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Abst rac t .  Thc block cipher DESX is tiefined by DESXk.k l .ka (~ )  = 

k2 a) DESk(51 @ P ) ,  where cfi denotes bitwise exclusive-or. This con- 
struction was first suggested by R.on Rivest as a computationally-cheap 
way to protect DES against exhaustive key-search attacks. This pa- 
per proves, in a formal model, that the DESX coIistruction is sound. 
We show that, when F is an idealized block cipher, FXk.kl.ka(x) = 
52 cfi Fb(5l @ x) is substantially more resistant to key search thaii is 
F .  Iri fact, our analysis says that FX has an effective key length of at 
least IE. + TI - 1 - lg m bits, where IF, is t,he key length of F ,  n is the block 
Icngth, arid ‘rrL bounds the numbpr of ( P ,  F X K ( P ) )  pairs the adversary 
can obtain. 

1 Introduction 

The susceptibility of DES to exhaustive key search has been a concern and a 
complaint sirice the cipher wa.s first madc public; see, for example, [6]. Careful 
analysis by Wiener [15] indicates that, the problem has now escalated to  t,he 
point that for $1 million onc could build a DES key search engine which, given a 
(plaintext, ciphertext,) pair, would rccovcr the kcy in about 3.5 expected hours. 

Many people have suggested overcoming the tlireat of exhaustive key search 
by using DES in some appropriate way. One approach is to construct a DES- 
based block cipher which employs a longer key. Triple DES (typically in “EDE 
mode”) is the best-known algorithm in this vein. It seems to be quite secure, 
hit efficiency considerations make t,riple DES a, rather painful way to  solve the 
exhaustive key-search problem. This paper analyses a Iniich cheaper alternative. 

We recall an e1ega.nt suggestion of Ron Itivest [ll]. He proposes an extension 
of DES, called DESX, defined in the following simple manner: 

DESXk k l . k 2 ( ~ )  = k 2  (!I DESn,(kl & 2) 

The key K = k . k l . k2  (here . denotes coricatenation) is now 56 + 64 + 64 = 
184 bits. Compatibility with DES is maintained by setting k l  = k2  = 064. 
Existing UES CSC hardware can be gainfully employed by first masking the 
plaintext, computing the DES CBC, and then masking the ciphertext. Most 
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significantly, the computational cost has hardly been increased over ordinary 
DES. Yet, somehow, DESX seems 110 longer susceptible to  brute-force attacks 
of anything near 256 time. 

It is unintuitive that one should be a.ble t,o substantially increase the difficulty 
of key search by something as simple as a couple of X0R.s. Yet working with the 
DESX definition for a while will convince the reader that undoing their effect is 
not so easy. 

Does the “DESX trick” really work to improve the strength of DES against 
exhaustive key search? This papcr will give a strong positive result showing th;t.t, 
it does. 

1.1 Our model 

Key-search strategies disregard the algebraic or cryptanalytic specifics of a cipher 
and treat it as a black-box transformation, instead. Key-search strategies can be 
quite sophisticated; recent, work by [14] is an example. We want a model generous 
enough to  permit sophisticated key-search strategies, but, restricted enough to 
permit only strategies which should be regarded as key search. We a.ccomplish 
this as follows. 

Let K be the key length for a block cipher and let ‘rb be its block length. We 
model an ideal block cipher with these parameters as a random map F : {0,1}” x 
{0,1)” + (0 , l ) ”  subject to the constraint that, for every key k E (0, l}”, F ( k ,  .) 
is a permutation on (0, A key-search adversary is an algorithm which is given 
the following two oracles: one which, on input ( k , ~ ) ,  returns F ( k , x ) ;  and one 
which, on input ( k ,  y), returns F-’ ( k ,  y) .  T h r  last expression names the unique 
point x such that F ( k , s )  = y.  

A key-search adversary tries to perform some cryptanalytic task which de- 
pends on F .  She can perform complicated and subtle computations, use as much 
time or space as she sees fit, but her only access to F is via the F/F-’ oracles. 
We look at the adversary’s rate of success in performing her cryptanalytic task 
as a fiinctiori of the amount, of computation she performs. 

To apply t,he above to DESX, we begin by gencralizing the DESX construc- 
tion. Given any block cipher F we can define FX : (0, x (0, 1)” -+ (0, l In  
by setting FX(k . k l . k2 ,  x) = k2  @ F ( k , k l  @ x). For both F and FX we shall 
sometimes write their first argument, (the kev) as a subscript, F k ( z )  and FXK(X), 
where K = k.kl.k.2. 

To investigate the strength of FX against, key search we consider a key- 
search adversary A with oracles for F and F-’, and determine how well A can 
play the following “FX-or-7r?” game: given one of two types of “encryption 
oracles” -an oracle which computes FXr<(.) ,  for K a random string of length 
K, + 271, or else an oracle which computes T ( . ) ,  for T ( . )  : (0, l}” + (0, a 
random permutatioii- guess which type of encryption oracle you have. The 
FX construction “works” if the resoiirces which are necessary to do a good job 
in winning the above game &I-e substantially greater than the resources which 
are sufficient to break F .  
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1.2 Our main result 

We show that, if key-search adversary A can make only a “reasonable” nurn- 
ber to  queries to  her encryption oracle, then A must, ask an excessive number of 
F / F - l  queries in the FX-or-r? game, and therefore A must run in an excessively 
long time. More specifically, we prove the following. Let m bound the number 
of (x, F x ~ ( z ) )  pairs which the adversary can obtain. (This number is usually 
under the control of the security architect,, not the adversary.) Suppose the ad- 
vcrsary asks a total of at most t queries to her F / F 1  oracles. (This number is 
usually under the control of the adversary, not the security architect.) Then the 
adversary’s advantage in winning the FX-or-i.r? game is at rnost mt . 2-n-nS1. 
In other words, the adversary’s advantage is at most t . 2-K-n+1+’gm, so the 
effective key length of FX, with respect to  key search, is at  least K.  + n - 1 - lg n~ 
bits. 

