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ABSTRACT 

Under the assumption tha t  encryption functions exist, we show that 
es in NP Dossess zero-knowledge Dr& 

T h a t  is, it is possible to demonstrate tha t  a CNF formula is satisfiable without revealing 
any other property of the  formula. In particular, without yielding neither a satisfying 
assignment nor weaker properties such as whether there is a satisfying assignment in 
which xl=TRUE, or  whether there is a satisfying assignment in which z 1=x3 etc. 

The  above result allows us  to prove two fundamental theorems in the field of (two- 
party and multi-party) cryptographic protocols. These theorems yield automatic and 
efficient transformations that,  given a protocol that  is correct with respect to an 
extremely weak adversary, ou tpu t  a protocol correct in the most adversarial scenario. 
Thus,  these theorems imply powerful methodologies for developing two-party and multi- 
party cryptographic protocols. 

1. INTRODUCTION 
A fundamental measure proposed by Goldwasser, Micali and Rackoff [GMR] is tha t  

of the amount of knowledge released during an interactive proof. Informally, an interac- 
tive proof is a two-party protocol through which one party ( the  prover) can convince his 
counterparts ( the  uerij ier) in the validity of some statement concerning a common input. 
(The prover should be able to d o  so if and only if the statement is indeed valid.) Loosely 
speaking, an interactive proof system is called zereknowledge if whatever the verifier 
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could generate in polynomial-time after interacting with the prover, he could also gen- 
erate in polynomial-time when just  told by a trusted oracle that the assertion is indeed 
valid. In other words, zero-knowledge proofs have the remarkable property of being 
both convincing and yielding nothing except that  the assertion is indeed valid. 

Despite their importance, very few examples of (non-trivial ‘1 zero-knowledge proofs 
have been known until recently. Furthermore, all previously known proofs were of 
languages in NP n Co-NP and heavily relied on special “symmetric” properties of 
“Number Theoretic” languages. T h e  much more general potential offered by the notion 
of zero-knowledge proofs has remained immaterialized. 

In this extended abstract, we first show how to construct zero-knowledge interac- 
tive proofs for every language in NP. This yields an extremely powerful cryptographic 
tool: the ability t o  prove a n y  NP s ta t emen t  in a zero-knowledge manner.  In particular, 
the generality of this tool allows an  untrusted party to prove that he is behaving accord- 
ing to a predetermined protocol, without yielding any of his secrets. We example the 
power of this tool by three concrete applications, However, the general effect of this 
result is demonstrated in its generic application as part of a compiler which translates 
protocols operating in a weak adversary model to protocols which achieve the same goals 
in the most adversarial environment. 

1.1 What is an interactive proof system 

I t  is traditional to view NP as the  class of languages whose elements posses short  
proofs of membership. A “proof tha t  z E L ”  is a witness wz such that PL(z,wz)=l, 
where PL is a polynomial-time computable Boolean predicate associated to the language 
L such tha t  PL (z ,y  )=0 for all y if z is not in L . The witness must have length poly- 
nomial in the length of the input z ,  but  needs not be computable from x in polynomial 
time. A slightly different point of view is to consider NP as the class of languages L for 
which a powerful prover may prove membership in L to polynomial-time deterministic 
verifiers. The  interaction between the prover and the verifier, in this case, is trivial: the 
prover sends a witness (“proof”) and the verifier computes for polynomial time to verify 
that it is indeed a proof. 

This formalism was recently generalized by allowing more complex interaction 
between the prover and the verifier and by allowing the verifier to toss coins and to be 
convinced by overwhelming statistical evidence [GMR, B]. The  motivation of 
Goldwasser, Micali and Rackoff for this generalization was to consider the mos t  general 
manner in which o n e  party  can  prove theorems to another party, and to s tudy  the 
“amount of knowledge revealed in such interactions” [GMR]. This generalization is cru- 
cial for establishing the non-triviality of the notion of zero-knowledge proofs (see 
Remarks 4 and 5). 

1) All languages in BPP have trivial zero-knowledge proofs, in which the prover tells the verifier 
nothing, the verifier can t e s t  membership in BPP languages by himself 
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An interactive proof system for a language L is a protocol (i.e. a pair of local pro- 
grams) for two probabilistic interactive machines called the prowet and the verifier. We 
denote these predetermined programs by P and V ,  respectively. Initially both machine 
have access to a common input tape. The  two machines send messages to one another 
through two communication tapes. Each machine only sees its own tapes, the common 
input tape and the communication tapes. In particular, it follows that one machine can- 
not monitor the internal computation of the other machine nor read the other’s coin 
tosses, current state,  program etc. T h e  verifier is bounded to a number of steps which is 
polynomial in the length of the common input, after which he stops either in an  accept 
state or in a reject state.  At this point we put no restrictions on the local computation 
conducted by the prover. 

