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How to quantify support for and against 
the null hypothesis: A flexible WinBUGS 

implementation of a default Bayesian t test
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We propose a sampling-based Bayesian t test that allows re-
searchers to quantify the statistical evidence in favor of the null 
hypothesis. This Savage–Dickey (SD) t test is inspired by the 
Jeffreys–Zellner–Siow (JZS) t test recently proposed by Rouder, 
Speckman, Sun, Morey, and Iverson (2009). The SD test retains 
the key concepts of the JZS test but is applicable to a wider range 
of statistical problems. The SD test allows researchers to test 
order restrictions and applies to two-sample situations in which 
the different groups do not share the same variance.

Never use the unfortunate expression “accept the 
null-hypothesis.” (Wilkinson and the Task Force on 
Statistical Inference, 1999, p. 599)

Popular theories are difficult to overthrow. Consider, 
for instance, the following hypothetical sequence of 
events. First, Dr. John proposes a seasonal memory model 
(SMM). The model is intuitively attractive and quickly 
gains in popularity. Dr. Smith, however, remains uncon-
vinced and decides to put one of SMMs predictions to 
the test. Specifically, SMM predicts that the increase in 
recall performance due to the intake of glucose is more 
pronounced in summer than in winter. Dr. Smith conducts 
the relevant experiment using a within-subjects design 
and finds the exact opposite, although the result is not 
significant. More specifically, Dr. Smith finds that with 
N  41, the t value equals 0.79, which corresponds to a 
two-sided p value of .44 (see Table 1).

Clearly, Dr. Smith’s data do not support SMMs predic-
tion that the glucose-driven increase in performance is 
larger in summer than in winter. Instead, the data seem 
to suggest that the null hypothesis is plausible and that 
no difference between summer and winter is evident. 
Dr. Smith submits his findings to the Journal of Experi-
mental Psychology: Learning, Memory, and the Seasons. 
Three months later, Dr. Smith receives the reviews, and 
one of them is from Dr. John. This review includes the 
following comment:

From a null result, we cannot conclude that no dif-
ference exists, merely that we cannot reject the null 

hypothesis. Although some have argued that with 
enough data we can argue for the null hypothesis, 
most agree that this is only a reasonable thing to do 
in the face of a sizeable amount [sic] of data [which] 
has been collected over many experiments that con-
trol for all concerns. These conditions are not met 
here. Thus, the empirical contribution here does not 
enable readers to conclude very much, and so is quite 
weak . . . .1

In this article, we outline a statistical method that al-
lows Dr. Smith to quantify the evidence for the null hy-
pothesis versus the SMM hypothesis. More generally, this 
method is appropriate for a test between two hypotheses, 
where one is nested in the other. Our work is inspired 
by the automatic Jeffreys–Zellner–Siow (JZS) Bayesian 
t test that was recently proposed by Rouder, Speckman, 
Sun, Morey, and Iverson (2009). Although the JZS test 
is able to quantify support in favor of the null hypoth-
esis, it does not help Dr. Smith, because the prediction 
of SMM (i.e., the alternative hypothesis) is directional, 
one-sided, or order restricted (e.g., Hoijtink, Klugkist, 
& Boelen, 2008; Klugkist, Laudy, & Hoijtink, 2005). 
In other words, SMM does not merely predict that the 
increase in recall performance differs from summer to 
winter, but it makes the more specific prediction that the 
increase in recall performance is larger in summer than 
it is in winter. The JZS test does not directly apply to this 
scenario. In addition, the JZS two-sample test assumes 
that both groups share the same variance. When this as-
sumption is violated, the test may no longer be reliable, 
a phenomenon that statisticians have studied extensively 
(i.e., the Behrens–Fisher problem; Kim & Cohen, 1998). 
To address these limitations, we have developed a flexible 
sampling-based alternative to the JZS test. This alterna-
tive procedure, which we name the Savage–Dickey (SD) 
test, retains the key concepts of the JZS test but applies to 
a wider range of statistical problems. The computer code 
for the SD test and step-by-step procedures for imple-
menting the program can be found on the first author’s 
Web site, www.ruudwetzels.com.

