
How to Prove All NP Statements in Zero-Knowledge
and

a Methodology of Cryptographic Protocol Design

(Extended Abstract)

Oded Goldreich Silvio Micali Am' Wigderson
Dept. of Computer Sc.
Technion MIT Hebrew University
Haifa, Israel Cambridge, MA 02139 Jerusalem, Israel

Lab. for Computer Sc. Inst. of Math. and CS

ABSTRACT

Under the assumption tha t encryption functions exist, we show that
es in NP Dossess zero-knowledge Dr&

T h a t is, it is possible to demonstrate tha t a CNF formula is satisfiable without revealing
any other property of the formula. In particular, without yielding neither a satisfying
assignment nor weaker properties such as whether there is a satisfying assignment in
which xl=TRUE, or whether there is a satisfying assignment in which z 1=x3 etc.

The above result allows us to prove two fundamental theorems in the field of (two-
party and multi-party) cryptographic protocols. These theorems yield automatic and
efficient transformations that, given a protocol that is correct with respect to an
extremely weak adversary, ou tpu t a protocol correct in the most adversarial scenario.
Thus, these theorems imply powerful methodologies for developing two-party and multi-
party cryptographic protocols.

1. INTRODUCTION
A fundamental measure proposed by Goldwasser, Micali and Rackoff [GMR] is tha t

of the amount of knowledge released during an interactive proof. Informally, an interac-
tive proof is a two-party protocol through which one party (the prover) can convince his
counterparts (the uerij ier) in the validity of some statement concerning a common input.
(The prover should be able to d o so if and only if the statement is indeed valid.) Loosely
speaking, an interactive proof system is called zereknowledge if whatever the verifier

Work done while the first author was in the Laboratory for Computer Science, MIT, partially sup
ported by an IBM Postdoctoral Fellowship, and NSF Grant DCR-8509905 The second author was
supported by NSF Grant DCR-8413577 and an LBM Faculty Development Award Work done
while the third author was in Mathematical Sciences Research Institute, Berkeley

A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPT0 '86, LNCS 263, pp. 171-185, 1987.
0 Springer-Verlag Berlin Heidelberg 1987

172

could generate in polynomial-time after interacting with the prover, he could also gen-
erate in polynomial-time when just told by a trusted oracle that the assertion is indeed
valid. In other words, zero-knowledge proofs have the remarkable property of being
both convincing and yielding nothing except that the assertion is indeed valid.

Despite their importance, very few examples of (non-trivial ‘1 zero-knowledge proofs
have been known until recently. Furthermore, all previously known proofs were of
languages in NP n Co-NP and heavily relied on special “symmetric” properties of
“Number Theoretic” languages. T h e much more general potential offered by the notion
of zero-knowledge proofs has remained immaterialized.

In this extended abstract, we first show how to construct zero-knowledge interac-
tive proofs for every language in NP. This yields an extremely powerful cryptographic
tool: the ability t o prove a n y NP s ta t emen t in a zero-knowledge manner. In particular,
the generality of this tool allows an untrusted party to prove that he is behaving accord-
ing to a predetermined protocol, without yielding any of his secrets. We example the
power of this tool by three concrete applications, However, the general effect of this
result is demonstrated in its generic application as part of a compiler which translates
protocols operating in a weak adversary model to protocols which achieve the same goals
in the most adversarial environment.

1.1 What is an interactive proof system

I t is traditional to view NP as the class of languages whose elements posses short
proofs of membership. A “proof tha t z E L ” is a witness wz such that PL(z,wz)=l,
where PL is a polynomial-time computable Boolean predicate associated to the language
L such tha t PL (z ,y)=0 for all y if z is not in L . The witness must have length poly-
nomial in the length of the input z , but needs not be computable from x in polynomial
time. A slightly different point of view is to consider NP as the class of languages L for
which a powerful prover may prove membership in L to polynomial-time deterministic
verifiers. The interaction between the prover and the verifier, in this case, is trivial: the
prover sends a witness (“proof”) and the verifier computes for polynomial time to verify
that it is indeed a proof.

This formalism was recently generalized by allowing more complex interaction
between the prover and the verifier and by allowing the verifier to toss coins and to be
convinced by overwhelming statistical evidence [GMR, B]. The motivation of
Goldwasser, Micali and Rackoff for this generalization was to consider the mos t general
manner in which o n e party can prove theorems to another party, and to s tudy the
“amount of knowledge revealed in such interactions” [GMR]. This generalization is cru-
cial for establishing the non-triviality of the notion of zero-knowledge proofs (see
Remarks 4 and 5).

1) All languages in BPP have trivial zero-knowledge proofs, in which the prover tells the verifier
nothing, the verifier can t e s t membership in BPP languages by himself

173

An interactive proof system for a language L is a protocol (i.e. a pair of local pro-
grams) for two probabilistic interactive machines called the prowet and the verifier. We
denote these predetermined programs by P and V , respectively. Initially both machine
have access to a common input tape. The two machines send messages to one another
through two communication tapes. Each machine only sees its own tapes, the common
input tape and the communication tapes. In particular, it follows that one machine can-
not monitor the internal computation of the other machine nor read the other’s coin
tosses, current state, program etc. T h e verifier is bounded to a number of steps which is
polynomial in the length of the common input, after which he stops either in an accept
state or in a reject state. At this point we put no restrictions on the local computation
conducted by the prover.

