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Abstract

In a recent paper we have proposed termino-
logical default logic as a formalism which com-
bines both means for structured representation
of classes and objects, and for default inheri-
tance of properties. The major drawback which
terminological default logic inherits from gen-
eral default logic is that it does not take prece-
dence of more specific defaults over more gen-
eral ones into account. The present paper ad-
dresses the problem of modifying terminologi-
cal default logic such that more specific defaults
are preferred. It turns out that the existing ap-
proaches for expressing priorities between de-
faults do not seem to be appropriate for this
purpose. Therefore we shall consider an alter-
native approach for dealing with prioritization
in the framework of Heifer's default logic. The
formalism is presented in the general setting of
default logic where priorities are given by an
arbitrary partial ordering on the defaults. We
shall exhibit some interesting properties of the
new formalism, compare it with existing ap-
proaches, and describe an algorithm for com-
puting extensions.

1 Introduction

Early knowledge representation formalisms such as se-
mantic networks and frames comprise both means for
structured representation of classes and objects, and for
default inheritance of properties. However, these for-
malisms did not have a well-defined formal semantics,
and subsequent formalisms trying to overcome this prob-
lem usually concentrated on one of these two means
of representation. Nonmonotonic inheritance networks
are concerned with defeasible inheritance, sometimes
in combination with strict inheritance, but the nodes
in these networks are unstructured objects or classes.’

*This work has been supported by the German Ministry
for Research and Technology (BMFT) under research con-
tract IT W 9201.

'There are some attempts to generalize this approach to
structured classes, but they work in a very restricted setting,
and it is not clear how to obtain more general results in this
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Terminological representation formalisms, on the other
hand, can be used to define the relevant concepts of a
problem domain in a structured and well-formed way.
This is done by building complex concept descriptions
out of atomic concepts (unary predicates) and roles (bi-
nary predicates) with the help of operations provided by
the concept language of the particular formalism. In ad-
dition, objects can be described with respect to their
relation to concepts and their interrelation with each
other. The concept descriptions are interpreted as uni-
versal statements, which means that they do not allow
for exceptions. As a consequence, the terminological sys-
tem can use descriptions to automatically insert concepts
at the proper place in the concept hierarchy (classifica-
tion), and it can use the facts stated about objects to
deduce to which concepts they must belong, but objects
cannot inherit properties by default.

The problem addressed in this paper is how to bring
together both means of representation originally present
in semantic networks and frames, without losing the
advantages of terminological formalisms, such as being
equipped with a formal and well-understood semantics
and providing for automatic concept classification. An
integration of defaults would often greatly enhance appli-
cability of terminological systems, or would at least make
their use more convenient in most applications (see, e.g.,
[15] which shows that embedding defaults into termino-
logical systems is an important item on the wish list of
users of such systems). For this reason, several existing
terminological systems, such as BACK [13], CLASSIC [4],
K-Rep [Il1], or LOOM [12], have been or will be extended
to provide the user with some kind of default reasoning
facilities. As the designers of these systems themselves
point out, however, these approaches usually have an ad
hoc character, and thus do not satisfy the requirement
of having a formal semantics.

As a first attempt to give a formally well-founded so-
lution to this problem, an integration of Reiter's default
logic into a terminological formalism was proposed in
[2j. One reason for selecting default logic, out of the
wide range of nonmonotonic formalisms, was that Re-
iter's default rule approach fits well into the philosophy
of terminological systems. Most of these systems already
provide their users with a form of "monotonic" forward

direction (see, e.g., [14]).
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rules, and it turned out that these rules can be viewed
as specific default rules where the justifications are ab-
sent. A second pleasant feature of terminological default
logic, as introduced in [2], is that it becomes decidable
provided that applicability of default rules is restricted
to objects explicitly present in the knowledge base. It
should be noted that this constraint is also imposed on
the monotonic rules in terminological systems.

The major drawback which terminological default
logic inherits from general default logic is that it does
not take precedence of more specific defaults over more
general ones into account. For example, assume that we
have a default which says that penguins cannot fly, 2 and
another one which says that birds can fly, and that clas-
sification shows that penguins are a subconcept of birds.
Intuitively, for any penguin the more specific first default
should be preferred, which means that there should be
only one default extension in which the penguin cannot
fly. However, in default logic the first default has no
priority over the second one, which means that one also
gets a second extension where the penguin can fly. This
behaviour has already been criticized in the general con-
text of default logic, but it is all the more problematic
in the terminological case where the emphasis lies on the
hierarchical organization of concepts.