The outline of this article is as follows. First, we will 
provide the necessary Bayesian background, and then we 
will discuss the statistical details of Rouder et al.’s (2009) 
JZS test. Next, we will explain our own procedure, the SD 
test, and will demonstrate by simulation that it mimics 
the JZS test—for both the one-sample and two-sample 
cases. Subsequently, we will outline two ways in which the 
SD test extends the JZS test. First, the SD test enables re-
searchers such as Dr. Smith to test order-restricted hypoth-
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model over the more complex one (Berger & Jefferys, 
1992; Myung & Pitt, 1997). This fact can be appreciated 
by considering how the components of the Bayes factor 
are calculated. Specifically, both p(D | H0) and p(D | H1) 
are derived by averaging the likelihood over the prior:

 
p D H f D p dH H

H

( ) ( ) ( ) ,| |
 

(3)

where H denotes the parameter space under the hypoth-
esis of interest H, fH is the likelihood, and pH denotes the 
prior distribution on the model parameters . Note that 
a complex model has a relatively large parameter space; 
a complex model tends to have many parameters, some 
of which may furthermore have a complicated functional 
form. Because of its large parameter space, a complex 
model has to spread out its prior probability quite thinly 
over the parameter space. As a result, the occurrence of 
any particular event will not greatly add to that model’s 
credibility. A prior that is very spread out will occupy 
a relatively large part of the parameter space in which 
the likelihood for the observed data is almost zero, and 
this decreases the average likelihood p(D | H ) (Myung & 
Pitt, 1997).

Rouder et al.’s default Bayesian JZS t test. Consider 
the one-sample t test. We assume that the data are normally 
distributed with unknown mean  and unknown variance 

2. The null hypothesis states that the mean is equal to 
zero—that is, H0 :   0. The alternative hypothesis states 
that the mean is not equal to zero—that is, H1 :   0. De-
note by BF01 the Bayes factor in favor of H0 over H1. From 
Equation 3, the separate components of BF01 are given by

 p D H f D p d( ) ( | , ) ( , )| 2 2
0 0 0

2
0

0 0  (4A)

and

 p D H f D p d d( ) ( | , ) ( , ) .| 2 2
1 1 1

2
0  (4B)

These equations feature priors on the model parameters 
(i.e., p0 and p1). Rouder et al. (2009) followed Jeffreys 
(1961) and proposed a prior on effect size   / , in-
stead of on the mean . Specifically, Rouder et al. (2009) 
defined a Cauchy prior on  with location parameter 0 
and scale parameter 1 (i.e., a t distribution with 1 df ) and 
a Jeffreys’ prior (Jeffreys, 1961) on the variance:

 Cauchy(0,1), (5)

and

 p( 2)  1/ 2, (6)

where  denotes is proportional to. This completes the 
specification of H0 and H1. Rouder et al. (2009) then de-
rived Equation 7, below, for the JZS Bayes factor. In this 
equation, t is the t statistic for the one-sided t test, N is the 
number of observations,   N  1 equals the degrees of 

eses (i.e., one-sided t test). Second, the SD test can deal 
with two-sample situations in which the different groups 
do not share the same variance.

Bayesian Hypothesis Testing
In order to keep this article self-contained, we will 

briefly recapitulate the basic principles of Bayesian hy-
pothesis testing (for details, see Kass & Raftery, 1995; 
Myung & Pitt, 1997; O’Hagan & Forster, 2004; Wasser-
man, 2000). First, we will explain the concept of Bayes 
factors, and then we will discuss Rouder et al.’s (2009) 
JZS test, on which our method is based.

Bayes factors. In Bayesian inference, competing hy-
potheses (i.e., statistical models) are assigned probabili-
ties. For instance, assume that you entertain two hypothe-
ses, a null hypothesis H0 and an alternative hypothesis H1. 
Before the data D are seen, these hypotheses have prior 
probabilities p(H0) and p(H1). The ratio of these two prob-
abilities defines the prior odds. When the data D come 
in, the prior odds are updated to posterior odds, which 
is defined as the ratio of posterior probabilities p(H0 | D) 
and p(H1| D):
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Equation 1 shows that the change from prior odds to pos-
terior odds is quantified by p(D | H0) / p(D | H1), the so- 
called Bayes factor. Thus, Equation 1 reads,

 posterior odds  Bayes factor prior odds. (2)

When the Bayes factor is, say, 14, this indicates that the 
data are 14 times more likely to have occurred under H0 
than under H1, irrespective of the prior probabilities that 
you may assign to H0 and H1. When H0 and H1 are equally 
likely a priori, however, a Bayes factor of 14 translates 
directly to posterior probability; here, this means that after 
the data are seen, H0 is 14 times more likely than is H1. Al-
ternatively, one may state that the posterior probability in 
favor of H0 equals 14/15 .93 and the posterior probabil-
ity in favor of H1 is its complement—that is, p(H1 | D)  
1  p(H0 | D) .2

One of the attractions of the Bayes factor is that it fol-
lows the principle of parsimony: When two models fit 
the data equally well, the Bayes factor prefers the simple 

Table 1 
Increase in Recall Performance Due to Intake of Glucose  

in Summer and Winter: A Hypothetical Example

 Season  N  M  SD  

Winter 41 0.11 0.15
Summer 41 0.07 0.23

Note—t  0.79, p  .44.
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samples from posterior distributions. After specifying the 
SD model in WinBUGS, the posterior distribution for ef-
fect size  can be approximated to any desired degree of 
accuracy by increasing the number of samples. Because 
the SD model is relatively simple, we can draw as many 
as one million samples in a matter of minutes.