We require that, whenever the verifier is following his predetermined program V , the
following two conditions hold:

1) Completeness of fhe inteructiwe proof system: If the common input z is in L and
the prover runs his predetermined program P , then the verifier accepts z with pro-
bability > 1- I z] -‘, for every constant c >O. In other words, the prover can
convince the verifier tha t z E L .
Validity of the interactive proof system: If the common input z is NOT in L , then
for every program P’ run by the prover the verifier rejects z with probability 2
1- I I -‘, for every constant c >O. In other words, the prover cannot fool t he
verifier.

Remark 1: Note t h a t i t does not suffice to require tha t the verifier cannot be fooled by
the predetermined prover P (such a mild condition would have presupposed t h a t the
“prover” is trusted by the verifier). We require that no matter how the prover plays, he
will fail to “prove” incorrect statements.

Remark 2: As is the case with NP, the conditions imposed on acceptance and rejection
are not symmetric. Therefore the existence of an interactive proof for the language L
does not imply its existence for the complement of L .
Remark 3: T h e above “definition” follows the one of Goldwasser, Micali and Rackoff
[GMR]. A different definition due to Babai [B], restricts the verifier’s actions to generat-
ing random strings, sending them to the prover, and evaluating a deterministic
polynomial-time predicate at the end of the interaction. In other words, in Babai’s
framework the coin tosses are public, while in the more general definition of [GMR] the
verifier may use a private coin (the output of which may not be revealed to the prover).
Designing proof systems seems to be much simpler in the [GM’R] model, bu t making
statements about them seems easier if one restricts oneself to Babai’s model. Surpris-
ingly, the two models are equivalent as far as language recognition is concerned (GS].
Remark 4: T h e ability to toss coins is crucial t o the non-triviality of the notion of an
interactive proof system. Suppose tha t a language L has an interactive proof system in
which the verifier does not toss coins. Then, without loss of generality, this proof system
is a trivial one: T h e prover jus t guesses the legal conversation, sends it to the verifier
which just verifies its validity in deterministic polynomial-time. (It follows tha t

2)

L E N P .)

174

1.2 What is a zero-knowledge proof

Intuitively, a zer-knowledge proof is a proof which yields nothing but its validity.
This means that for all practical purposes, “whatever” can be done after interacting
with a zero-knowledge prover, can be done when just believing tha t - the assertion he
claims is indeed valid. (In “whatever” we mean not only the computation of functions
but also the generation of probabilistic distributions.) Thus, zero-knowledge is a pro-
perty of the predetermined prover: its robustness against attempts of an arbitrary
(polynomial-time) verifier to extract knowledge from him via the interaction. Th i s is
captured by the formulation appearing in (GMR] and sketched below.

Denote by V’(z) the probability distribution generated by a machine V’ which
interacts with (the prover) P on the common input z E L . We say that the proof SYS-
tem is zero-knowledge if for all probabilistic polynomial-time machines V’, there exists a
probabilistic polynomial-time algorithm Mv. that on input z can produce a probability
distribution Mv.(z) t ha t is polynomially-indistinguishable from the distribution V’ (2).

(For every algorithm A , let p A (z) denote the probability that A outputs 1 on input z
and an element chosen according to the probability distribution D (2). Similarly,
P A ‘ (2) is defined with respect to the probability distribution D‘ (2). D(.) and D’ (.)
are polynomialfy-indistinguishable if for every probabilistic polynomial-time algorithm A ,
I P A (Z) - ~ A ’ (z) I 5 I z 1 -‘, for every constant e >O and for all sufficiently long 2 .

This notion originates from [GM] and in [y].)
Remark 5: It is easy to see tha t if a language L has a zero-knowledge proof system in
which only one message is sent, then L E BPP . Thus, the non-triviality of the interac-
tion is a necessary condition for the non-triviality of the notion of zereknowledge.

1.3 Previous results concerning interactive proofs

In section 1.1, we implicitly discussed the classes of languages having k-move
interactive proof systems (i.e. k message exchanges). Let I P (k) denote the class of
languages membership in which can be proved through a general interaction consisting
-of k messages, and let R I P (k) denote languages proven through the restricted type
interaction in which the verifier tosses “public coins”. Babai [B] showed that for every
constant k , RIP(k)=RIP(2) C N P B for almost all oracles B . This means tha t his res-
tricted hierarchy collapses. Goldwasser and Sipser [GS] showed that, surprisingly, for
every k , I P (k) 5 R P (k f3). Both the above results say nothing about preservation of
zero-knowledge by the transformations.

Several Number Theoretic languages, not known to be in BPP, have been previ-
ously shown to have zero-knowledge proof systems. The first language for which such a

proof system has been demonstrated is Quadratic Non-Residuosity (GMR]. Other zero-
knowledge proof systems were presented in [GMR], [GHY], and [GI. All these languages
are known to lie in NP n Co -Np .