We require that,  whenever the verifier is following his predetermined program V ,  the  
following two conditions hold: 

1) Completeness of fhe inteructiwe proof system: If the common input z is in L and 
the prover runs his predetermined program P ,  then the verifier accepts z with pro- 
bability > 1- I z ] -‘, for every constant c >O. In other words, the prover can 
convince the  verifier tha t  z E L . 
Validity of the interactive proof system: If the common input z is NOT in L , then 
for every program P’ run by the prover the verifier rejects z with probability 2 
1- I I -‘, for every constant c >O. In other words, the prover cannot fool t he  
verifier. 

Remark 1: Note t h a t  i t  does not suffice to  require tha t  the verifier cannot be fooled by 
the predetermined prover P (such a mild condition would have presupposed t h a t  the  
“prover” is trusted by the  verifier). We require that no matter how the prover plays, he 
will fail to “prove” incorrect statements. 

Remark 2: As is the  case with NP, the conditions imposed on acceptance and rejection 
are not symmetric. Therefore the existence of an interactive proof for the language L 
does not imply its existence for the complement of L . 
Remark 3: T h e  above “definition” follows the one of Goldwasser, Micali and Rackoff 
[GMR]. A different definition due to Babai [B], restricts the verifier’s actions to generat- 
ing random strings, sending them to the prover, and evaluating a deterministic 
polynomial-time predicate at the  end of the interaction. In other words, in Babai’s 
framework the coin tosses are public, while in the more general definition of [GMR] the  
verifier may use a private coin (the output of which may not be revealed to the prover). 
Designing proof systems seems to be much simpler in the [GM’R] model, bu t  making 
statements about them seems easier if one restricts oneself to Babai’s model. Surpris- 
ingly, the  two models are equivalent as far as language recognition is concerned (GS]. 
Remark 4: T h e  ability to toss coins is crucial t o  the non-triviality of the notion of an 
interactive proof system. Suppose tha t  a language L has an interactive proof system in 
which the verifier does not toss coins. Then, without loss of generality, this proof system 
is a trivial one: T h e  prover jus t  guesses the legal conversation, sends it to the verifier 
which just  verifies its validity in deterministic polynomial-time. (It follows tha t  

2) 

L E N P . )  
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1.2 What is a zero-knowledge proof 

Intuitively, a zer-knowledge proof is a proof which yields nothing but its validity. 
This means that for all practical purposes, “whatever” can be done after interacting 
with a zero-knowledge prover, can be done when just believing tha t - the  assertion he 
claims is indeed valid. (In “whatever” we mean not only the computation of functions 
but also the generation of probabilistic distributions.) Thus, zero-knowledge is a pro- 
perty of the predetermined prover: its robustness against attempts of an arbitrary 
(polynomial-time) verifier to extract knowledge from him via the interaction. Th i s  is 
captured by the formulation appearing in (GMR] and sketched below. 

Denote by V’(z) the probability distribution generated by a machine V’ which 
interacts with (the prover) P on the common input z E L  . We say that the proof SYS- 
tem is zero-knowledge if for all probabilistic polynomial-time machines V’, there exists a 
probabilistic polynomial-time algorithm Mv. that  on input z can produce a probability 
distribution Mv.(z  ) t ha t  is polynomially-indistinguishable from the distribution V’ (2). 

(For every algorithm A ,  let p A ( z )  denote the probability that A outputs 1 on input z 
and an element chosen according to the probability distribution D (2). Similarly, 
P A ‘  (2)  is defined with respect to the probability distribution D‘ (2). D(.) and D’ (.) 
are polynomialfy-indistinguishable if for every probabilistic polynomial-time algorithm A , 
I P A ( Z ) - ~ A ’  ( z )  I 5 I z 1 -‘, for every constant e >O and for all sufficiently long 2 .  

This notion originates from [GM] and in [y].) 
Remark 5: It is easy to see tha t  if a language L has a zero-knowledge proof system in 
which only one message is sent,  then L E BPP . Thus, the non-triviality of the interac- 
tion is a necessary condition for the non-triviality of the notion of zereknowledge. 