To understand the above formula, let’s think of a block cipher F with 55-bit 
keys and a 64-bit block size.3 Key-search adversary A is going to attack F X .  
Suppose A can obtain up to  m = 2”’ blocks of enciphered data. Suppose A runs 
in time at rnost T .  Then A has advantage of at most T .  2-s5p64+30f1 = T 2Ts8 
of just knowing if the enciphered data really was produced by F X ,  and not, a 
random permutation. 

Because our main result, indicates the infeasibility of key search even when we 
ignore the adversary’s space requirement , this “omission” only strengthens what 
we are saying. Similarly, “good” adversaries may, necessarily, use an amount of 
time, T ,  which far exceeds their number of F/F-’ queries, t. So focusing on the 
query complexity makes our results all the more meaningful. 

1.3 Related work 

Even and Mansour [7] construct, a block cipher PX : {0,1}2” x (0 , l )”  + 
{O,l}’L from a random permutation P : { O , l } n  -+ {O, l}’L by PXkl .k2(x)  = 
k2 @ P ( k 1  f6 x). Clearly this is a special case of the FX construction, where 
K, = 0. Whilc their motivation for looking at  PX was quite different from our 
reasons to investigate FX, our model and methods are, in fact, quite similar. 
Our main result can be seen as a natural extension of their work. 

The modeling of a block cipher by a family of random permutations has its 
roots in [13]. 

Ron Rivest, had invented DESX by May of 1984, but the scheme was never 
described in any conference or journal paper 1111. It was implemented within 
products of RSA Data Security, In(:., and it is described in the documentation 
for these products [12]. DESX has also been described at  conferences organized 
by RSA DSI, including [16]. 

Encryption methods similar to DESX have been invented independently. 
Blaze [3] describes a DES mode of operation in which the i th block of plain- 
text, zi, is ericrypt,ed using 112-bit key k .k l  hy E k . k l  (xi) = si @ DESk(si @ x), 
’ See the first reInark at the end of Section 3 if you’re thinking the first number is 

probably a typo. 
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where sls2 . . . is a stream of bits generated from k l  by, say, s i  = DES,'I ( ( O G 4 ) .  

Here DES(i) denotes the i-th iterate of DES. 
Many authors have suggested methods to increase the strength of DES by 

changing its internal structure. Biham and Biryukov [I] give ways to  modify DES 
to use key-dependent S-boxes. Their suggestions improve the cipher's strength 
against differential, linear, and improved Davies' attacks, as well as exhaustive 
key search. Ciphers constructed using their ideas can exploit existing hardware 
exactly in those cases where the hardware allows the user to substitute his own 
S-boxes in place of the standard ones. 

1.4 Discussion 

UNDERSTANDING OUR. RESULT. It may be hard to understand the ramifications 
of our main theorem, thinking it means more or less than it does. Let us try to 
clarify one important point right away. 

DES, of course, is not a family of random permutations, and we can not con- 
clude from our theorem that there does not exist, a reasonable machine M which 
breaks DESX in say, 260 steps, given just a handful of (plaintext, ciphertext) 
pairs. What, we can say is that, such a machine would have to exploit structural 
properties of DES; it couldn't get away with treating DES as a black-box trans- 
formation. This contrasts with the sort of machines which have been suggested 
in the past for doing brute-force attack: they do treat the underlying cipher as 
a black-box transformation. 

We note that while remarkable theoretical progress has been made on the 
linear and differential cryptanalysis of DES (see [2, lo]), thus far these attacks 
require an impractically large number of plaintext-ciphertext pairs. To date, 
the only published practical attacks against DES remain of the key-search vari- 
ety. The DESX construction was not intended to improve the strength of DES 
against differential or linear attack, or any other attack which exploits structural 
properties of DES. 

gorithmically trivial it can be to get, extra bits of strength against exhaustive 
key-search attack. The impact, of these extra bits can be especially dramatic 
when the key length of the block cipher had been intentionally made short. 

Consider, say, a block cipher F with a 40-bit key and a 64-bit plaintext. (Some 
products using such block ciphers has been granted U S .  export approval.) With 
these parameters, our results guarantee an effective key length (with respect to 
exhaustive key search) of at  least 40 + 64 - 1 - lg m = 103 - 1g m bits. Under 
the reasonable assumption that m < 230, say, the 40-bit block cipher has been 
modified, with two XORs, to a new block cipher which needs at  least 273-time 
for key exhaustive key search. 

Allowing weak cryptography to be exported and strong cryptography not to 
be is a policy which can only make sense when it is impractical, for the given 
system, to replace the weak mechanism by a strong one. Our results indicate 
that this impracticality must cover algorithmic changes which are part,icularly 
trivial. 

