-

sistencies with the mean distribution function P�M�.

6.2 Binary trees with accreted mass

We now attempt to cure the problem noted above by relaxing the

simplifying assumption of binary mergers from the previous sub-

section. Namely, we postulate that mergers can involve at most two

progenitors (haloes withM > Ml), but an arbitrary number of haloes

with mass less than Ml. This, of course, amounts to allowing for

accreted mass. At any branching we may have only accreted mass

(zero progenitors), or alternatively one or two progenitors plus

accreted mass. In addition, the progenitor masses must always be

picked from the probability distribution f �M�. Leftover mass can

contribute to accretion, but cannot be used for progenitors.

The new recipe is as follows. The algorithm is shown in ¯ow-

chart form in Fig. 4. Given the parent massM0 we compute the time-

step Dq as before. Using this time-step throughout the following

steps, we proceed as follows.

(i) Pick a mass M from the mass-weighted probability distribu-

tion equation (22). This mass can be anywhere in the range

0#M #M0. If M < Ml, we count it as accreted mass. If M $Ml,

we count it as a progenitor.

(ii) Compute the unallocated mass DM � M0 ÿM.

(iii) If the unallocated mass DM is larger thanMl, then it may or

may not contain a progenitor. To determine this, pick another mass

M from the distribution, but with the restrictionM < DM. Depend-

ing on its mass, count it as accreted mass or a progenitor as before.

In either case, subtract M from the mass reservoir.

(iv) Repeat this process until either

(a) the mass reservoir DM falls below the minimum halo

How to plant a merger tree 7
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Figure 2. The number of progenitors with mass M for a halo with initial

mass M0 � 500, at various redshifts as shown in the ®gure. The solid lines

are the predictions of the extended Press±Schechter theory. The histograms

show the results for merger trees constructed using the Binary Tree Method

without accretion, which is essentially the algorithm proposed by Lacey

&Cole (1993). The trees have an excess of haloes compared to the Press±

Schechter model, and the discrepancy increases with redshift.

Figure 3. The total mass function obtained from the Binary Tree Method

without accretion. All mergers are assumed to involve exactly two haloes.

The total mass function is obtained by combining a grid of haloes from 1Ml

to 5 ´ 10
4
Ml (1:0 ´ 10

10
M( to 5:0 ´ 10

15
M() weighted with the Press±

Schechter number density at z � 0. The bold lines are the predictions of the

Press±Schechter theory, at z � 0:16, 2.5, 3.6, 5 and 7 from top to bottom.

The merger trees (histograms) overpredict the number of haloes by more

than an order of magnitude after many steps in redshift.
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mass Ml, in which case it must abandon any aspirations of

harbouring a real progenitor and must be accreted mass, or

(b) we have found a total of two progenitors (M > Ml), in

which case the remaining mass is considered to be accreted mass in

accord with our ansatz.

(v) Each progenitor now becomes a parent, we calculate a new

time-step, and repeat the whole process.

In the ¯ow-chart, branches leading to the outcome of zero, one

and two progenitors are labelled P0, P1, and P2, in connection

with the formalism developed in the previous section.

Note that this procedure does not strictly ful®l requirement (ii) of

Section 4 of equal treatment of progenitors, regardless of the order

in which they are picked. This inequality is necessary due to the

mass conservation requirement.

The results for the conditional mass function of a single halo are

shown in Fig. 5. The discrepancy is now in the opposite direction:

the number of haloes is underpredicted relative to the extended

Press±Schechter prediction. Apparently this procedure now over-

estimates the accreted mass. This is not too surprising, since we

allowed large amounts of mass to be designated as accreted mass

simply because two progenitors had already been found. It appears

that even in the limit of small time-steps and for large-mass haloes,

mergers between more than two haloes cannot be neglected. In

someways this is not surprising either, because after all the division

into M > Ml and M < Ml is arbitrary and has no physical basis.

6.3 The successful method: N-branch trees with accretion

It is trivial to generalize our previous recipe to allow an unrestricted

number of progenitors.We now continue picking progenitor masses

until the unallocated mass DM is less than Ml. This is indicated on

the ¯ow-chart by the dashed line labelled `To P3'. Note that the

total accreted mass can still exceed Ml, because some of the

attempts to pick progenitors yield haloes with M < Ml and con-

tribute to the accreted mass. We still pick the time-step so that the

number of progenitors cannot get too large (we ®nd that we never

exceed 10 progenitors per time-step even for cluster mass haloes

(M0 � 5 ´ 104 Ml)). We ®nd a good compromise between ef®-

ciency and accuracy if we introduce an additional scaling in the

expression for Dq from equation (23), of the form b� a log10
�M=Ml�, wherewe have used the parameters a � 0:3 and b � 0:8 for

the results shown here. This optimal scaling would change for a

different power spectrum shape.