1.3 Previous results concerning interactive proofs 

In section 1.1, we implicitly discussed the classes of languages having k-move 
interactive proof systems (i.e. k message exchanges). Let I P ( k )  denote the class of 
languages membership in which can be proved through a general interaction consisting 
-of k messages, and let R I P ( k )  denote languages proven through the restricted type 
interaction in which the verifier tosses “public coins”. Babai [B] showed that for every 
constant k ,  RIP(k)=RIP(2)  C N P B  for almost all oracles B .  This  means tha t  his res- 
tricted hierarchy collapses. Goldwasser and Sipser [GS] showed that, surprisingly, for 
every k ,  I P ( k )  5 R P ( k  f3). Both the above results say nothing about preservation of 
zero-knowledge by the transformations. 

Several Number Theoretic languages, not known to be in BPP, have been previ- 
ously shown to have zero-knowledge proof systems. The first language for which such a 

proof system has been demonstrated is Quadratic Non-Residuosity (GMR]. Other zero- 
knowledge proof systems were presented in [GMR], [GHY], and [GI. All these languages 
are known to lie in NP n Co -Np . 
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1.4 Our Results 
In this extended abstract ,  we present only our results which are directly related to 

cryptography. For these results, we assume the existence of an arbitrary secure e n c r y p  
tion function. We first show how to prove any NP statement in zero-knowledge. Next 
we use this ability to develop a methodology of cryptographic protocol design. 

We have omitted from this extended abstract our results which are not related to 
cryptography. These result, which do not rely on any assumptions, consists of zero- 
knowledge interactive proof systems for Graph Isomorphism and Graph Non- 
Isomorphism. The  mere existence of an interactive proof system for Graph Non- 
Isomorphism is interesting, since Graph Non-Isomorphism is not known to  be in N P .  
For details see our paper [GMW]. 

1.5 Related Work 
Using the intractability assumption of quadratic residuosity, Brassard and Crepeau 

have discovered independently (but subsequently) zerc-knowledge proof systems to all 
languages in NP [BCI]. These proof systems heavily rely on particular properties of qua- 
dratic residues and d o  not  seem to extend to arbitrary encryption functions. Recently, 
Brassard and Crepeau showed t h a t  iffactoring is intractable then every NP language has 
a “zerc-information” interactive proof system [BC2]. I t  should be stressed tha t  the  pro- 
tocol they proposed constitutes an interactive proof provided that factoring is intract- 
able. In other words, the validity of the interactive proofs depends on an intractability 
assumption; while in this paper and in [BCl] the proofs do not rely on such an assump- 
tion. On the positive side, the  protocol presented in [BC2] is “zerc-information” in the 
following strong sense: for every verifier program V’ there is an algorithm Mv., such 
that the probability distribution generated by M,. (on input x E L )  is ident icd to the 
probability distribution generated by V’ (when interacting with the prover on the  input 

Independently, Chaum [Cha] discovered a protocol which is very similar to the one 
in [BC2]. Chaum also proposed an interesting application of such “zero-information 
prmfs”. His application is to a setting in which the verifier may have infinite computing 
power while the prover is restricted to polynomial-time computations (see also JCEGP)). 
In such a setting i t  makes no sense to have the prover demonstrate properties (s 
membership in a language) to the verifier. However, the prover may wish to demonstrate 
to the verifier t ha t  he “knows” something without revealing what he “knows”. More 
specifically, given a SAT formulae, the prover wishes to convince the verifier t ha t  he 
“knows” a satisfying assignment in a manner that would yield no information which of 
the satisfying assignments he knows. A definition of the notion of “a program knowing a 
satisfying assignment” can be derived from [GMFt]. 

1. 

1.6 Organization of the Paper 

In Section 2 we s ta te  ou r  assumptions, and introduce some conventions. In Section 
3 we show how to use any one-way permutation in order to construct a zero-knowledge 
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interactive proof for any language in Np. In Section 4 we example the cryptographic 
applications of the above result. In Section 5 we outline the fundamental theorems for 
two-party and multi-party cryptographic protocols. 

2. Preliminaries 

Throughout this paper we assume the existence of an arbitrary secure encryption 
schemes in the sense of Goldwasser and Micali [GM]. Such schemes exist if unapproxim- 
able predicates exist [GM]. T h e  existence of unapproximable predicates has been shown 
by Yao to be a weaker assumption than the existence of one-way permutations [y). In 
particular, the infeasibility assumption of factoring (equivalently: the assumption tha t  
squaring modulo a composite integer is a one-way permutation) implies tha t  the  least 
significant bit of the modular square root is an unapproximable predicate [ACGS]. Note 
that the existence of one-way permutation is the basis for most of the works and results 
in “modern cryptography”. See for example [DH, RSA, R1, GM, GMRiv, BM]. 