ON EXPORT CONTROJS TIED TO KEY J,ENG'I'H. Our rcsults indicate how al- 
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1.5 Out l ine  of the paper 

In Section 2 we define some basic: notation and define what comprises a suc- 
cessful attack in our iriodel. In Section 3 we s t a k  and prove our main theorem 
on the security of the DESX construction. Section 4 is a discussion. Section 5 
demonstrates t,hat the analysis underlying our main result is tight. In Section 6 
we give some conclusions and open questions. 

2 Preliminaries 

Let, F : (0, l}" x ( 0 , l ) "  -+ (0, l}" be ii block cipher. This means that for every 
k E (0, l}", F ( k ,  .) is a permutation on {U, l},. We interchangeably write Fk(x) 
and F ( k ,  z). 

Given a block cipher F as above, the block cipher F -  : (0, l}k x (0, l}" + 
{ O , l } %  is defined from F by F - ' ( k , v )  being the unique point x such that 
F ( k )  x) = y. We interchangeably write +'L1(p) and F ' - - l (k ,y) .  

Given hlock cipher F as above, the block cipher FX : (0, 1}KE+2n x (0,l)" + 
(0, l}" is defined from F according t,o FX(K,z) = k2 @ F k ( k 1  @ x), where 
K = k.k l .k2 ,  Jk) = R and J k l l  = Jk2)  = 1 1 .  We interchangeably write FXjy(z) 
and FX(K,x). 

Given a partially defined function F from a subset of {0,1}" to a subset of 
{ O ,  1)" wc denote thc domain and range of F by Dom(F) and Range(F), and 
define Dom(F) = (0, l}" - Dom(F) and R.ange(F) = (0, l}" - Range(F). 

__ 

Let Fn denote the space of all (a " ) !  permutations on 1%-bits. 

Definition 1.  A key-search adtiewary is an algorithm A with access to three 
oracles, E( . ) ,  F.(.) and F.-'(.). Thus, A may make queries of the form E t P ) ,  
Fk(x) or FC' (y ) .  An (m,? t )  key-search adversary is a key-search adversary that 
makes rn queries to  the E ( - )  oracle and a total of t queries to  the F.(.) and 
F.-' (.) oracles. 

Note that A supplies the valiie of k as part of its queries to the F. (.) and Frl (.) 
oracles. 

We are now ready to define. what it means for a key-search adversary A 
to have an attack of a certain specified effectivcness. We begin by choosing a. 
random block cipher F having &bit keys and n-bit blocks. This means that 
we select a random permut,ation Fk & P, for each n-bit key k .  Thus each Fk 
is chosen indeperidently of each F k ( ,  for k # k ' .  Then we give A t,hree oracles. 
One oracle computes F. (.). Another oracle computes F.-' (.). The final oracle is 
one of the following: reaZ-e,ncry~tl,on-based-on-F: the oracle computes FX jy (.) 
for a random key K of 6 + 2n. bits; ideal-encryption,-independent-of-F: the oracle 
computes n(.), for a random permutation 7r E 'PTt. The adversary's job is to  
guess which type of encryption oracle she has. The adversary's advantage is her 
probabilit,y of guessing right, normalized so that 0 indicates a worthless strategy 
and 1 indicates a perfect, stmtegy. 
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Definition2. Let I C , ~  2 0 he iiitegers, and let t 2 0 be a real number. Key- 
search adversary A is said to €-break t,he FX-scheme with parameters R ,  72 if 

A d v ~  '%if Pr for each k E ( 0 , l ) "  do Fk c P,, od; K 6 (0, l}Kit272 : 

ll - 
A F X " ( ' i '  I ? . [ . ) ,  F,-".) ~ 

for each k E (0 , l )"  do Fh & P,, od; 7r 4 'PIL : 

A"")' F . ( . ) .  F ; - l ( . )  __ 

[ 

- l l  
2 c .  

The above clefinit,ion iisw a very liberal riotion of adversarial success. We are 
not demanding tha.t,, say, A recover I<; nor do we ask A to decrypt a randoin 
FXK(S); nor to produce a not-yet-asked ( x ,  F X ~ ~ ( x ) )  pair. Instead, we only 
ask A to make a good guess a t,o whether the (plaintext, ciphertext) pairs she 
has been receiving really are FX-encrypt,ions (as opposed to  random nonsense 
unrelated to F ) .  The liberal notion of success is chosen to make our main result 
stronger: an adversary's inability to succeed becomes all the more meaningful. 

3 

We now prove a bound on the security of FX agairist key-search attack. 

Theorem 3. Let A be an (m, t )  key-seurch adversary that €-breaks the F X -  
scheme with p a m m e t e r s  R, n. Th,en F 5 7nt . 2-"--IL+l.  

Proof. By a standard argument we may assume that A is deterministic (not,e 
that, A may be computationally unboiirided). Wc niay also assume that A always 
asks exactly m. queries of her first oracle, which we shall call her E-oracle. (In 
the experiment which defines A's advantage, E was instantiated by either an 
FXK-oracle or a 7r-oracle.) We may assume that, A always asks exactly t queries 
(total) to her second and third oracles, which we shall call her F- and F - ' -  
oracles. We may further assume that A never repeats a query to  an oracle. We 
may assume that if F ( k , z )  returns an answer y: then there is no query (neither 
earlier nor later) of F - ' ( k , y ) .  All of t,he above assumptions are without loss 
of generalit,y in the sense that> it, is easy to  construct a new adversary, A', that 
obeys the above constraint,s and has thc same advantage a,s A. 