This recipe gives good results for the conditional mass function

8 R. S. Somerville and T. S. Kolatt
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Figure 4. A ¯ow-chart for one redshift step of the disintegration of a halo in a merging tree. The end-points (P1;P2, etc.) lead to identical ¯ow-charts for the

subsequent time-step, with a new parent mass M0. A detailed discussion of the algorithm and this ¯ow-chart is given in Section 6.2.
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for parent haloes with awide range ofmasses.We show this in Fig. 6

for parent haloes with M0 � 5Ml; 500Ml and 5 ´ 104 Ml. The

agreement is poorest for haloes with M0 & 10Ml. If we require

strict mass conservation, this is an unavoidable problem due to the

shape of the conditional mass function for haloes of this size. This

should be kept in mind when setting the value ofMl Ð it should be

chosen such that only objects larger than ,10Ml correspond to

observable galaxies. We also check the mass-weighted quantity Åfp,

the fraction of mass in progenitors as a function of redshift. This is

shown in Fig. 7. This quantity shows good agreement for the

smallest halo, M0 � 5Ml, which shows that the accreted mass is

being treated properly, so that we do not need toworry about the less

than perfect agreement in the conditional mass function, as long as

the condition on Ml mentioned above is satis®ed. Note that the

agreement of the mass function can be improved by adjusting the

time-step, but at the expense of Åfp. We adjust the time-step to

achieve the best possible agreement for both the number- and mass-

weighted quantities, over the entire mass range. We compute the

universal mass function from theweighted grid of merging histories

constructed using our new scheme, and plot this in Fig. 8. We now

®nd very good agreement with the prediction of the standard Press±

Schechter theory.

We therefore conclude that although this method is not rigorous,

it produces acceptable agreement with the mean quantities that we

can check with the Press±Schechter model.

7 THE NUMBER ±MASS DISTRIBUTION OF

PROGENITORS

We have now developed a convenient and ef®cient method for

constructing merger trees. The averages derived from an ensemble

of these trees agree with the important mean quantities predicted

by the extended Press±Schechter theory. However, part of the

How to plant a merger tree 9
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Figure 5. The number of progenitors with mass M, for a halo with

M0 � 500, using the Binary Tree Method with accretion. Here mergers

may involve only two haloes with mass greater than Ml, but an inde®nite

number of mergers with haloes with mass smaller than Ml (accretion). As

usual, the solid line is the extended Press±Schechter prediction. The trees

(histograms) now underproduce haloes compared to the Press±Schechter

model.

Figure 6. The number of progenitors with mass M, for a halo with initial

massM0, using the N-Branch Tree Method with accretion. This is the same

as the binary tree method with accretion, except that an arbitrary number of

progenitors is allowed at each branching. The solid line is the extended

Press±Schechter prediction. (a) M0 � 5Ml; (b) M0 � 500Ml; (c) M0 �

5 ´ 104Ml. The merger trees (histograms) are in reasonably good agreement

with the extended Press±Schechter model.
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motivation for developing this new method was to ensure that the

ensemble obeys the true joint probability distribution. We have not

yet shown this to be the case, and we have already mentioned the

lack of any information from the standard Press±Schechter form-

alism which would allow us to evaluate the Monte Carlo trees

against analytic predictions.

We do have the predictions of the model we developed in

Section 5, but we do not trust them for reasons discussed in that

section. However, out of curiosity we compare the predictions of the

semi-analytic accretion model for the probability distribution of the

number of progenitors, PN , with the results of the Monte Carlo

merger trees. The integrals were performed numerically using a

recursive, adaptive step-size Runga±Kutta algorithm. Fig. 9 shows

the PN distributions for haloes with mass M0 � 5 and 50 at

redshifts of 0.1, 0.2, 1 and 3. The results agree rather well for

redshift steps ofDz � 0:2 or smaller. For larger steps in redshift, the

semi-analytic results do not agree as well, probably due to the

breakdown of the accretion model.

Fig. 10 demonstrates the importance of taking into account the

joint distribution in the progenitor number ± progenitor mass space.

The ®gure shows strong correlations between the two variables.

Some of the correlations are obvious: in Fig. 10(a), we show the

distribution for a parent halo ofM0 � 5Ml. In the ®rst redshift step

(z0 � 0, z1 � 0:2) the highest probability is obtained for having a

single progenitor, and this progenitor naturally contains a large

fraction of the massM0. As we progress in redshift, this correspon-

dence is not preserved. Accreted mass starts to be more and more

signi®cant, and the unseen accreted mass complements low-mass

progenitors so that the sum may reach M0. At the formation epoch

ofM0, allPN are populated, and in earlier stages most of the haloes

go below Ml, when the dominant process is of single progenitors

that accumulate accreted mass. It is interesting to notice that the

`formation epoch' (the earliest time when the largest progenitor has

mass greater thanM0=2) is not dominated by mergers of equal-mass

haloes, but rather approached via slow accretion. This general

picture also remains valid for higher M0 (Figs 10b and c): an

increase in the number of progenitors occurs towards an intermedi-

ate redshift, and it then declines towards containing most of the

mass in the accreted component. However, it should be noted that

the highest mass considered here would be comparable to a galactic

halo (5 ´ 1011M(). For much larger mass haloes (comparable to

group or cluster mass haloes), accretion is less important relative to

the aggregation of roughly equal-mass progenitors.