An encryption scheme secure as in (GM] is a probabilistic polynomial-time algo- 
rithm f that  on input 2 and a random string r ,  outputs an encryption f (z , r ) .  
Decryption is unique, t h a t  is f (z , r  )=/ (y ,s) implies z =y . 
Notations Let A be a set. 

1) 

2) 

Sym ( A  ) denote the set  of permutations over A .  

When writing a E R A ,  we mean an element chosen at random with uniform pro- 
bability distribution from the set  A .  

3. Zero-Knowledge Proof8 for All Languages in NP 

We begin by presenting a zero-knowledge interactive proof for graph 3- 
colourability. Using this interactive proof, we present zero-knowledge proofs for every 
language in Np. 

3.1 A Zero-Knowledge Proof for Graph 3-Colourability 

The common input to the following protocol is a graph G ( V , E ) .  In the following 
protocol, the prover needs only to be a probabilistic polynomial-time machine which gets 
a proper bcolouring of G as an  auxiliary input. Let us denote this colouring by # 
(#:V+{1,2,3}). Let n = I V 1 , m= I E I . For simplicity, let V={1,2 ,..., n } .  

The following four steps are executed m 2  times, each time using independent coin tosses. 

1) The prover chooses a random permutation of the 3-colouring, encrypts it, and sends 
it to the verifier. More specifically, the prover chooses a permutation 
r f  R Sym({1,2,3}), and random rv’s ,  computes R,=f  (4#(v)),rV) (for every 
v E V ) ,  and sends the sequence R ,,R ,..., R ,  to the verifier. 

The verifier chcxxes at random a n  edge e E R E  and sends it to the prover. 

If e =(u , u )  E E then the  prover reveals the colouring of u and v and “proves” 
that they correspond to their encryptions. More specifically, the prover sends 

2) 

3) 
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( T ( + ( u ) ) , ~ , )  and (nff lu)) ,rv)  to the verifier. If e C$ E then the prover stops. 

(The verifier checks the  "proof" provided in step (3)) 
The verifier checks whether R, = f  ( ~ ( q 5 ( u ) ) ~ r ~ ) ,  R,=f ( ~ ( + ( u ) ) , r ~ ) ,  
.(q5(u)) # 7r(q5(u)), and T ( + ( U ) ) , T ( + ( V ) )  E {1,213}. If either condition is violated 
the verifier rejects and stops. Otherwise the verifier continues to the next iteration. 

If the verifier has completed all m 2  iterations then it accepts. 

The reader can easily verify the following facts: When the graph is 3-colourable and 
both prover and verifier follow the protocol then the verifier always accepts. When the 
graph is not 3-colourable and the verifier follows the protocol then no matter how the 
prover plays, the verifier will reject with probability at least (l-rn-l)"'* = exp(-m). 
Thus, the above protocol constitutes an interactive proof system for 3-colourability. 

4) 

Proposition: If f (.;) is a secure probabilistic encryption, then the above protocol con- 
stitutes a zero-knowledge interactive proof system for 3-colourability . 

proof's sketch: It is clear t ha t  the above prover conveys no knowledge to the SPECI- 
FIED verifier. We need however to show that our prover conveys no knowledge to all 
possible verifiers, including cheating ones that deviate arbitrarily from the protocol. 

Let v' be an arbitrary fixed program of a probabilistic polynomial-time machine 
interacting with the prover P , specified by the protocol. We will present a probabilistic 
polynomial-time machine M,,. t ha t  generates a probability distribution which is polyno- 
mially indistinguishable from the probability distribution induced on V' 's tapes during 
its interaction with the prover P .  In fact it suffices to generate the distribution on the 
random tape and the communication tape of V'. 

Our demonstration of the existence of such M,. is constructive: given an interac- 
tive program V ' ,  we use it in order to construct the machine M,,. T h e  way we use 
V' in this construction does not correspond to the traditional notion of (a subroutine) 
reduction [K, C], bu t  rather to a more general notion of reduction suggested in [AHU, 
pp. 373-3741. The  machine M,. monitors the execution of V'. In particular, M,. 
chooses the random tape of V', reads messages from V + ' s  communication tape, and 
writes messages to V 'k  communication tape. Typically, M,. tries to guess which edge 
the machine V' will ask to check. M,. encrypts an illegal colouring of G such tha t  it 
can answer V' in case it (M,.) is lucky. The cases in which M,. fails will be ignored: 
M,, will just rewind V' to the last success, and try its luck again. It is crucial tha t  
from the point of view of V' the case which leads to M,. success a n d  the caae which 
leads to M,. failure are polynomially indistinguishable. 