We begin by considering two different gaincs which adversary A might, play. 
This amounts to  specifying how to simulate a triple of oracles, (E, F,  F- ' ) ,  for 
the benefit of A. 

A FIRST GAME. The first game we consider, Game R (for 'ira~idom"), will exact)ly 
correspond to  the experiment which defines the second addend in tjhe expression 
for the advantage: 

Security of the DESX Construction 

AT( ' ) .  E ' . ( . ) ,  F.- ' ( . )  - 
- ll 
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The definition of Game R will be defined to contain several extra (and seemingly 
irrelevant) steps. These steps aren’t needed in order to  behave in a manner 
which is identical (as far as A sees) to the Inanner of behavior defining Pn; these 
steps are used, instead, to facilitate our analysis. To identify these “irrelevant” 
instructions we put them in italics. Game R is defined in Figure 1. 

Initially, let F. (.) and E ( . )  be undefined. Flay bad i s  ini t ial ly  u n s e t .  R a n d o m l y  choose 
k’ t (0, l}&, k;, k; t (0, l}” . Then answcr each query the adversary makes as follows: 

IEc,l On oraclc query E ( P ) :  

R R 

1. Choose C t ( 0 , l ) “  uniformly from Range(E) 
2. Zf Fk* ( P  @ k : )  i s  def ined,  t h e n  set  bud.  

IfFG’(C @ k ; )  is defined, t h e n  se t  bad.  
3 .  Define E ( P )  = C and return C. 

jFol On oracle query ~k(a): 

1. Choose y E ( 0 , l ) ”  uniformly from R.ange(Fk). 
2. Zf k = k* and E ( z  @I k;) is defined t h e n  se t  bad.  

3 .  Define a ( z )  = y and return y .  
Zf k = k* and E-’(y @ k ; )  as defined t h e n  set  bad.  

-1 On oracle query ~ ; l ( y ) :  
~ 

1. Choose z E ( 0 , l ) ”  uniformly from Dorn(Fk). 
2. If k = k* and E-’(y @ k;) i s  defined t h e n  set  bad.  

If k = k’ and E ( x  @ k;) is  defined t h e n  set  bad.  
3 .  Define F ( z )  = y and return 2. 

Fig. 1. Game R 

Let Prn[.] denote the probability of the specified event with respect to  Game R. 
From the dcfinition of Game R we can see that: 

Claim 3.1 PrR 

A SECOND GAME.  Now we define a. second game, Game x. It will exactly (:or- 
respond to the experinlent which defines t,he first term in the expression for the 
advantage: 

[ ALS,F,F-’ = 1 = p, 1 

[ - 
px = pr A P X K . ( . ) >  F . ( . ) >  F.-’( . )  - 

Once again, the definihri of Game X will be defined t,o ront,ain some  irrelevant^" 
instructions, which, for clarity, are indicated in italics. Game X is defined in 
Figure 2. 

The int,iiit,ion hehind Game .X is as follows. We t ry  to behave like Game R, 
choosing a random (not-yet-provided) answer for each E ( P ) ,  and a random (not- 
yet-provided for this k )  answer for each Fk(x), F’L1(y). Usually this works fine 
for getting behavior which looks like the experiment dcfining Px. But soinc- 
times it doesn’t work, because an ”iriconsistency” would be created between 
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the FX-answers and the F/F-’-answers. Game X is vigilant in checking if any 
such inconsistencies are being created. If it finds an inconsistency about to  be 
created, it changes the value which it had “warited” to answer in order to force 
consistency. Whenever Game S resorts to doing this it sets the flag bud. In 
the analysis, we “give up” (regard the adversary as having won) any time this 
happens. 

Let P rx  [.] denote the probability of the spwified event with respect, to  Game 
X .  The definition of Game X looks somewhat, further afield from the experiment 
which defines Px. Nonetheless, we claim the following: 

Initially, let F.( . )  and E ( . )  be undefined. Flag bad as initially unset. Randomly choose 
k* & { O , l } & ,  k ; ,  k;  (0, l}n. Then answer each query the adversary makes as lollows: 

JEo( on oracle query E ( P ) :  
1. Choose C E (0, l}” uniforrnly from Range(E). 
2. If Fk* ( P  (1) k y )  is defined, then C t Fk* ( P  Q3 k ; )  @ k;  and set bad. 

3. Define E ( P )  = C and rctiirri C. 
Else if FG’(C 

1-1 On oracle query ~k(z): 

k ; )  is defined, then s e t  bczd and goto Step 1. 

1. Choose y E {0,1}” uniformly from R,ange(Fk). 
2. If k = k* and E ( x  @ k ; )  is defined then y t E ( z  C€? k ; )  8 k ;  and set bud. 

Else If k = k* and E-’(y 8, k ; )  is defined then set bad and goto Step 1. 
3. Define Fk(x) = y arid return y .  Wl On oracle query F; (y): 

__. 

1. Choose z E (0, l}n uniforrnly from Dom(A) .  
2. If k = k’ and E-’(y @I k ; )  is defined then z t E-’(y 6? k,*)  C f f  k:  and set 

bad. 
Else if k = k* and E ( z  @ k ; )  is dcfined then set bud and goto Step 1. 