175

1.4 Our Results
In this extended abstract , we present only our results which are directly related to

cryptography. For these results, we assume the existence of an arbitrary secure e n c r y p
tion function. We first show how to prove any NP statement in zero-knowledge. Next
we use this ability to develop a methodology of cryptographic protocol design.

We have omitted from this extended abstract our results which are not related to
cryptography. These result, which do not rely on any assumptions, consists of zero-
knowledge interactive proof systems for Graph Isomorphism and Graph Non-
Isomorphism. The mere existence of an interactive proof system for Graph Non-
Isomorphism is interesting, since Graph Non-Isomorphism is not known to be in N P .
For details see our paper [GMW].

1.5 Related Work
Using the intractability assumption of quadratic residuosity, Brassard and Crepeau

have discovered independently (but subsequently) zerc-knowledge proof systems to all
languages in NP [BCI]. These proof systems heavily rely on particular properties of qua-
dratic residues and d o not seem to extend to arbitrary encryption functions. Recently,
Brassard and Crepeau showed t h a t iffactoring is intractable then every NP language has
a “zerc-information” interactive proof system [BC2]. I t should be stressed tha t the pro-
tocol they proposed constitutes an interactive proof provided that factoring is intract-
able. In other words, the validity of the interactive proofs depends on an intractability
assumption; while in this paper and in [BCl] the proofs do not rely on such an assump-
tion. On the positive side, the protocol presented in [BC2] is “zerc-information” in the
following strong sense: for every verifier program V’ there is an algorithm Mv., such
that the probability distribution generated by M,. (on input x E L) is ident icd to the
probability distribution generated by V’ (when interacting with the prover on the input

Independently, Chaum [Cha] discovered a protocol which is very similar to the one
in [BC2]. Chaum also proposed an interesting application of such “zero-information
prmfs”. His application is to a setting in which the verifier may have infinite computing
power while the prover is restricted to polynomial-time computations (see also JCEGP)).
In such a setting i t makes no sense to have the prover demonstrate properties (s
membership in a language) to the verifier. However, the prover may wish to demonstrate
to the verifier t ha t he “knows” something without revealing what he “knows”. More
specifically, given a SAT formulae, the prover wishes to convince the verifier t ha t he
“knows” a satisfying assignment in a manner that would yield no information which of
the satisfying assignments he knows. A definition of the notion of “a program knowing a
satisfying assignment” can be derived from [GMFt].

1.

1.6 Organization of the Paper

In Section 2 we s ta te ou r assumptions, and introduce some conventions. In Section
3 we show how to use any one-way permutation in order to construct a zero-knowledge

176

interactive proof for any language in Np. In Section 4 we example the cryptographic
applications of the above result. In Section 5 we outline the fundamental theorems for
two-party and multi-party cryptographic protocols.

2. Preliminaries

Throughout this paper we assume the existence of an arbitrary secure encryption
schemes in the sense of Goldwasser and Micali [GM]. Such schemes exist if unapproxim-
able predicates exist [GM]. T h e existence of unapproximable predicates has been shown
by Yao to be a weaker assumption than the existence of one-way permutations [y). In
particular, the infeasibility assumption of factoring (equivalently: the assumption tha t
squaring modulo a composite integer is a one-way permutation) implies tha t the least
significant bit of the modular square root is an unapproximable predicate [ACGS]. Note
that the existence of one-way permutation is the basis for most of the works and results
in “modern cryptography”. See for example [DH, RSA, R1, GM, GMRiv, BM].

An encryption scheme secure as in (GM] is a probabilistic polynomial-time algo-
rithm f that on input 2 and a random string r , outputs an encryption f (z , r) .
Decryption is unique, t h a t is f (z , r)=/ (y ,s) implies z =y .
Notations Let A be a set.

1)

2)

Sym (A) denote the set of permutations over A .

When writing a E R A , we mean an element chosen at random with uniform pro-
bability distribution from the set A .

3. Zero-Knowledge Proof8 for All Languages in NP

We begin by presenting a zero-knowledge interactive proof for graph 3-
colourability. Using this interactive proof, we present zero-knowledge proofs for every
language in Np.

3.1 A Zero-Knowledge Proof for Graph 3-Colourability

The common input to the following protocol is a graph G (V , E) . In the following
protocol, the prover needs only to be a probabilistic polynomial-time machine which gets
a proper bcolouring of G as an auxiliary input. Let us denote this colouring by #
(#:V+{1,2,3}). Let n = I V 1 , m= I E I . For simplicity, let V={1,2 ,..., n } .

The following four steps are executed m 2 times, each time using independent coin tosses.

1) The prover chooses a random permutation of the 3-colouring, encrypts it, and sends
it to the verifier. More specifically, the prover chooses a permutation
r f R Sym({1,2,3}), and random rv’s , computes R,=f (4#(v)),rV) (for every
v E V) , and sends the sequence R ,,R ,..., R , to the verifier.

The verifier chcxxes at random a n edge e E R E and sends it to the prover.