The machine M,. monitoring V ' ,  starts by choosing a random tape r for v'. 
M,,, places r on i ts  record tape and proceeds in m 2  rounds as follows. 

1) M,. picks an  edge ( t r , v ) E R E  and a pair of integers 
( a , 6 ) ~ ~ { ( i , j ) :  15; # j 5 3 )  at random. M,,. chooses random ri's and 



computes  Ri=f (q , r i ) ,  where ci=O for i E V-{u , v } ,  cu=u and c u = b .  M,. 
places the  sequence of Ri ’s on t h e  communication tape of V’ . 
M,. reads e f rom t h e  communication tape of V’. If e 6 E (V’ cheats) then 
M,. appends t h e  Ri ’s a n d  e to i t s  record tape, outputs  the record tape, a n d  stops. 
If e # (u  , v )  (unlucky for M,.) then M,. rewinds V’ to the  configuration at t h e  
beginning of t h e  cur ren t  round,  and repeats the current round with new random 
choices. If e =(u ,u) (lucky for  M,.) then M,. proceeds as follows: Firs t ,  i t  places 
( a  , r u )  and ( b  , r u )  o n  t h e  communication tape of V’. Second, i t  appends t h e  Ri ’9, 

e , ( u  ,ru) a n d  ( b  , r v )  to i t s  record tape; and finally, it proceeds to the next round.  

2) 

If all rounds are completed then M,. outputs  its record and halts. A technical lemma 
(to be s ta ted  and  proved in t h e  final paper) guarantees tha t  the three possible “answers” 
of the verifier (i.e. e i$E,  e E E - { ( u , u ) }  and e = ( u , v ) )  occur with essentially t h e  
same probability as in t h e  interaction of V’ and the  real prover. Thus ,  t h e  probability 
tha t  the  simulation of a par t icular  round requires more than k’m rewinds is smaller 
than 2-” and M,. te rmina tes  in polynomial time. T h e  only difference between t h e  pro- 
bability distribution of t h e  t rue interactions and the distribution generated by  M,. is 
tha t  the  first contain probabilistic encryptions of colourings while the second contains 
probabilistic encrypt ions of mostly 0’s. However, a second technical lemma (postponed to 
the final paper) asser ts  t h a t  this difference is indistinguishable in probabilistic 
polynomial- time. 

Remark 6: T h e  above  protocol needs m 2  rounds. In the final version of o u r  paper  we 
will present t w o  al ternat ive ways of modifying the above protocol so to get a four-round 
zero-knowledge protocol for  graph  3-colorability. In both modifications t h e  idea  is to 
have t h e  verifier send t h e  prover “encryptions” of all his questions (i.e. which edge he  
wants  t o  check for  each copy of t h e  coloured graph) before the prover sends to t h e  
verifier t h e  corresponding coloured graphs. By this, the  verifier commits himself to a tes t  
before seeing the  encrypted colourings (equivalently, the tests are only a function of t h e  
common input  and  t h e  random coin tosses of the verifier). How can the verifier encrypt 
his questions? T h i s  is t h e  point  in which the two modifications differ. 

1) Assuming t h e  intractabi l i ty  of integer factorization, the verifier encrypts  as follows. 
T h e  prover first randomly chooses a Blum integer N (i.e. a composite integer which 
is the product  of t w o  large primes each congruent to 3 modulo 4). To encrypt  t h e  
bit 0 E {O,l}, t h e  verifier randomly chooses a residue r E Z$ with Jacobi  Symbol  
{--ly, computes  s=r*rnod N ,  sends s to the prover and proves (in zero- 
knowledge) t h a t  he  “knows” a square root of s (consult [FMRW, GMR]) .  Note  t h a t  
even with infinite computing power, the prover can not know Q. To reveal Q, t h e  
verifier presents r . Assuming the  intractability of factoring, the  verifier can not  
“change his mind” a b o u t  u. 

A trivial solution follows by modifying the definition of a n  interactive proof such 
t h a t  the  prover  is also restricted to  polynomial-time computation, and  his 

2) 
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“computational advantage” over the verifier is merely in having an auxiliary input.  
Note tha t  this is the  natural  cryptographic scenario. 