3. Define F k ( z )  = y and return z. 

Fig. 2. Game X 

Claim 3.2 Prx  AE*E,F-’ = 1 = P x .  

The proof of this claim is in the appendix. 

BOUNDING THE ADVANTAGE B Y  PrR [BAD] In nther Game R or Game x, let 
BAD be the event that, at  some point in time, the flag bud gets set. Games R 
and X have been defined so as to coincide up until event BAD. That is, any 
circumstance that causes Game R arid Game X to execute different instructions 
will also cause both games to set bud. The following two clairris follow directly 
from this fact,. 

1 1 

Claim 3.3 PrR [BAD] = Prx [BAD] 



What we have shown so far allows us to  bound the adversary's advanhgt. by 
PrR [ B A D ] .  

Claim 3.5 AdvA 5 Prli [BAD]. 

The argument is quite simple: 

AdVA = Px - PK 

(C1aam.s 3.1, 3.2) 

= Prx [ A  = l/BAD]Prx [BAD] + Pr,y [ A  = 11BADIPrx [ B A D ]  - 

P r R  [ A  = lJBAD]Prn [BAD] - P r R  [ '4 = ~ J B A D I P ~ R  [ B A D ]  

= Prn  [ B A D ]  (Prx [ A =  l / B A D ]  - Prn  [ A  = l ( B A D ] )  

5 PrR [ B A D ]  

(Clazms 3.3, 3.4) 

A THIRD GAME.  we have reduced ouI analysis to hounding PrR [BAD]. TO 
bourid PrR [ BAD] ,  let us imagine playing Game R a little bit differently. Instead 
of choosing k * ,  k ; ,  k;?* at the beginning, we choose them at the end. Then we set 
bad to  be true or false depending on whether or not the choice of k*, k;, k; 
we've just made woiild have caused bad to be set t,o true in Game R (where 
the choice was made a.t the beginning). The new game, Game R', is described 
in Figure 3. From t,he definition of Game R' we see that: 

Claim 3.6 I '~R [ B A D ]  1 Prn, [ B A D ] .  

COMPLETING 'THE PROOF. Now that wc have sufficiently manipulated the games 
a simple calculation suffices to bound PrRt  [BAD], and, thereby, to bound AdvA. 

After having run the body of Game R', not, having yet, chosen k*, k; ,  k;, let 
11s simply count how many of t,hc 2r;+2'1 choices for ( k ' ,  k f ,  k;) will result in bad 
getting set. 

Fix any possible values for E and E' which can arise in Game R'. Let IEJ 
denote the number of defined valiics E ( P ) ,  and let lFJ denote the numbcr of 
defined values Fk(s). Note that [El = 711. and IF1 = t .  Fix E arid F .  Call 
( k ' ,  k,', kf) collision-inducing (with respect to E and F )  if there is a some defined 
y = Fk(x) and some defined C = E ( P )  such that 

k* = k arid ( P  03 k ;  = .T or C CB k; = y) .  

Every choice of ( k * ,  k ; ,  k ; )  which results in setting bad is collision-inducing, SO 

it suffices to upper boiind the riiimber of collision-inducing (k*, k:, k;) .  

Claim 3.7 Fix E ,  F ,  whew (El = 771 u71d IF/ = t .  There are at  most 2mt .  
collision-inducing ( k * , k ~ , k ~ )  E ( 0 , l ) "  x (0, l},, x { O , l } n .  
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Initially, let F. ( . )  and E ( . )  bc undefined. Answer each query the adversary makes as 
follows: 

On oracle query E ( P ) .  

1. Choose C uniformly from RaIige(E) 
2. Define E ( P )  = C and return C.  

IF(.)j on oracle query F~(Z): 
~- 

1. Choose y uniforInly from Range(Fh.) 
2. Define F k ( z )  = y and return y. -1 On oracle query F;I(~): 

_ _  
1. Choose 2 ~iniformly from Dom(Fk). 
2. Define Fh(z) = y and return 5 .  

Af te r  all the queries have been a,nswered: 
Flag bad is  initidly unset. 
Randomly choose k' $ (0, l}", k : ,  1; 8 (0, l } I i  

If 3 y such that FG1(y) and E- ' (y  GI k i )  m e  both, defined then  set  bad.  
If 3 z such that Fb* (z) and E ( z  k;) are both dt~fintd 6he71, set had.  

Fig. 3. Game R' 

The reason is as follows: for each defined ( F , E ( P ) ) ,  ( k , x , F k ( x ) )  t,here are a t  
most 2 '2'l points ( k ' ,  k ; ,  k z )  which induce a collision between these two points: 
they arc thc points ( k * , k T , k ; )  E { k )  x {x CE P }  x { O , l } ' L }  u {k} x { O , l } n  x 
{y @ c}}. Now there arc only mt pairs of such points, so the total number of 
collision-inducing (k* , k; , k;)  is as claimed. 

Finally, in Game R' wc choose a triple (k', k:, k ; )  at random, independent of 
E and F ,  SO the chance that the selected triple is collision-inducing (for whatever 
E and F have been selected) is at most 217it. 2rL/2n+2n = mt .  2-n-n+1. Pulling 
everything together, this probability bounds i \ d v ~ ,  and we are done. 