In the present paper we shall consider the problem
of modifying terminological default logic such that more
specific defaults are preferred. After a short recapitu-
lation of default logic and its specialization, termino-
logical default logic, in Section 2, we shall consider the
existing approaches for expressing priorities between de-
faults, and shall point out why they do not seem to
be appropriate for our purpose (see Section 3). For
this reason we present in Section 4 an alternative ap-
proach for dealing with prioritization in the framework
of Reiter's default logic. The formalism is presented
in the general setting of default logic where priorities
are given by an arbitrary partial ordering on the de-
faults. For terminological default theories the priori-
ties between defaults will be induced by the position of
their prerequisites in the concept hierarchy. We shall ex-
hibit some interesting properties of the new formalism,
and shall compare it with existing approaches. It turns
out that every extension according to our definition (S-
extension) is an extension according to Reiter's definition
(R-extension); however, R-extensions which are not com-
patible with the partial ordering on defaults are excluded
by our formalism. Not all default theories with an R
extension have an S-extension, but every normal default
theory has an S-extension. If the defaults are further
restricted to prerequisite-free normal defaults then our
approach coincides with the one of Brewka and Junker [5;
9]. In Section 5 the problem of how to compute S-
extensions will be addressed.

2 Default Logic

This section briefly reviews Reiter's default logic and its
specialization, terminological default logic.

’The reader who is surprised that this is only taken as a
default property should have a look at the cover of [8].
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Reiter's default logic Reiter [17] deals with the
problem of how to formalize nonmonotonic reasoning by
introducing nonstandard, nonmonotonic inference rules,
which he calls default rules. A default rule is any expres-
sion of the form

o1

-y

where w, 3, ¥ are first-order formulae.® Here a is called
the prerequisite of the rule, # is its justification, and ¥ its
consequent. For a set of default rules V, we denote the
sets of formulae occurring as prerequisites, justifications,
and consequents in V by Pre(V), Jus(D), and Con(D),
respectively.

A default rule is closed iff «, 8, ¥ do not contain
free variables. It is semi-normal iff its justification im-
plies the consequent, and it is normal if its justification
and consequent are identical. A default theory is a pair
(W,V) where W is a set of closed first-order formulae
(the world description) and V is a set of default rules. A
default theory is closed iff all its default rules are closed.

Intuitively, a closed default rule can be applied, i.e.,
its consequent is added to the current set of beliefs, if
its prerequisite is already believed and its justification is
consistent with the set of beliefs. Formally, the conse-
quences of a closed default theory are defined with ref-
erence to the notion of an extension (called R-cxtenswn
in this paper), which is a set of deductively closed first-
order formulae defined by a fixed point construction (see
[17], p.89). In general, a closed default theory may have
more than one R-extension, or even no extension. De-
pending on whether one wants to employ skeptical or
credulous reasoning, a closed formula 6 is a consequence
of a closed default theory iff it is in all R-extensions or if
it is in at least one R-extension of the theory.

To generalize the notion of an R-extension to arbi-
trary default theories one just assumes that a default
with free variables stands for all its ground instances. In
Roller's original semantics the world description and the
consequents of all defaults have to be Skolernized before
building ground instances (over the enlarged signature).
As shown in [2] Skolemization leads to both semantic
and algorithmic problems, which is the reason why we
shall dispense with it in the case of terminological default
theories.

Terminological default logic For lack of space we
shall not formally introduce a particular terminological
language (see e.g. [2] for details). Instead we shall just
mention the features of terminological languages which
will be important for the following. The terminologi-
cal part of such languages allows one to build complex
concept descriptions out of atomic concepts (unary pred-
icates) and roles (binary predicates). For our purposes
it suffices to know that a concept description C can be
regarded as a first-order formula C{x) with one free vari-
able x. The subsumption hierarchy between concepts

% For the sake of simplicity we consider only defaults with
one justification. However, our results can easily be ex-
tended to the general case of defaults with finitely many
justifications.



corresponds to implication of formulae: C is subsumed
by D iff ¥a: C{x) — D(=x) is valid.

The assertioal part of the language can be used to
state that an object is an instance of a concept (7, or
that two individuals are connected by a role R. Logically,
this means that one has constant symbols a, b as names
for objects, and can build formulae C(a) and R(a,b) by
respectively substituting a for the free variable in C(r)
and applying the binary predicate R to the constants
a,6. A finite set of such formulae is called an ABox.
Important inference problems for ABoxes are whether a
given ABox is consistent, and whether an object a is an
instance of a concept C, i.e., whether C(a) is a logical
consequence of the given ABox. It should be noted that
the formulae C(x) obtained as concept descriptions of a
terminological language belong to a restricted subclass of
all first-order formulae with one free variable. For this
reason the subsumption, consistency and instantiation
problems are usually decidable for these languages.