If e =(u , u) E E then the prover reveals the colouring of u and v and “proves”
that they correspond to their encryptions. More specifically, the prover sends

2)

3)

177

(T (+ (u)) , ~ ,) and (nff lu)) ,rv) to the verifier. If e C$ E then the prover stops.

(The verifier checks the "proof" provided in step (3))
The verifier checks whether R, = f (~ (q 5 (u)) ~ r ~) , R,=f (~ (+ (u)) , r ~) ,
.(q5(u)) # 7r(q5(u)), and T (+ (U)) , T (+ (V)) E {1,213}. If either condition is violated
the verifier rejects and stops. Otherwise the verifier continues to the next iteration.

If the verifier has completed all m 2 iterations then it accepts.

The reader can easily verify the following facts: When the graph is 3-colourable and
both prover and verifier follow the protocol then the verifier always accepts. When the
graph is not 3-colourable and the verifier follows the protocol then no matter how the
prover plays, the verifier will reject with probability at least (l-rn-l)"'* = exp(-m).
Thus, the above protocol constitutes an interactive proof system for 3-colourability.

4)

Proposition: If f (.;) is a secure probabilistic encryption, then the above protocol con-
stitutes a zero-knowledge interactive proof system for 3-colourability .

proof's sketch: It is clear t ha t the above prover conveys no knowledge to the SPECI-
FIED verifier. We need however to show that our prover conveys no knowledge to all
possible verifiers, including cheating ones that deviate arbitrarily from the protocol.

Let v' be an arbitrary fixed program of a probabilistic polynomial-time machine
interacting with the prover P , specified by the protocol. We will present a probabilistic
polynomial-time machine M,,. t ha t generates a probability distribution which is polyno-
mially indistinguishable from the probability distribution induced on V' 's tapes during
its interaction with the prover P . In fact it suffices to generate the distribution on the
random tape and the communication tape of V'.

Our demonstration of the existence of such M,. is constructive: given an interac-
tive program V ' , we use it in order to construct the machine M,,. T h e way we use
V' in this construction does not correspond to the traditional notion of (a subroutine)
reduction [K, C], bu t rather to a more general notion of reduction suggested in [AHU,
pp. 373-3741. The machine M,. monitors the execution of V'. In particular, M,.
chooses the random tape of V', reads messages from V + ' s communication tape, and
writes messages to V 'k communication tape. Typically, M,. tries to guess which edge
the machine V' will ask to check. M,. encrypts an illegal colouring of G such tha t it
can answer V' in case it (M,.) is lucky. The cases in which M,. fails will be ignored:
M,, will just rewind V' to the last success, and try its luck again. It is crucial tha t
from the point of view of V' the case which leads to M,. success a n d the caae which
leads to M,. failure are polynomially indistinguishable.

The machine M,. monitoring V ' , starts by choosing a random tape r for v'.
M,,, places r on i ts record tape and proceeds in m 2 rounds as follows.

1) M,. picks an edge (t r , v) E R E and a pair of integers
(a , 6) ~ ~ { (i , j) : 15; # j 5 3) at random. M,,. chooses random ri's and

computes Ri=f (q , r i) , where ci=O for i E V-{u , v } , cu=u and c u = b . M,.
places the sequence of Ri ’s on t h e communication tape of V’ .
M,. reads e f rom t h e communication tape of V’. If e 6 E (V’ cheats) then
M,. appends t h e Ri ’s a n d e to i t s record tape, outputs the record tape, a n d stops.
If e # (u , v) (unlucky for M,.) then M,. rewinds V’ to the configuration at t h e
beginning of t h e cur ren t round, and repeats the current round with new random
choices. If e =(u ,u) (lucky for M,.) then M,. proceeds as follows: Firs t , i t places
(a , r u) and (b , r u) o n t h e communication tape of V’. Second, i t appends t h e Ri ’9,

e , (u ,ru) a n d (b , r v) to i t s record tape; and finally, it proceeds to the next round.

2)

If all rounds are completed then M,. outputs its record and halts. A technical lemma
(to be s ta ted and proved in t h e final paper) guarantees tha t the three possible “answers”
of the verifier (i.e. e i$E, e E E - { (u , u) } and e = (u , v)) occur with essentially t h e
same probability as in t h e interaction of V’ and the real prover. Thus , t h e probability
tha t the simulation of a par t icular round requires more than k’m rewinds is smaller
than 2-” and M,. te rmina tes in polynomial time. T h e only difference between t h e pro-
bability distribution of t h e t rue interactions and the distribution generated by M,. is
tha t the first contain probabilistic encryptions of colourings while the second contains
probabilistic encrypt ions of mostly 0’s. However, a second technical lemma (postponed to
the final paper) asser ts t h a t this difference is indistinguishable in probabilistic
polynomial- time.

Remark 6: T h e above protocol needs m 2 rounds. In the final version of o u r paper we
will present t w o al ternat ive ways of modifying the above protocol so to get a four-round
zero-knowledge protocol for graph 3-colorability. In both modifications t h e idea is to
have t h e verifier send t h e prover “encryptions” of all his questions (i.e. which edge he
wants t o check for each copy of t h e coloured graph) before the prover sends to t h e
verifier t h e corresponding coloured graphs. By this, the verifier commits himself to a tes t
before seeing the encrypted colourings (equivalently, the tests are only a function of t h e
common input and t h e random coin tosses of the verifier). How can the verifier encrypt
his questions? T h i s is t h e point in which the two modifications differ.