4 Discussion 

HEALTH WARNINGS. We emphasize that when F is a concrete block cipher, not a 
random one, its internal structure can interact. with the FAX-construction in such 
a way as to obviate the construction's benefits. As a trivial example, if F already 
has the structure that it XORs plaintext and ciphertext with key material, then 
doing it uyain is certainly of no utility. 

Our model considers how rnudi FXl.: (,)  looks like a random permutation 
(when key K is random and unknown). It should be emphasized that some con- 
structions which use block ciphers --particularly hash function constructions- 
assume something more of the underlying block cipher. The current results im- 
ply nothing about the suitability of FX in constructions which are not based on 
F X K ( . )  resembling a. rmdom permutation when K is random and unknown. 

STRUCTURE I N  T H E  BLOCK CIPHER F WHIZN F = DES. Therc is one striictural 
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property of DES which has been suggested to assist, in brute-force attack: the 
DES key-complementation property. This property comprises a significant, sense 
in which DES is riot behaving like a family of (independent) random permu- 
tations. To “factor out” the key-complementation property just think of DES 
as having a single key bit fixed. Then one can conclude that if this is the only 
structural property of DES to be exploited by a key-search attack, DESX will 

CHOSEN-CIPHERIEXT (:K. The definition we used models a chosen-plaintext 
attack. One could easily allow, as [7] did, a chosen-ciphertext attack: simply pro- 
vide A an oracle for FX-’ (.), in addition t,o her oracle for FX( . ) .  In that case 
ni would count the sum of the number of queries to the FX and FX-’ oracles, 
and Theorem 3 would continue to hold. The proof would change very little. 

SETTING k l  = k 2 .  It is easy to see that constructions FXpk.(x) = Fk(x CH k l )  
and FXiyl,  (x) = k 1  @ Fk(z) don’t, improve F’s strength against key search. But 
what about FXk,kl (x) = k l  @ Fk(z  @ k l )  - is it OK to use the same key inside 
and out? In fact this does work, in the sense that Theorem 3 still goes through, 
the proof little changed. 

NICER KEY LENGTHS. A minor inconvenience of DESX is its strange key size. 
In applications it would sometimes be preferable t,o ext,end the definition of 
DESX to use arbitrary-length keys, or else to use keys of some fixed but more 
convenient length. Standard key-separation techniques can be used. For example, 
when IKI # 184, we might define DESXK(X) to  be equal to D E S X K ~ ( ~ )  where 
K‘ is dcfincd as follows: 

still limit the at,tack’s advantage t,o trn . 2--55-64-t1 - - trn. 2-118. 

If IKI = 56 then K‘ = K.0l2’, 

0 Otherwise, K‘ = k . k l . k2 ,  where k 1  = SHA-l(Cl.K)1,..64, and 
k = SHA-l(C.K)1,..56, 

{ k2  = SHA-l(C2.K)l . . . 6  4 

Here, SHA-1 is the map of the NIST Secure Hash Standard, X I  . . .p  denotes the 
first l bits of X ,  and C, C1 and C2 are distinct,, equal-length strings that are 
part of the DESX specification. 

DIFFERENTIAL AND LINEAR CRYPTANALYSIS. OPERATIONS BESIDES XOR. w e  
emphasize that the DESX construction w a  never intended to  add strength 
against differential or linear cryptanalysis. The attacks of [ 2 ,  101 do not rep- 
resent a threat against DES when the cipher is prudently employed (e.g., when 
a re-key is forced before an inordinate amount of text has been acted on), so we 
were content that the DESX construction does not render differential or linear 
attack any easier. 

Nonetheless, the proof of Theorem 3 goes through when G? is replaced by 
a variety of other operations, and some of these alternatives may help to  de- 
feat attacks which were not addressed by our model, including differential and 
linear cryptanalysis. In particular, an attractive ;tlternat,ive to  DESX may be 
the construction DESPk.kl,kz(z) = k2 + DESk(k1 + z), where LR + L’R’ ef 
LqL’ . RqR’, where IL( = IRI = IL’I = IR’I = 32 and 4 denotes addition 
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modulo 232. Burt, Kaliski has suggested such alternatives, and he has gone on to  
analyze their security with respect to  differential and linear attack [8]. 

5 Our Bound is Tight 
We have shown that the adversary's advantage is at  most t . 2-n-n+1+'gm. We 
now show that for a wide rangc of m (comprising all m that would be considered 
in practice), an attacker can, with probability very close to  t .  2-K-7a-4f1g (the 
exact bound is Section 5 . 3 ) ,  recover a key K = k.kl.k2 that is consistent with 
the encryptions under FX of m plaintexts chosen before any oracle queries are 
made. For reasonable values of m, this at, least as strong as simply distinguishing 
FX from a purely random permutation, 

To motivate our attack, we can view the FX block cipher as choosing a 
random key k and then applying the Even-Mansour construction to  the func- 
tion Fk. We can t,herefore adapt Daemen's chosen plaintext attack [5] on the 
Even-Mansour construction [7] .  Unfortunately, we don't know the value of k ,  so 
we instead try all possible ones. For completeness, we describe the attack and 
calculate the amount of work required to have probability t of recovering the 
key. 

5.1 Preliminaries 

Assiime that rrb is even, m 5 2q1,  and f < i. Fix a constant, C E {0,1}" - { O n ) .  
For any function G, define G"(z) = G(z CD C) ~ 3 3  G(z). Given an oracle for G 
one can compute Gn by making two c:alls. Let the secret key K = k . k l . k 2 .  Let 
E by a synonym for F X .  By our definitions and simple algebra we have 

E&) = Ft(Z u) Icl) = F k ( Z  @ c cf, k l ) .  