A terminological default theory is a pair (A, D) where
A is an ABox and V is a finite set of default rules whose
prerequisites, justifications, and consequents are concept
descriptions. Obviously, since ABoxes can be seen as sets
of closed formulae, and since concept descriptions can be
seen as formulae with one free variable,* terminological
default theories are subsumed by Reiter's notion of an
open default theory. However, as motivated in Section 3
and 4 of [2], we do not Skolemize before building ground
instances. This means that an open default of a termi-
nological default theory is interpreted as representing all
closed defaults which can be obtained by instantiating
the free variable by all object names occurring in the
ABox. With this interpretation, it is possible to com-
pute all R-extensions of terminological default theories
(see [2], Section 5 and 6).

3 Approaches to Prioritization

When conflicts occur in reasoning with defaults it is quite
obvious that the more specific information should prevail
over the more general one. In the context of terminologi-
cal default theories this means that for an instance of the
concepts C and D a default with prerequisite C should
be preferred if C is subsumed by D. As mentioned in the
introduction this requirement is not taken into account
by Reiter's approach. If we assume that P, B, and F are
concept descriptions defining penguins, birds, and flying
objects, where P is subsumed by B, then the termino-
logical default theory consisting of the world description
{/"(Danny)) and the defaults

P(r): =F(r) ind B(r)y: F(r)
—F{r} ) F(a)

has two R-extensions. One of them contains F{Danny)
and the other one =~f(Danny), and the semantics gives
no reason for preferring the second one, in which the
more specific default was applied.

“The formulae occurring in one rule are assumed to have
identical free variables.

To overcome this kind of problem several approaches
for realizing priorities among defaults have been pro-
posed in the literature. The priorities may be induced
by specificity of prerequisites (as described above), but
may also come from other sources (such as reliability of
defaults).

Reiter and Criscuolo show how some kind of prioritiza-
tion between defaults can be achieved without changing
the formalism by encoding the priority information into
the justifications of semi-normal defaults [18]. Although
our simple example from above could be handled with
this approach, it is not clear how to treat more complex
situations. Reiter and Criscuolo do not describe a gen-
eral method for solving these problems; they just "focus
on certain fairly simple patterns of default rules." An-
other problem is that, even if one starts with normal
defaults (as in our example), one ends up with semi-
normal defaults when realizing priorities this way. But
this means that one has to face the undesirable prop-
erties of non-normal defaults, such as non-existence of
extensions.

In order to avoid the introduction of semi-normal de-
faults Brewka [6] takes the ideas underlying prioritized
circumscription [10]] and defines an iterated version of
default logic, which he calls prioritized default logic. As
pointed out by Brewka himself, this approach makes
sense only if it is restricted to prerequisite-free normal
defaults. In this restricted case, prioritized default logic
yields a prioritized version of Poole's approach to default
reasoning [I6], and it seems to exhibit a quite reasonable
behaviour. One reason why this is nevertheless not an
appropriate formalism for treating specificity in termi-
nological default theories is that the defaults have to be
put into levels of priorities which are totally ordered.
However, subsumption between prerequisites only gives
us a partial ordering on defaults.

In [5; 9] prioritized prerequisite-free normal default
theories are generalized to ordered default theories which
allow for an arbitrary partial ordering on defaults. We
shall describe this approach in more detail because—
in combination with an approach for approximating
defaults with prerequisites by prerequisite-free normal
defaults—it yields a first solution to our problem of
treating specificity in terminological default theories,
even though we shall argue that it still exhibits some
undesirable properties. In addition, the default theories
with specificity we shall propose in the next section turn
out to be a generalization of ordered default theories to
defaults with prerequisites.

An ordered default theory s a triple (W, D, <), where
W is a set of closed first-order formulae, D is a set of
closed prerequisite-frec normal defaults, and < is a strict.
partial ordering on T such that {4 € P { d' < d}1s hnile
for everv d e D,

The prineipal idea is to consider total extensions of
the partial ordering when computing extensions of the
ordered default. theory (which we shall eall B-extenstons
i the following). Any enumetation d), s, ... of D that
is cotupatible with the partial ordering (ie., § < &k if
d;, < d}) delines a B-ertension as follows., One starts
with W, and in the i-th step of the iteration, the con-
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sequent /; of the default o; = : /5 is added if & is
consistent with the set of formulae obtained after step
7—1. Otherwise, the current set of formulae remains
unchanged. The limit of this process is the extension.