1) Assuming t h e intractabi l i ty of integer factorization, the verifier encrypts as follows.
T h e prover first randomly chooses a Blum integer N (i.e. a composite integer which
is the product of t w o large primes each congruent to 3 modulo 4). To encrypt t h e
bit 0 E {O,l}, t h e verifier randomly chooses a residue r E Z$ with Jacobi Symbol
{--ly, computes s=r*rnod N , sends s to the prover and proves (in zero-
knowledge) t h a t he “knows” a square root of s (consult [FMRW, GMR]) . Note t h a t
even with infinite computing power, the prover can not know Q. To reveal Q, t h e
verifier presents r . Assuming the intractability of factoring, the verifier can not
“change his mind” a b o u t u.

A trivial solution follows by modifying the definition of a n interactive proof such
t h a t the prover is also restricted to polynomial-time computation, and his

2)

179

“computational advantage” over the verifier is merely in having an auxiliary input.
Note tha t this is the natural cryptographic scenario.

Remark 7: The above protocol can be easily modified to yield a zero-information proto-
col tha t constitutes a proof system if factoring is intractable. The modification consists
of having the prover encrypt the colouring by using a Blum integers selected by the
verifier (analogue to (1) in Remark 6) . More details will be given the final version of our
paper.

3.2 Zero-Knowledge proofs for all Languages in NP
Incorporating the s tandard reductions into the protocol of Section 3.1, we get

Theorem 1: If f (.;) is a secure probabilistic encryption, then every NF’ language has a
zero-knowledge interactive proof system.

Proof: For every language L E NP the protocol incorporates a fixed reduction of L to
3-colourability. Each par ty computes the 3-colourability instance from the common
input, and then the prover proves to the verifier that this instance is 3-colourable (using
the protocol of section 3.1). QED

Slightly less obvious is the proof of the following Theorem 2 tha t adapts Theorem 1
to the cryptographic scenario, in which all players are bounded to efficient computation.

Theorem 2: If f (.;) is a secure probabilistic encryption, every language in NP has a
zereknowledge interactive proof system whose prover is a probabilistic polynomial-time
machine which gets a hip proof as an auxiliary input.

Proof We would like the parties to proceed as in the proof of Theorem 1. T h e problem
is whether the prover is powerful enough to execute his role in tha t protocol. Note tha t
if the prover is given a colouring of the reduced 3-colourability instance then he can fol-
low the instructions of the protocol in Section 3.1. However, the prover is only given a
NP proof for the membership in an arbitrary language in Np. The difficulty is resolved
by noticing tha t t he s tandard reductions used in the protocol efliciently transform also
the witnesses to the corresponding instances (see details below).

Most known Karp-reductions have the property that, given a NP-proof to the origi-
nal instance, one can easily obtain a “-proof for the reduced instance. Let L l be a
language which is Karp-reducible to the language L 2 by the polynomial-time function t .
Let L E N p and z E L , then we denote by W (Z) a witness for z (i.e. PL(z ,w (z))=l ,
where PL is the polynomial-time predicate associated to L) . If there exist a
polynomial-time computable function g such that for every instance z1 E L 1 we have
w (t (21)) = g (W (Z 1)) then we say that L is Levin-reducible t o L 2. (This is “half the
condition” in the definition of polynomial reducibility as appeared in Levin’s paper

1 80

“Universal Search Problems” [L].) Thus, it suffices to verify tha t the generic reduction to
SAT, and the “popular” reductions of SAT to 3SAT and of 3SAT to 3C, are all in fact
Levin-reductions. QED

Remark 8: Theorem 1 can be generalized t o show that not only NP is in zero-
knowledge, but also “probabilistic NP” is. In other words, if f (.;) is a secure prob*
bilistic encryption, then for every fixed k every language in I P (k) has zero-knowledge
proof systems. T h e same holds for Theorem 2 and all languages in RIP(L) (note tha t
Goldwasser and Sipser’s transformation of IP (k)-protocols to RIP (k)-protocols requires
the prover to conduct approximate counting). For more details see [GMW].

4. Examples of Particular Applications of Theorem 2

Theorem 2 has a dramatic effect on the design of cryptographic protocols. Typically
these protocols must cope with the problem of the parties convincing each other tha t
they are sending messages which are computed according to the protocol. Such proofs
should be carried o u t without yielding any secret knowledge. Since it is alway possible
to give NP proofs t h a t the messages are computed properly, we can now give zero-
knowledge proofs of this fact. Let us demonstrate this point, by using Theorem 2 to
present simple solutions to three problems, which until recently were considered
extremely difficult or even impossible. The more general implications of Theorem 2, are
outlined in the preceding chapter.