5.2 The basic attack 

The attacker chooses x l ,  . . . , x,p E ( 0 ,  l}" such that q,. . . , zrr+, 2 1  &, C,  . . . , 
2,p @ C are distinct. She computes E A ( r z ) ,  for 1 5 i 5 m/2. This operation 
requires m calls to  E. Let e = . The attacker then chooses random 
T I ,  ra , . . . ,re E (0, l}", tcsting each ri as follows. She searches through all pos- 
sible k' E (0 , l ) "  and 1 5 j <_ m / 2 ,  looking for promising puzrs- values ( j ,  k ' )  
such that F E ( r i )  = E $ ( z j ) .  At this point, the attacker hopes that k' = k and r 
is equal to  either xJ fB kl or z3 fB C CB k l .  If so, then k l  must be either xj Cl3 ri 
or zj &, C @ ri. Given candidate values ( k ' ,  k l ' )  for ( k ,  k l ) ,  a guess k2' can be 
determined by, say, k2' = F p ( s 1  81 kl ' )  CE Elc(zl). A set of candidate values 
k ' , k l '  and k2' can be tested by checking whether they give the correct values 
for each of E ~ c ( n ) ,  . . . , EK(z,), E K ( ~  CE C ) ,  . . . , Eh'(zm12 @ C). If they pass 
this test, the attack returns the candidate k'.kl' .k2' and halts. 

- 2 ' ' ' " J ~ E  1 7 

5.3 Analysis of the attack 

Due to  space limitations, we omit an analysis. See the full version of this pa- 
per [91. 
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6 Open Problems and Conclusions 

ANALYSIS OF OTHER MUL,’rIPLE ENCRYPTION SCHEMES. The model we have used 
to  upper bound the worth of key-search applies to  many other block-cipher based 
constructions. For example, it would be interesting to apply this model to  bound 
the maximal advantage an adversary can get for triple DES with three distinct 
keys, or triple DES with the first and third keys equal. It would be interesting 
to demonstrate t,ha,t some construction has a better effective key length then 
DESX (e.g., k + n - 1 hits). 

USE IT! Work within some standards bodies continues to specify encrypt,ion 
based on DES in its most, customary rnode of operation. We recommend DESX 
(or one of its variants, as in Section 4). DESX is efficient, DES-cornpat,ible, 
patent-unencumbered, and resists key-search attack. In virtually every way 
DESX would seem to be a better DES than DES. 
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A Proof of Claim3.2 
We first define a new game, denoted Game X‘, which matches more directly thr 
definition of the experiment defining Px.  G a m r  X ‘  is defined in Figure 4. 

First, Iiot,e that no adversary can distinguish between playing Game X ’  
and playing with orades ( F X K ( , ) ,  F. (.), E.-’(.)) drawn according to  the exper- 
iment defining Px . Indeed t,hc only difference bctween these 
Game X’ generates values for E ( . )  and F.( . )  hy “ l a ~ y  evaluation,” whereas the 
experiment, defining Px would generate tliese values all at the beginning. Thus 

- 1 = P x .  

1 = Prx, AE$I . ’ , I . ’ -~  = 1 : no 

adversary A can distinguish whether she is playing Game X or X’. Wc emphasize 
that A’s ability to  distinguish betwccn Games X a.nd X’ is based strictly 011 the 
iIiput/output behavior of the oracles; the adversary can not see, for example, 
whether 01- riot the flag bud has been set. 

We will show somet,hing even stronger than that Ganies X and X‘ look iden- 
tical to any adversary. Observe that both Game X and Game X’  begin with 
random choices for k * ,  k ;  and k5. We show that, for any particular values of 
k’, k;  arid k z ,  Game X with these initial values of k* ,  k; and k: is identical, to 
the adversary, from Game X ’  with these sa.me initial values of k * ,  k; and kz .  SO, 
for the remainder of’ the proof, we consider k * ,  k ;  m d  k; to have fixed, arbitrary 
values. 

A basic difference between Games X and X‘  is tha.t Game X separately 
defines both E and F p  while Game X’ only defines F p  and computes E ( P ) ,  
in response to a query P ,  by F p  ( P  @ k ; )  @ k;. Thc essence of oiir argument) is 
that  Game X can also be viewed as answering its E ( P )  queries by referring to 
F p .  But, strictly speaking, it’s riot really Fk* which can be consulted. We get, 
around this as follows. 

Givcn partial furictions E and F , * ,  these functions having arisen in Game x, 
define the partial function Fke by 

1 prx, [ A E , F , F - ’  - 

I [ 1 Now we what to show that Pr,y 

FA-* (x) 

iindcfined othrrwisc. 

if Fk. (z )  is defined, 
E ( z  @ k r )  @ ka if E ( x  irj k ; )  is defined, and 
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Initially, let F.(.)  be undefined. R.andomly choose k' 
answer each query the adversary makes as follows: 

(0, l}K, k ; ,  k; c (0, l}n. Then 

On oracle query E ( P ) :  
1. If F k *  ( P  @ k ; )  is defined, return F k * ( P  @ k ; )  @ k,:. 
2. Otherwise, choose y uniformly from Range(Fk*), define Fk*((P C€ k ; )  = y and 

IF.(.)l d',":::cYe:::ry Fk(2): 

1. If Fh (z) is defined, return Fk (z). 
2. Else, choose y € (0,1}" uniformly from Range(Fk), define F k ( 2 )  = y and 

~ ~ ~ ~ ~ r ~ i l e  query Fil (y): 

1. IfFi- ' (y)  is defined, return F;l(y). 
2. Else, choose z E ( 0 ,  I}" uniformly from Dom(Fk), define F k ( z )  = y and return 

___ 

2. 