Even though ordered default theories allow for prior-
ities given by a partial ordering, this approach cannot
directly be used to realize specificity in terminological
default theories. The reason is that the restriction to
prerequisite-free defaults is too severe. In fact, for ter-
minological default theories the priorities we wanted to
consider were induced by subsumption relationships be-
tween the concept descriptions in the prerequisites. But
this means that for prerequisite-free terminological de-
faults we no longer have a need for prioritization.

The situation is, however, not as bad as it seems. As
shown in [3; 7], the closed normal default & : 3/3 can
be approximated by the closed prerequisite-free normal
default I} ~—-,L3/u-- 3. Thus one could start with
a normal terminological default theory, determine the
priorities between defaults from their prerequisites, and
then transform the defaults into the corresponding ones
without prerequisites. This way one ends up with an
ordered default theory which approximates the termi-
nological default theory, and which handles priorities in-
duced by specificity of prerequisites in the terminological
default theory.

However, we claim that this approach is still not satis-
factory because it gives us a lot more than we bargained
for. As pointed out in [7], the approximation not only
gets rid of prerequisites, but also equips the defaults with
properties of classical implication, such as reasoning by
cases and reasoning using contrapositives of the original
defaults. For example, assume that, in addition to the
concept descriptions for penguins, birds, and flying ob-
jects, we have a description W for objects having wings,
and that the only subsumption relation is the one be-
tween penguins and birds. If we consider the termino-
logical default theory consisting of the world description
{P(Danny)} and the defaults

Pz} —~F{z) B(#): W(r) Wir): Fir)
-F(z) Wir)y ' Fr) '

then the preferred extension should be the one in which
Danny has wings, but does not fly. The approach we
have described yields this extension; but it also yields
another one in which Danny does not have wings, be-
cause as soon as the (approximation of the) first default
has fired, the contrapositive of the third one can be fired,
which gives us -W( Danny)

This shows that in this approach the defaults no longer
behave like simple forward rules. But the similarity of
default rules with the monotonic forward rules of ter-
minological systems was one of our reasons for choosing
default logic in the first place.

4 Default Theories with Specificity

To overcome the problems pointed out in the previous
section we shall now propose a new approach for han-
dling priorities among defaults with prerequisites. The
semantics will be very close to Reiter's semantics, and
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the properties of our theory will also resemble those of
Reiter's theory.

A default theory with specificity is a triple (W, D, <)
consisting of a closed default theory (W, D) and a strict
partial ordering < on D such that {¢' € D | & < d} s
finite for every d € D.

In the terminological case, W is an ABox, and P is ob-
tained by instantiating the terminological default rules
by all constants occurring in the ABox. For two instanti-
ated terminological default rules dy, ds with prerequisites
Cy(ay), Cylas) we have dy < dy iff they are concerned
with the same object (i.e., a; = ay) and ') is more spe-
cific than (% (i.e., € is subsumed by 3 butl not vice
versa). The restriction on the ordering is satisfied since
D is finite by definilion of terminological default theories.

QOur definition of an extension for a default theory with
specificity is modelied an Reiter's iterative characteriza-
tion of R-extensions (see [17], Theorem 2.1). The main
idea for treating priorities is that the consequent of a de-
fault can only he added during an iteration step if the de-
fanlt is not blocked by a preferred default, ie., there does
not exisl a smaller default that is currently active. For a
set & of closed formulae, and a closed default d = o @ /¥
we say that d 15 active in Eiff its prerequisite s a con-
sequence of E (i.e., o € Th(E)®}, its justification is con-
sistent with E (i.e., =g ¢ Th(£)), and its consequent is
not a consequence of £ (i.e, v § Th(E)).

Definition 4.1 Let (W. D, <) be o defoull theory unth

spectficity, and let £ be a set of closed formulae. We

define Ey .= W, and for all1 > 0

Eiy = FBuiy|3deD d=n:8/y, a € Th(E),
~A¢F, and all &' < d are not active in E; ).

Then £ s an S-extension of ff £ = J;,, Th(E, ).