A central notion in the field of cryptography is tha t of a secret. By a secret we
mean a piece of d a t a tha t once given can be recognized as the desired one. More for-
mally, a secret s is recognizable through g (8) if g is a one-way function. For example,
the factorization (p , q) of a composite integer N = p ’p is a secret reccgnizable through
N . The digital signature S u (m) of user U to the message m is a secret recognizable
through the message m and the public-key of U .

4.1 Oblivious Transfer of Arbitrary Secrets

The notion of Oblivious Transfer, suggested by Rabin [RZ], has attracted alot of
attention within the study of cryptographic protocols. An Oblivious Transfer is a two-
party protocol through which one party (unknowingly) transfers with probability 1/2 a
large amount of knowledge to his counterpart, and yields no knowledge otherwise [R2,
EGL]. Initially, the sender (S) knows a secret s recognizable through g (s) , and the
receiver (R) knows g (3) . If both parties follow the protocol then R gets s with proba-
bility 1/2. If R follows the protocol then for S , the a-posteriori probability tha t R got
3 equals the a-priori probability. Rabin required that an attempt by S to reduce the
probability tha t R receives s is detected [R2] with very high probability; while Even,
Goldreich and Lempel only required that such an attempt is detected with probability
1/2 [EGL].

In the following we will assume tha t factoring is hard. For the case that the secret
is the factorization of a given integer, a protocol satisfying Rabin’s conditions was

181

presented by Fischer, Micali, Rackoff and Wittenberg [Fh4RW] (modifying (RZ]). This
protocol easily extends to arbitrary secrets, but in this c u e detection of “cheating” is
only guaranteed with probability 1/2. It has been conjectured tha t no protocol can meet
Rabin’s condition (i.e. allow to always detect attempts to reduce the probability of a
transfer) for arbitrary secrets [EGL].

Using Theorem 2, we show tha t the conjecture in [EGL] is false. The proposed p r e
tocol proceeds as follows: First, the sender encrypt the secret s using a randomly chosen
composite N . Next, the sender provides the receiver with a zero-knowledge proof tha t
the encrypted message is indeed the desired secret (note that this is a NP statement).
Finally, the sender uses the [FMRW] Oblivious Transfer to send the factorization of N
such tha t i t is received with probability 1/2.

Remark 9: Recently, we presented an Oblivious Transfer protocol based on the security
of an arbitrary public-key encryption function.

4.2 Verifiable Secret Sharing

The notion of a verifiable secret sharing was presented by Chor, Goldwasser, Micali,
and Awerbuch [CGMA], and constitutes a powerful tool for multi-party protocol design.
A verifiable secret sharing is a n +I-party protocol through which a sender (S) can dis-
tribute to the receivers (Ri ’s) pieces of a secret s recognizable through g (s). T h e n
pieces satisfying the following three conditions (with respect to 1s I < u 5 n):

1) It is infeasible to obtain any partial information about the secret from any I pieces;

2) Given any u messages the entire secret can be easily computed;

3) Given a piece it is easy to verify that it belongs to a set satisfying condition (2).
The notion of a verifiable secret sharing differs from Shamir’s secret sharing [Sha], in
that the secret is recognizable and that the pieces should be verifiable as authentic (i.e.
condition (3)).

We will consider solutions which are polynomial in n and in the security parame-
ter. The first solution, presented in [CGMA], relies on M A (resp. factoring) and works
for 1 = 0 (log n) (resp. 1 =O (log log n), see also [CGG]). Relying on the difficulty of
testing quadratic residuosity this solution was improved, independently by [FM] and
[AGY], to allow I =an and u =(l-a)n for every fixed a<1/2. Recently, Feldman [F]
presented a solution allowing u = l + l j n , assuming the intractability of the discrete
logarithm function. Most of t he above solutions are conceptually very complicated.

Combining Theorem 2 with Shamir’s scheme [Sha], we present a conceptually sim-
ple solution allowing u =I +ls n , assuming the existence of arbitrary one-way permuta-
tions. To share a secret s E Z, recognizable through g (s), the sender proceeds as fol-
lows: First, the sender chooses at random a 1-degree polynomial over 2; and evaluates it
in n fixed points (these are the pieces in Shamir’s scheme). Next, the sender encrypts
the i t h piece using the Public-Key of the i th receiver, and sends all encrypted secrets to
all receivers. Finally, the sender provides each receiver with a zero-knowledge proof that
the encrypted messages correspond to the evaluation of a single polynomial over 2;

182

(note that this is a NP statement).

tability of quadratic residucsity [Bena].
Recently, Benaloh has presented a much more efficient solution based on the intrac-

4.3 Proving that a String is Pseudorandom

The notion of a pseudorandom bit generator, suggested by Blum and Micah PM]
and Yao v], is central to cryptography. A pseudorandom bit generator is an efficient
deterministic program which stretches a randomly selected n-bit long seed into a longer
bit sequence which is polynomially-indistinguishable from a random string [BM, Y]. A
pseudorandom function generator is an efficient deterministic program that uses a ran-
dom n -bit seed to construct an oracle which is polynomially-indistinguishable from a
random oracle [GGM].

Using Theorem Z1 a party which has selected the seed can present zero-knowledge
proofs tha t the sequence/function he is producing/implementing is indeed pseudoran-
dom.