The probability for the number of progenitors spans substantial

10 R. S. Somerville and T. S. Kolatt

q 1999 RAS, MNRAS 305, 1±14

Figure 7. The average fraction of the original mass M0 contained in

progenitors (haloes with M > Ml) at a redshift z. The solid line shows the

prediction of the Press±Schechter model. The square symbols show the

average given by the merger trees (N-Branch Tree Method with accretion)

Error bars show the standard deviation (1j) over many ensembles.

Figure 8. The total mass function obtained from the N-Branch Tree Method

with accretion (the successful method). The solid lines show the prediction

of the Press±Schechter theory, at z � 0:16, 2.5, 3.6, 5 and 7 from top to

bottom. Broken histograms show the mass function from the merger trees,

constructed as described in Fig. 3.

Figure 9. The probability distribution of the number of progenitors, for a

parent halo with mass M0 at several redshifts. The histogram shows the

results from the Monte Carlo merging trees (N-Branch Tree Method with

accretion). The stars show the results of the semi-analytic model developed

in Section 5. Left panel: M0 � 5Ml. Right Panel: M0 � 50Ml.
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Figure 10. The evolution with redshift of the two-dimensional distribution of the number of progenitors and their masses for a halo of massM0, obtained from

Monte Carlo realizations of theN-BranchMerger Trees with accretion (the successful method). Themass of the parent halo is (a)M0 � 5Ml, (b)M0 � 50Ml, (c)

M0 � 500Ml.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
0
5
/1

/1
/9

8
5
2
3
8
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



12 R. S. Somerville and T. S. Kolatt

q 1999 RAS, MNRAS 305, 1±14

Figure 10 ± continued.
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Figure 10 ± continued.
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parts of its permitted range even for M0 � 500. It is therefore clear

why an in®nitesimal step is needed for the two-progenitor scheme

to work. As soon as we consider a ®nite time-step, the probability

for PN>2 is no longer negligible.

The details of the redshift sequence represent the characteristics

of the speci®c power spectrum and cosmology we used for the

Monte Carlo realization. The formation time as a function of halo

mass and redshift is determined by the cosmology and the power

spectrum. The qualitative trend of this sequence, however, is similar

for all cosmologies and all hierarchical power spectra.

Fig. 10 suggests that the progenitor mass and number distribution

functions are an interesting avenue to pursue in the study of

structure formation via merger trees. More importantly, it points

at the existing interplay between the accreted mass, the progenitor

mass and the number of progenitors, an interplay in which none of

the three can be treated separately from the other.

8 SUMMARY AND CONCLUSIONS

We have presented a new method for constructing the merging

history of dark matter haloes in a semi-analytic way. We have

highlighted the need to impose an arbitrary mass cut-off for

practical reasons, which leads us to distinguish between haloes

above and below this threshold as `progenitors' or `accreted mass',

respectively. The schemewe have proposed and implemented treats

accreted mass and progenitors in a self-consistent way, and pro-

duces good agreement with the average quantities predicted by the

underlying Press±Schechter theory, such as the conditional and

universal mass function of haloes and the mean mass in progenitors

as a function of redshift.

Our method is an improvement on themethod proposed by Lacey

& Cole (1993), which, after many steps in redshift, substantially

overproduces haloes relative to the Press±Schechter mass function.

Our work suggests that it is not possible to simultaneously conserve

mass exactly and retain the exact agreement with the conditional

mass function from the extended Press±Schechter model. The

method of Kauffmann & White (1993) reproduces the conditional

mass function exactly and conserves mass approximately. Our

method conserves mass exactly and reproduces the conditional

mass function approximately. This seems to be a necessary trade-

off. Our method does have certain practical advantages: it does not

require the creation and storage of a large number of ensembles, it is

numerically robust, it does not require the imposition of a grid in

mass or redshift, and it will work for any power spectrum.

We have pointed out the necessity of investigating the full

probability distribution of the number of progenitors and their

masses. This cannot be tested within the boundaries of the existing

theory, and so must be examined by comparisons with N-body

simulations. However, the simulations have their own problems and

complications, such as the limitations of mass and spatial resolution

and the ambiguities of de®ning haloes, so they should not be

regarded as necessarily representing the absolute truth. In addition,

the agreement between the simulations and the Press±Schechter

model is only approximate, even for the mean quantities such as the

mass function. It would therefore be desirable to have a reliable

theoretical means of addressing this problem.We have attempted to

reformulate the extended Press±Schechter theory to obtain the full

probability distribution for the number of progenitor haloes PN .

Although this model gives qualitatively reasonable results for

certain cases, some ingredients remain ad hoc.

For the moment, this leaves us with no recourse but to appeal to

N-body simulations. In a companion paper (Somerville et al. 1999)

we will compare the results we have obtained here with numerical

simulations. This comparison has two goals: (a) to determine the

quality of agreement of the analytic and Monte Carlo results with

the N-body simulation results, and (b) to study the full distribution

of the various quantities, and determine whether the Monte Carlo

method developed here reproduces these results. The merger trees

will then be used as the framework for the development of full semi-

analytic galaxy formation models, also used to compare with a

variety of observations (Somerville 1997; Somerville & Primack

1999).
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