Remark 7: The  above protocol can be easily modified to yield a zero-information proto- 
col tha t  constitutes a proof system if factoring is intractable. The modification consists 
of having the prover encrypt the colouring by using a Blum integers selected by the  
verifier (analogue to (1) in Remark 6) .  More details will be given the final version of our 
paper. 

3.2 Zero-Knowledge proofs for all Languages in NP 
Incorporating the  s tandard  reductions into the protocol of Section 3.1, we get 

Theorem 1: If f (.;) is a secure probabilistic encryption, then every NF’ language has  a 
zero-knowledge interactive proof system. 

Proof: For every language L E NP the protocol incorporates a fixed reduction of L to 
3-colourability. Each par ty  computes the 3-colourability instance from the common 
input, and then the prover proves to  the verifier that  this instance is 3-colourable (using 
the protocol of section 3.1). QED 

Slightly less obvious is the proof of the following Theorem 2 tha t  adapts Theorem 1 
to the cryptographic scenario, in which all players are bounded to efficient computation. 

Theorem 2: If f (.;) is a secure probabilistic encryption, every language in NP has a 
zereknowledge interactive proof system whose prover is a probabilistic polynomial-time 
machine which gets a hip proof as an auxiliary input. 

Proof We would like the  parties to proceed as in the proof of Theorem 1. T h e  problem 
is whether the prover is powerful enough to  execute his role in tha t  protocol. Note tha t  
if the prover is given a colouring of the reduced 3-colourability instance then he can fol- 
low the instructions of the  protocol in Section 3.1. However, the prover is only given a 
NP proof for the membership in an  arbitrary language in Np. The difficulty is resolved 
by noticing tha t  t he  s tandard  reductions used in the protocol efliciently transform also 
the witnesses to the corresponding instances (see details below). 

Most known Karp-reductions have the property that, given a NP-proof to the  origi- 
nal instance, one can easily obtain a “-proof for the reduced instance. Let L l  be a 
language which is Karp-reducible to the language L 2  by the polynomial-time function t . 
Let L E N p  and z E L , then we denote by W ( Z )  a witness for z (i.e. PL(z ,w (z ) )=l ,  
where PL is the  polynomial-time predicate associated to  L ) .  If there exist a 
polynomial-time computable function g such that for every instance z1 E L 1 we have 
w ( t  (21)) = g ( W  (Z 1 ) )  then we say that L is Levin-reducible t o  L 2. (This is “half the  
condition” in the definition of polynomial reducibility as appeared in Levin’s paper 
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“Universal Search Problems” [L].) Thus,  it suffices to verify tha t  the generic reduction to 
SAT, and the “popular” reductions of SAT to 3SAT and of 3SAT to 3C, are all in fact 
Levin-reductions. QED 

Remark 8: Theorem 1 can be generalized t o  show that not only NP is in zero- 
knowledge, but also “probabilistic NP” is. In other words, if f (.;) is a secure prob* 
bilistic encryption, then for every fixed k every language in I P ( k )  has zero-knowledge 
proof systems. T h e  same holds for Theorem 2 and all languages in RIP(L)  (note tha t  
Goldwasser and Sipser’s transformation of IP (k )-protocols to RIP ( k  )-protocols requires 
the prover to  conduct approximate counting). For more details see [GMW]. 

4. Examples of Particular Applications of Theorem 2 

Theorem 2 has a dramatic effect on the design of cryptographic protocols. Typically 
these protocols must  cope with the problem of the parties convincing each other tha t  
they are sending messages which are computed according to the protocol. Such proofs 
should be carried o u t  without yielding any secret knowledge. Since it is alway possible 
to give NP proofs t h a t  the messages are computed properly, we can now give zero- 
knowledge proofs of this fact. Let us demonstrate this point, by using Theorem 2 to  
present simple solutions to three problems, which until recently were considered 
extremely difficult or even impossible. The  more general implications of Theorem 2, are 
outlined in the preceding chapter. 

A central notion in the field of cryptography is tha t  of a secret. By a secret we 
mean a piece of d a t a  tha t  once given can be recognized as the desired one. More for- 
mally, a secret s is recognizable through g ( 8 )  if g is a one-way function. For example, 
the factorization ( p  , q )  of a composite integer N = p  ’p is a secret reccgnizable through 
N .  The  digital signature S u ( m )  of user U to the message m is a secret recognizable 
through the message m and the public-key of U .  