5. Two Theorems for Cryptographic Protocols
In this section, we present an extremely powerful methodology for designing correct

cryptographic protocols. T h e methodology consists of etficient “correctness and privacy
preserving” transformations of protocols from a weak adversary model to the most
adversarial model. These transformations are informally summarized as follows

Informal Theorem A There exist an efficient compiler transforming a protocol P
designed for n=Zt+1 honest players, to a cryptographic protocol P’ t ha t
achieves the same goals even if t of its n players are faulty. Faulty players are
allowed to deviate from P’ in an arbitrary but polynomial-time way.

In the formal statement of the corresponding Theorem, we avoid talking about “achiev-
ing goals”. The “goal of a protocol” is a semantic object that is not well understood.
Instead, we make statements about well understood syntactic objects: the probability
distribution on the tapes of interactive machines. In the final version of this paper we
will define the notions of a “correctness preserving compiler” and a “privacy preserving
compiler”. Both notions will be defined as relations between the probability distribution
on the tapes of interactive machines during the execution of protocol P (in a weak
adversarial environment) and the distribution on these tapes during the execution of P ‘
(in a strong adversarial environment). Loosely speaking, “preserving correctness” means
that whatever a party could compute after participating in the original protocol P , he
could also compute when following the transformed protocol P ’ , properly. “Preserving
privacy” means tha t whatever a set of dishonest players can compute after participating
in P‘ , the corresponding players in P can compute when sharing their c‘knowledge”
after participating in P . Similarly we formalize the following

Informal Theorem B: There exist an efficient compiler transforming a two-party
protocol P t h a t is correct in a fail-stop model, to a cryptographic twc-party-
protocol P‘ t ha t achieves the same goals even if one of the players deviates from

183

P’ in an arbitrary b u t polynomial-time way.

The proofs of the above Theorems make primary use of Theorem 2 to allow a machine
to “prove” to other machines tha t a message i t sent is computed according to the proto-
col. In addition, these proofs make innovative use of most of the cryptographic tech-
niques developed in recent years. Essential ingredients in the proof of Theorem A are the
notions of verifiable secret sharing and simultaneous broadcast proposed and first imple-
mented by Chor, Goldwasser, Micali, and Awerbuch [CGMA]. An essential ingredient in
the proof of Theorem B is Blum’s “coin flipping into the welln !Blu].

F u r t h e r Improvements

Theorem A constitutes a procedure for automatically constructing fault-tolerant
protocols, the goal of which is to compute a predetermine function of the private inputs
scattered among the players. This procedure takes as input a distributed specification of
the function (i.e. a protocol for honest players), not the function itself. It is guaranteed
that this procedure will ou tpu t a fault-tolerant protocol for computing this very function
(i.e. the “correctness” condition) and tha t the “privacy” present in the specification will
be preserved. Thus , t he degree of privacy offered by the output fault-tolerance protocol
depends on the specification, and not on the function to be computed. Furthermore, for
some functions f it seems to be difficult to write a distributed specification (protocol for
honest players) which offers the maximum degree of privacy.

Recently (see forthcoming paper [GMWS]), we found a polynomial-time algorithm
which on input a Turing machine specification of a n-ary function f , outputs a proto.
col for n honest players which offers maximum privacy. Namely, at the termination of
the protocol, each subset of players can compute from their joint local history only
whatever they could have computed from their corresponding local inputs and the value
of the function. T h u s , we achieve for any n-ary function what Benaloh [Bena] has
achieved for the addition and multiplication functions.

Combined with the compiler of Theorem A, our algorithm constitutes an automatic
generator of fault-tolerant protocols. This may be viewed as a completeness theorem for
fault tolerant distributed computation.

ACKNOWLEDGEMENTS
I t is o u r pleasure to thank Benny Chor and Shafi Goldwasser for many helpful d i e

cussions concerning this work.

184

REFERENCES

[AHU] Aho, A.V., J .E . Hopcroft, and J.D. Ullman, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley Publ. Co., 1974.

[ACGS] Alexi, W., B. Chor, 0. Goldreich, and C.P. Schnorr, “RSA and Rabin Functions:
Certain Pa r t s Are As Hard As The Whole”. to appear in S f i M Jour. on Com-
puting. Extended Abstract in Proc. 25th FOCS, 1984.
Alon, N., Z. Galil, and M. Yung, “A Fully Polynomial Simultaneous Broadcast
in the Presence of Faults”, preprint, 1985.
Babai, L., “Trading Group Theory for Randomnes”, Proc. 17th STOC, 1985,

Benaloh, (Cohen) J.D., “Secret Sharing Homomorphisms: Keeping Shares of a
Secret Secret”, these proceedings.
Blum, M., “Coin Flipping by Phone”, IEEE Spring COMPCOM, pp. 133-137,
February 1982.
Blum, M., and Micali, S., “How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits”, SIAM Jour. on Computing, Vol. 13, 1984, pp. 850-864.
Brassard, G. , and C. Crepeau, “Zero-Knowledge Simulation of Boolean Circuits”,
manuscript 1986.
Brassard, G., and C. Crepeau, “Non-Transitive Transfer of Confidence: A Per-
fect Zero-Knowledge Interactive Protocol for SAT and Beyond”, manuscript,
1986.
Broder, A.Z., and D. Dolev, “Flipping Coins in Many Pockets (Byzantine Agree-
ment on Uniformly Random Values”, Proc. 25th FOCS, 1984, pp. 157-170.
Chaum, D., “Demonstrating that a Public Predicate can be Satisfied Without
Revealing Any Information About How”, these proceedings.

pp. 421-429.