The only difference to Reiter’s characterization is the
additional requirement that smaller defaults must not
be active in the current state of the iteration. With this
definition of an extension we get the intuitively correct
resilt in our example with the three defanlts concern-
ing penguins, birds, and objects with wings. In fact, {or
any penguin the second default {asserting that birds nor-
mally have wings) can only fire after the more specific
default {asserting that penguins normally cannot fly) has
been applied. But this means that the third defauit (as-
serting that winged objects normally can fly} will never
become applicable for a penguin (belore its prerequisite
hecomes derivable, the negation of its justification mnst
have been added). This means Lthat our definition of an
S-extension chooses from the two existing R-extensions
the one which respects priorities.

Qur first theorem states that this will always be the
case, l.e., that the set of all S-extensions is always a
suhset of the set of all R-extensions.

Theorem 4.2 [et £ br an S-eztensien of the default
theory with specificity (W, D, <). Then £ 1s an R-
ertension of (W, D).

Proof idea. FEven though the definition of an S-
extension closely resembles Reiter's characterization of

*By TI{E) we denote the deductive closure of the set of
formulae E.



an R-extension, this theorem is not at all obvious. The
idea for a proof 15 to take an S-extension £ which has
been obtained from the sequence £y, £y, ..., and (o use
it to construct a sequence Fjy, Fy, ... as in the characteri-
zation of R-cxtensions. It is easy to see that E; C F;
for all + > 0, bul the converse is not true. In fact,
the consequent ¥ of a default d may be added to F
but not to E; because d is blocked by a smatler de-
fanlt which is active. A straightforward way to prove
that F; C £ = |J;,, Th(£;) would thus be to show that
the set of active defaults blocking d decreases along our
F-iteration. Unfortunately, the sct of defaulls block-
ing d may also increase because prerequisites of smaller
defaults which have not been derivable at step i may
become derivable in a later step of the iteration. For
this reason, the proof of the theorem uses a more con-
plex induction argument, first on 7, and then on the
size of the sets D;‘ of defaults potentially blocking d,

where Df = {& = o' :8'/y | & < d and («' ¢
Th(E;) v &' is active in £;)} (see [1] for details). Our
restriclion on the partial ordering makes sure that the
sets Df are finite. D

Since not. all default theories have R-extensions it fol-
lows that. a defauit theory with specificity need not have
an S-extension. Bul even if we have R-extensions there
ieed not. exist S-extensions of a default theory with
specificity.  This 18 denonstrated by the following ex-
ample. Assume that W' is empty, and consider 1he three
defaults : 3/8,  =~d/~id and 7 a /-0, We assume that
the first defuult 1s sinaller than the second one, and that
there are uo other comparabilities with respect to <.
This default theory has the R-extension Th({=:4}). but
it does not have an S-extension. In fact, an S-extension
would prefer the first default, which vields 3; but then
the third defauldt {which is o tmodified version of the well-
known one-rule example of a defanlt theory having no
R-extension) would become relevant.

As in the case without specificity, normal default the-
ories with specificity have nwuch nicer properties than
arbitrary default theories with specificity.

Theorem 4.3 Every closed normal defouwlt theory with
specificity has an S-ertension.

The proof 1s a relatively straightforward adaptation of
Reiter’s proof for R-extensions (see [1] for details).

For normal default theories with specificity we also
have “orthogonality of S-extensions” (see [17], Theo-
rem 3.3), but we do not have “semi-monotonicity” {see
(17}, Theorem 3.2). For defaults with priorities, semi-
monolonicity cannot be expected to hold since by adding
a defauit of high priority one shonld of course be able to
change the extensions considerably.

If we further restrict the attention to normal defaults
withoul prerequisites then the notion of an S-extension
coincides with that of a B-vxtension, which shows that
our approach is a generalization of ordered default. the-
ories (see {1} for a proof).

Theorem 4.4 Let D be a set of closed prevequisite-free
normal defaults. Then £ is an S-extension of the defaull
theory with specificity (W, D, <) ff £ 1s a B-rziension
of the ordered defaull theory (W, T, <).

5 Computing S-extensions

Since all 8-extensions are R-extensions, one could first
generate all R-extensions of a defaull theory, and then
for each R-extension £ directly use the definition of S-
extensions to check whether £ is an S-extension. For
terminological default theories this provides us with an
effective procedure for computing all S-extensions. In
fact, in [2] it is shown how to compule all R-extensions
of a terminological default theory. Since one has only
finitely many closed defaults, and since the instantiation
prohlem for the terminological languages we use is de-
cidable, the iteration in the definition of an S-extension
1s effective as well.