4.1 Oblivious Transfer of Arbitrary Secrets 

The notion of Oblivious Transfer, suggested by Rabin [RZ], has attracted alot of 
attention within the study of cryptographic protocols. An Oblivious Transfer is a two- 
party protocol through which one party (unknowingly) transfers with probability 1/2 a 
large amount of knowledge to his counterpart, and yields no knowledge otherwise [R2, 
EGL]. Initially, the  sender (S) knows a secret s recognizable through g ( s ) ,  and the 
receiver ( R )  knows g ( 3 ) .  If both parties follow the protocol then R gets s with proba- 
bility 1/2. If R follows the protocol then for S ,  the a-posteriori probability tha t  R got 
3 equals the a-priori probability. Rabin required that an attempt by S to  reduce the 
probability tha t  R receives s is detected [R2] with very high probability; while Even, 
Goldreich and Lempel only required that such an attempt is detected with probability 
1/2 [EGL]. 

In the following we will assume tha t  factoring is hard. For the case that the  secret 
is the factorization of a given integer, a protocol satisfying Rabin’s conditions was 



181 

presented by Fischer, Micali, Rackoff and Wittenberg [Fh4RW] (modifying (RZ]). This 
protocol easily extends to arbitrary secrets, but in this c u e  detection of “cheating” is 
only guaranteed with probability 1/2. It has been conjectured tha t  no protocol can meet 
Rabin’s condition (i.e. allow to always detect attempts to reduce the probability of a 
transfer) for arbitrary secrets [EGL]. 

Using Theorem 2, we show tha t  the conjecture in [EGL] is false. The  proposed p r e  
tocol proceeds as follows: First, the sender encrypt the secret s using a randomly chosen 
composite N .  Next, the sender provides the receiver with a zero-knowledge proof tha t  
the encrypted message is indeed the desired secret (note that this is a NP statement). 
Finally, the sender uses the [FMRW] Oblivious Transfer to send the factorization of N 
such tha t  i t  is received with probability 1/2. 

Remark 9: Recently, we presented an Oblivious Transfer protocol based on the security 
of an arbitrary public-key encryption function. 

4.2 Verifiable Secret Sharing 

The notion of a verifiable secret sharing was presented by Chor, Goldwasser, Micali, 
and Awerbuch [CGMA], and constitutes a powerful tool for multi-party protocol design. 
A verifiable secret sharing is a n +I-party protocol through which a sender (S) can dis- 
tribute to the receivers (Ri ’s) pieces of a secret s recognizable through g ( s  ). T h e  n 
pieces satisfying the following three conditions (with respect to 1s I < u  5 n ): 

1) It  is infeasible to obtain any partial information about the secret from any I pieces; 

2) Given any u messages the  entire secret can be easily computed; 

3) Given a piece it is easy to verify that it belongs to a set satisfying condition (2). 
The notion of a verifiable secret sharing differs from Shamir’s secret sharing [Sha], in 
that  the secret is recognizable and that the pieces should be verifiable as authentic (i.e. 
condition (3)). 

We will consider solutions which are polynomial in n and in the security parame- 
ter. The  first solution, presented in [CGMA], relies on M A  (resp. factoring) and works 
for 1 = 0 (log n) (resp. 1 =O (log log n), see also [CGG]). Relying on the difficulty of 
testing quadratic residuosity this solution was improved, independently by [FM] and 
[AGY], to allow I =an and u =(l-a)n for every fixed a<1/2.  Recently, Feldman [F] 
presented a solution allowing u = l  + l j n ,  assuming the intractability of the discrete 
logarithm function. Most of t he  above solutions are conceptually very complicated. 

Combining Theorem 2 with Shamir’s scheme [Sha], we present a conceptually sim- 
ple solution allowing u =I +ls n , assuming the existence of arbitrary one-way permuta- 
tions. To share a secret s E Z, recognizable through g (s), the sender proceeds as fol- 
lows: First, the sender chooses at random a 1-degree polynomial over 2; and evaluates it 
in n fixed points (these are the pieces in Shamir’s scheme). Next, the sender encrypts 
the i t h  piece using the  Public-Key of the i th receiver, and sends all encrypted secrets to 
all receivers. Finally, the sender provides each receiver with a zero-knowledge proof that 
the encrypted messages correspond to the evaluation of a single polynomial over 2; 
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(note that this is a NP statement). 

tability of quadratic residucsity [Bena]. 
Recently, Benaloh has presented a much more efficient solution based on the intrac- 

4.3 Proving that a String is Pseudorandom 

The  notion of a pseudorandom bit generator, suggested by Blum and Micah PM] 
and Yao v], is central to cryptography. A pseudorandom bit generator is an efficient 
deterministic program which stretches a randomly selected n-bit long seed into a longer 
bit sequence which is polynomially-indistinguishable from a random string [BM, Y]. A 
pseudorandom function generator is an efficient deterministic program that uses a ran- 
dom n -bit seed to construct an oracle which is polynomially-indistinguishable from a 
random oracle [GGM]. 