[CEGP] Chaum, D., J.H. Evertse, J. van de Graaf, and R. Peralta, “Demonstrating POS-
session of a Discrete Logarithm without Revealing It”, these proceedings.

[CGG] Chor, B., 0. Goldreich, and S. Goldwasser, “The Bit Security of Modular Squar-
ing given Partial Factorization of the Modulos”, Proc. of Crypto85, to appear
(1 9 86).

[CGMAIChor, B., S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable Secret Sharing
and Achieving Simultaneity in the Presence of Faults”, Proc. 26th FOCS, 1985,
pp. 383-395.

[C] Cook, S.A., “The Complexity of Theorem Proving Procedures”, Proc. 3rd

[DH] Diffie, W., and M.E. Hellman, “New Directions in Cryptography”, IEEE Trans.
on Injotm. Theory, Vol. IT-22, No. 6, November 1976, pp. 644-654.

[EGL] Even, S., 0. Goldreich, and A. Lempel, “A Randomized Protocol for Signing
Contracts”, CACM, Vol. 28, No. 6, 1985, pp. 637-647.

[F] Feldman, P., ’‘A Practical Scheme for Verifiable Secret Sharing”, manuscript,
1986.

[FM] Feldman, P., and S., Micali, in preparation, 1985.
[FMRWIFischer, M., S. Micali, C. Rackoff, and D.K. Wittenberg, “An Oblivious Transfer

Protocol Equivalent to Factoring”, in preparation. Preliminary versions were
presented in EuroCrypt84 (1984), and in the NSF Workshop on Mathematical
Theory of Security, Endicott House (1985).

(GHY] Galil, Z., S. Haber, and M. Yung, “A Private Interactive Test of a Boolean
Predicate and Minimum-Knowledge Public-Key Cryptosystems”, Proc. 26th

STOC, pp. 151-158, 1971.

185

FOCS, 1985, pp. 360-371.
[GJ] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W.H. Freeman and Company, New York, 1979.
[GI Goldreich, O., “A Zero-Knowledge Proof tha t a TwePr ime Moduli Is Not a

Blum Integer”, unpublished manuscript, 1985.
[GGM] Goldreich, O., S. Goldwasser, and S. Micali, “HOW to Construct Random Func-

tions”, Proc. of 25th Symp. on Foundation of Computer Science, 1984, pp. 4 6 4
479. To appear in Jour. of ACM.

[GMW] Goldreich, O., S. Micali, and A. Wigderson, “Proofs that Yield Nothing But their
Validity”, in preparation. An extended abstract will appear in the proceedings
of 27th FOCS, 1986.

[GMW2]Goldreich, O., S. Micali, and A. Wigderson, “How to Automatically Generate
Correct and Private Fault-Tolerant Protocols“, in preparations.

[GM] Goldwasser, S., and S. Micali, “Probabilistic Encryption”, JCSS, Vol. 28, No. 2,
1984, pp. 270.299.

[GMR] Goldwasser, S., S. Micali, and C. Rackoff, “Knowledge Complexity of Interactive
Proofs”, Proc. 17th STOC, 1985, pp. 291-304.

[GMRiv]Goldwasser, S., S. Micali, and R.L. Rivest, “A Paradozical Signature Scheme”,
Proc. 25th FOCS, 1984.

(GS] Goldwasser, S., and M. Sipser, “Arthur Merlin Games versus Interactive Proof
Systems” , Proc. 18th STOC, pp. 59-68, 1986.

(K] Karp, R.M., ‘[Reducibility among Cornbinatorial Problems” , Complexity of Corn-
puter Computations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pp.

Levin, L.A., “Universal Search Problems”, Problemy Peredaci Informncii 9, pp.
115116, 1973. Translated in problems of Information Transmission 9, pp. 265-
266.
Rivest, R.L., Shamir, A., and Adleman, L., “A Method for Obtaining Digital S k -
natures and Public Key Cryptosystems”, Comm. of the ACM, Vol. 21, February
1978, pp. 120-126.

[Rl] Rabin, M.O., “Digitalized Signatures as Intractable as Factorization”,

[RZ] Rabin, M.O., “How to Exchange Secrets by Oblivious Transfer”, unpublished
manuscript, 1981.

[Sha] Shamir, A., “How to Share a Secret”, CACM, Vol. 22, 1979, pp. 612-613.
[Y] Yao, A.C., “Theory and Applications of Trapdoor Functions”, Proc. of the 23rd

IEEE Symp. on Foundation of Computer Science, 1982, pp. 80.91.

85-103, 1972.

[L]

[RSA]

MIT/LCS/TR-2 12, 1979.