Step 4: Calculating Bayes factors using the SD den-
sity ratio. To obtain the Bayes factor, we use a method 
that is simple, intuitive, and flexible: the SD density ratio 
method (e.g., Dickey & Lientz, 1970; O’Hagan & Forster, 
2004, pp. 174–177; Verdinelli & Wasserman, 1995). This 
method applies only to nested model comparisons, but it 
greatly simplifies the computation of the Bayes factor: 
The only information that is required is the height of the 
prior and the posterior distributions for the parameter of 
interest (i.e., ) under the alternative hypothesis H1 at the 
point that is subject to test. The reader who is not inter-
ested in the mathematical derivation may safely skip to 
Equation 10.

Let  be the parameter of interest and  the nuisance 
parameter. We assume, as is reasonable in many cases, 
that the conditional density for  is continuous at   0, 
such that 
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This means that the prior for the nuisance parameter in the 
complex model, conditional on , equals the prior for 
the nuisance parameters in the simple model for which 
  0 by definition. We can then write p( H ,   0)  

p( H an equality that holds automatically when the 
prior distributions are specified to be independent.

The foregoing allows us to simplify the marginal likeli-
hood for H  as follows:

 

p D H f D H p H d

f D H

( ) ( , ) ( )

( , ,

| | |

|

0 0
2 2

0
2

0

1
2 0 0

0

2
1

2
0

1

) ( , )

( , ) .

p H d

p D H

|

|
 
(8)

We now apply Bayes’s rule to the results of Equation 8 
and obtain
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Dividing both sides of Equation 9 by p(D | H1) results in
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This result is generally known as the SD density ratio 
(Dickey & Lientz, 1970; O’Hagan & Forster, 2004), and 
it shows that the Bayes factor equals the ratio of the pos-
terior and prior ordinate under H1 at the point of interest 
(i.e.,   0). Note that there is no need to integrate out any 
model parameters, that the only distribution that matters 
is the one for the parameter of interest , and that the only 

freedom, and g represents Zellner’s g-prior (for a detailed 
explanation, see Liang, Paulo, Molina, Clyde, & Berger, 
2008; Zellner, 1986; Zellner & Siow, 1980).

In order to apply this Bayesian t test to two-sample 
designs, Equation 7 needs to be adjusted in three ways: 
(1) Replace the one-sample t value with the two-sample 
t value; (2) calculate N as NXNY/(NX  NY), where X and Y 
denote the separate groups; and (3) calculate  as NX  
NY  2.

Now recall the data collected by Dr. Smith (see Table 1). 
Dr. Smith used a within-subjects design, and hence, a 
one-sample t test on the difference scores is appropriate. 
From the Bayes factor calculator provided on Rouder’s 
Web site,3 we obtain a Bayes factor of 6.08; this means 
that the data are about six times more likely under the null 
hypothesis than under the alternative hypothesis. When 
we assume that both hypotheses are equally likely a priori, 
we can compute p(H0|D), the posterior probability for the 
null hypothesis, as 6.08/7.08  .86.

Unfortunately, the test developed by Rouder et al. (2009) 
does not apply to the problem that confronts Dr. Smith.  
As was mentioned earlier, the SMM predicts that the ef-
fect will go in a specific direction—a direction other than 
the one that is observed in Dr. Smith’s experiment. In 
order to calculate the Bayes factors that are appropriate 
for a one-sided test, we have developed a sampling-based 
alternative test.4

SD: An MCMC Sampling-Based t Test
Calculation of the SD t test involves four steps. The 

associated computer programs can be found on the first 
author’s Web site.

Step 1: Rescaling the data. Prior to the analyses, we 
rescale the data such that one group has a mean of 0 and 
a standard deviation of 1. This scaling does not affect the 
test statistic. For the data from Dr. Smith, for instance, the 
summer mean of 0.07 is subtracted from all observations, 
both in the winter condition and in the summer condition. 
Next, all observations are divided by the summer standard 
deviation. The main advantage of this rescaling procedure 
is that the prior distributions for the parameters hold re-
gardless of the scale of measurement: For our Bayesian 
SD test, it does not matter whether, say, response times are 
measured in seconds or in milliseconds.