However, there may exist a lot more R-extensions than
S-extensions, and computing R-extensions is rather ex-
pensive. For this reason, it would be preferable to have
an algorithm for directly computing S-extensions. The
tdea behind the algorithm presented below is to make
an iteration similar to the one in the definition of an S-
extension, but without already having the final set £ for
controlling which consequents of defaulls are added. Af-
ter the iteration hecomes stable (which will always be the
case for finite sets of closed defaults) one has to check an
additional condition Lo make sure that the resull really
is an S-extension.

The main problem is 1o determine which sets of con-
sequenis are candidates for being added in each step of
the iteration. Of course there can be more than one
correci choice because there may exist. more than one
S-extension. If we look at the definition of £y in Defi-
nition 4.1 we see that the defaults whose consequents are
added are defaults active in £, that are minimal w.r.t.
the priority order <. Which subset of their consequents
ts taken depends on the set £ used for the iteration. Since
our algorithm does not know the final £ it has to consider
arbitrary subsets, but we shall see that there are some
constraints that reduce the number of possible choices. Tt
should be noted that neither a greedy procedure (which
takes maximal subsets that are consistent with what has
already been computed) nor an overly modest procedure
(which adds only one consequent in each step) would be
complete (sce [1] for examples). In the following {non-
deterministic) algorithm, E; will always be a subset of
WU Con(T), and J; will be a subset of ~Jus(D) (where,
for a set F of formulae, = F = {1 | 3 € F}).

Algorithm 5.1 Let (W, D, <) be a closed defaudt theory
with specificity. Jf W is inconsistent then Th(W) s the
only S-extension. Otherwise we define By = W and
Jo = 0. Now assume thai E; (i > 0) 1s elready defined.
Consider
Dy ={deD|d s active m I
and no & < d is active m £},

and choose a nenempty subset ’)6,-4.1 of D41 that satisfies
-3 e Th(f';,' u COH(ﬁH.] ] U J.‘ ) —'JUS(DH.] \ﬁﬂ'l ))

for all 3 € Jus(D,;1).
If there is no such sct, then Eiyy = B Ji41 = Ui
Otherwise cach choice gyields new sets Fiyy = Ej U

Con{ﬁ.-.,.l) and J;yp o= JiU-Jus(Digr \ Piga).
The set € := | ;5o TH{E,) 15 an S-cxtension iff
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lforalld=«o:f8/v& Ua“gl D, we have ~3 ¢ £, and
2 forali-pge ul-21 Ji we have =S € £.

A proof of soundness and completeness of this algo-
rithm can be found in [I]. The idea behind the sets J; is
as follows. If the consequent of a minimal active default
is not included in E;y;, then the reason must be that
its justification is not consistent with the final exten-
sion. Thus, if we exclude such a default from P,'.H, we
know that the negation of its justification must belong
to the extension. The condition on 'D.-+1 corresponds to
the fact that defaults whose consequents are added to an
S-extension must have justifications that are consistent
with the extension. The condition on P41 can only en-
sure local correctness of our choices. For this reason we
have to check the two conditions on £ to ensure global
correctness.

For terminological default theories, all the steps of the
algorithm are effective, provided that the consistency
and instantiation problem for the underlying terminolog-
ical language is decidable (an assumption which is usu-
ally satisfied). In addition, since one has only finitely
many closed defaults, the iteration will become stable
after finitely many steps.

6 Conclusion

We have addressed the question of how to prefer more
specific defaults over more general ones. This problem is
of general interest for default reasoning, but is even more
important in the terminological case where the empha-
sis lies on the hierarchical organization of concepts. Of
the existing approaches for handling priorities among de-
faults, Brewka's ordered default theories turned out to
come nearest to what is needed for solving the speci-
ficity problem in terminological default theories. But
its restriction to prerequisite-free normal defaults seems
to be too severe to make it an adequate solution in the
terminological case.

Therefore we have proposed a new approach, called
default theories with specificity, for handling priorities
among defaults with prerequisites. The properties we
could prove for this formalism demonstrate that it is
a quite reasonable extension of Reiter's default logic
and of Brewka's ordered default theories. In addition
it correctly handles examples for which the other ap-
proaches give unintuitive results. We have also described
a method for generating the extensions of a default the-
ory with specificity. This method is effective provided
that the base logic is decidable, and one has only finitely
many closed defaults. These restrictions are satisfied in
the terminological case, which means that terminological
default logic with specificity is decidable.

An interesting point for further research is to consider
priorities on terminological defaults which not only take
subsumption between prerequisites of defaults into ac-
count, but also the role relationships in ABoxes.
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