Fig. 4. Game X '  

Thus, in executing Game X ,  defining a value for E or F p  can implicitly define 
a new value for F p .  

At face value, the above definition might bc inconsistent- this could happen 
if both F p  (z) and E ( x  @ k:) are defined for some z, arid with "clashing" values 
(ie., values which do not differ by kg). Before we proceed, we observe that this 
can never happen: 

Claim A . l  Let E 2nd Fk. be partial functions which may arise in in Game X .  
Then the function F p  , as described above, i s  well-defined. 

The proof is by induction on the number of "Define" steps (Steps E-3, F-3, 
or F-l -3)  in the definition of Game X ,  where points of F k *  become defined 
as Game X executes. The basis (when E and F-' are completely undefined) is 
trivial. So suppose that,  in step E-3, we set E ( P )  = C. Is it possible that this def- 
inition of E ( P )  will cause p k ,  to become ill-defined? The only potential conflict 
is between the new E ( P )  value and a value already selected for Fp (P 63 k;). So 
if F,p (I' @? k ; )  was not yet defined, there is no new conflict created in Step E-3. 
If, on the other hand, Fk* (P c4 ki) was already defined, then its value, by virtue 
of Step E-2, is E ( P )  @ kz .  This choice results in F p  remaining well-defined The 
analysis for the cases corresponding to Steps F-3 and F-'-3 is exactly analogous, 
and is omitted. 0 

The function Fk*, as defincd for Game X ,  also makes sense for G ~ I I E  X', where 
Fk- (z) = Fk* (z). Our strategy, then, is to explain the effect of each E ( . ) ,  Fk* (.), 
and FG1(.) query strictly in terms of FA*,  We then observe that Game X' re- 
sponds to  its oracle queries in an absolutelg identical way. This suffices to  show 
the games equivalent. 

h 
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Case 1. We first analyze the hehavior of Game X on oracle query E(P) .  To be- 
gin, note that Game X never defines the value of E ( P )  unless it, has received P 
as a query. So since A never repeats queries (see the assumptions just following 
the theorem statement) E ( P )  must be Undefined at the timc of query P.  Conse- 
quently, at  the time of query P,  pp (P ci3 k; )  will be defined iff F p  ( P  a k ; )  is 
defined, and F k *  ( P  Ic;) = F ( P  @ k ; ) .  Case l a .  When F k *  ( P  8 k t )  is defined, 
then Game X returns the value of C = $p ( P  @ k ; )  CB kz .  In this case, setting 
E ( P )  = C leaves F k e  unchanged. Case l b .  When F k *  ( P  @ k ; )  is undefined, then 
G is repeatedly chosen uniformly from Range(E) until FG1 (C @ k;)  is undefined. 
By the definition of Fk* it follows that y = C I% k;  is uniformly distributed over 
Range(Fk*). In this case, setting E ( P )  = C sets Fk* ( P  (0 k ; )  = y. 

Now compare the above with Game X '  on query E ( P ) .  When F p  ( P  tii k ; )  
is defined, then C = Fk* ( P  &i k ; )  g, k; is rctiirned and no function values are 
set. When F k *  ( P  cf3 k ; )  is undefined, y is chosen uniformly from Range(Fp),  
Fp ( P  G3 k ; )  is set to g (and implicitly pp ( P  @ k!) is set, to y), and C = y 8 k; 
is returned. Thus, the behavior of Game X' on query E ( P )  is identical to the 
behavior of Game X on query E ( P ) .  
Case 2. We will bc somewhat briefer with our analyses of the F.(.) and F.-'(.) 
oracles, which are similar to the analysis above. Gust: 2u. On oracle query Fh (x), 
when k # k* then the behavior of Game X is clearly identical to  Game X ' .  Case 
2%. When k = k* then FA.* (x) is defined iff a query of the form E ( x  @ k;) has 
been made. This holds iff F p ( z )  is defined (since Fk*(z) would not havc been 
queried before). By it straightforward argument thr value 'y returned from the 
query ~ ( z )  will then be y = ~ ( x  IC;) CH k; = Fk*(x) in both games. Case 
2c. When Fk*(x) is undefined, then in bot,h games y is uniformly chosen from 
Range(Fk*) and F'k* (2) is defined to be y. Thus, in all cases, Game X hehavcs 
identically to Game X ' .  
Case 3. Finally, on oracle query F i ' ( y ) ,  the case k # k* is again trivial. When 
k = k' ,  then FG1(y) will be defined iff E-'(y  @ k;) is defined, in which case 
x = E-'(y @ k,*) (i) k ;  = gG1(y) in both games. When FG'(y) is undefined, 
then in both games z is chosen uniformly from DoIn(Fk-) and p k *  (z) is defined 
to  be y. Again, Game X behaves identically to Game X ' .  

-n ,-. 
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