Using Theorem Z1 a party which has selected the seed can present zero-knowledge 
proofs tha t  the sequence/function he is producing/implementing is indeed pseudoran- 
dom. 

5. Two Theorems for Cryptographic Protocols 
In this section, we present an extremely powerful methodology for designing correct 

cryptographic protocols. T h e  methodology consists of etficient “correctness and privacy 
preserving” transformations of protocols from a weak adversary model to the  most 
adversarial model. These transformations are informally summarized as follows 

Informal Theorem A There exist an efficient compiler transforming a protocol P 
designed for n=Zt+1  honest players, to  a cryptographic protocol P’ t ha t  
achieves the same goals even if t of its n players are faulty. Faulty players are 
allowed to  deviate from P’ in an arbitrary but polynomial-time way. 

In the formal statement of the corresponding Theorem, we avoid talking about “achiev- 
ing goals”. The  “goal of a protocol” is a semantic object that is not well understood. 
Instead, we make statements about well understood syntactic objects: the probability 
distribution on the tapes of interactive machines. In the final version of this paper we 
will define the notions of a “correctness preserving compiler” and a “privacy preserving 
compiler”. Both notions will be defined as relations between the probability distribution 
on the tapes of interactive machines during the execution of protocol P (in a weak 
adversarial environment) and the distribution on these tapes during the execution of P ‘  
(in a strong adversarial environment). Loosely speaking, “preserving correctness” means 
that whatever a party could compute after participating in the original protocol P ,  he 
could also compute when following the transformed protocol P ’ , properly. “Preserving 
privacy” means tha t  whatever a set of dishonest players can compute after participating 
in P‘ , the corresponding players in P can compute when sharing their c‘knowledge” 
after participating in P .  Similarly we formalize the following 

Informal Theorem B: There exist an efficient compiler transforming a two-party 
protocol P t h a t  is correct in a fail-stop model, to a cryptographic twc-party- 
protocol P‘ t ha t  achieves the same goals even if one of the players deviates from 
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P’ in an  arbitrary b u t  polynomial-time way. 

The proofs of the  above Theorems make primary use of Theorem 2 to allow a machine 
to “prove” to other machines tha t  a message i t  sent is computed according to the  proto- 
col. In addition, these proofs make innovative use of most of the cryptographic tech- 
niques developed in recent years. Essential ingredients in the proof of Theorem A are the 
notions of verifiable secret sharing and simultaneous broadcast proposed and first imple- 
mented by Chor, Goldwasser, Micali, and Awerbuch [CGMA]. An essential ingredient in 
the proof of Theorem B is Blum’s “coin flipping into the welln !Blu]. 

F u r t h e r  Improvements 

Theorem A constitutes a procedure for automatically constructing fault-tolerant 
protocols, the goal of which is to compute a predetermine function of the private inputs 
scattered among the  players. This  procedure takes as input a distributed specification of 
the function (i.e. a protocol for honest players), not the function itself. It is guaranteed 
that this procedure will ou tpu t  a fault-tolerant protocol for computing this very function 
(i.e. the “correctness” condition) and tha t  the “privacy” present in the specification will 
be preserved. Thus ,  t he  degree of privacy offered by the output fault-tolerance protocol 
depends on the specification, and not on the function to be computed. Furthermore, for 
some functions f it seems to be difficult to write a distributed specification (protocol for 
honest players) which offers the  maximum degree of privacy. 

Recently (see forthcoming paper [GMWS]), we found a polynomial-time algorithm 
which on input a Turing machine specification of a n-ary function f , outputs a proto. 
col for n honest players which offers maximum privacy. Namely, at the termination of 
the protocol, each subset of players can compute from their joint local history only 
whatever they could have computed from their corresponding local inputs and the  value 
of the function. T h u s ,  we achieve for any n-ary function what Benaloh [Bena] has 
achieved for the addition and multiplication functions. 

Combined with the compiler of Theorem A, our algorithm constitutes an automatic 
generator of fault-tolerant protocols. This may be viewed as a completeness theorem for 
fault tolerant distributed computation. 
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