Step 2: Defining prior distributions. We follow 
Rouder et al. (2009) and use a Cauchy(0,1) prior for ef-
fect size . For the standard deviation , we use a half-
Cauchy(0,1) (Gelman & Hill, 2007)—that is, a Cauchy(0,1) 
distribution that is defined only for positive numbers. This 
choice for  is reasonably uninformative, but—in contrast 
to Jeffrey’s prior in Equation 6—the distribution is still 
proper (i.e., the area under the distribution is finite).5 For 
the two-sample t test, we specify a Cauchy(0,1) prior for 
the grand mean .

Step 3: Obtaining posteriors using WinBUGS. The 
WinBUGS program6 (Lunn, Thomas, Best, & Spiegelhal-
ter, 2000) uses built-in Markov chain Monte Carlo tech-
niques (MCMC; Gamerman & Lopes, 2006) to obtain 
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Because our SD t test is based on a sampling-based pro-
cedure that relies on the convergence of a stochastic pro-
cess, it is desirable to verify whether the results of the SD 
test coincide with those from the JZS test, which is based on 
an analytical solution. This verification was carried out by 
means of a simulation study, the results of which are shown 
in Figure 2. We simulated 100 data sets by systematically 
increasing the difference between the group means to yield 
a set of 100 different t values. For each of the 100 data sets, 
we then compared the Bayes factor calculated by the JZS 
test with the SD Bayes factor. For all panels, the x-axis gives 
the t statistic, and the y-axis gives the associated posterior 
probability for the null hypothesis, p(H0 | D), derived from 
the Bayes factor under the assumption that H0 and H1 are 
equally likely a priori. Each panel shows the overlap be-
tween the JZS test and the SD test for a specific sample size 
(i.e., N {20,40,80,160}), on the basis of 100 simulated 
data sets. The results demonstrate that for the one-sample 
scenario, the SD test closely mimics the JZS test.

The Two-Sample SD t Test:  
Comparison With Rouder et al. (2009)

The two-sample t test is used to test whether the popu-
lation means of two independent samples of observations 
are equal to each other or not. In experimental psychology, 
the two-sample t test is often used for between-subjects 
designs.

The graphical model for the two-sample t test is shown 
in Figure 3. The graphical model shows that X and Y rep-
resent the two groups of observed data. Both X and Y are 
distributed according to a normal distribution with shared 
variance 2. The mean of X is given by   /2, and the 
mean of Y is given by   /2.

Because   / ,  is given by   . As for 
the one-sample scenario, the null hypothesis puts all prior 
mass for  on a single point—that is, H0 :  0—whereas 
the alternative hypothesis assumes that  is Cauchy(0,1) 
distributed—H1 :   Cauchy(0,1).

To compare this SD test with Rouder et al.’s (2009) JZS 
test, we conducted a simulation study, identical to the one-
sample scenario in all respects except for the number of 

hypothesis that needs to be considered is H1. These are 
considerable simplifications, as compared with the stan-
dard procedure (cf. Equation 4).

Thus, Equation 10 shows that all that is required to 
compute the Bayes factor is the height of the prior and 
posterior distributions for  at   0. The height of the 
prior distribution at   0 can be immediately computed 
from the Cauchy(0,1) distribution. The height of the pos-
terior distribution at   0 can be easily estimated from 
the MCMC samples—for instance, by applying a non-
parametric density estimator (e.g., Stone, Hansen, Koop-
erberg, & Truong, 1997) or a normal approximation to 
the posterior (i.e., parametric density estimation). The 
normal approximation is motivated by the Bayesian cen-
tral limit theorem (Carlin & Louis, 2000, pp. 122–124), 
which states that under general regularity conditions, all 
posterior distributions tend to a normal distribution as the 
number of observations grows large.

Our experience with the SD test suggests that the differ-
ence between nonparametric and parametric estimation is 
negligible. In the work reported here, we choose to use the 
normal approximation because it is computationally more 
efficient. However, it is prudent to always plot the poste-
rior distributions and check whether the posterior ordinate 
at   0 is estimated correctly. For practical applications, 
we also advise the user to use both the nonparametric and 
the parametric estimators and confirm that they yield ap-
proximately the same result.

The One-Sample SD t Test:  
Comparison With Rouder et al. (2009)

The one-sample t test is used to test whether the popu-
lation mean of one particular sample of observations is 
equal to zero or not. In experimental psychology, the one-
sample t test is often used for within-subjects designs, in 
which the scores for two conditions can be reduced to a 
single difference score.

In order to clarify the structure of the one-sample t test, 
we use graphical model notation (e.g., Gilks, Thomas, 
& Spiegelhalter, 1994; Lauritzen, 1996; Lee, 2008; 
Spiegelhalter, 1998). In this notation, nodes represent 
variables of interest, and the graph structure is used to in-
dicate dependencies between the variables, with children 
depending on their parents. Double borders indicate that 
the variable under consideration is deterministic (i.e., they 
are calculated without noise from other variables), rather 
than stochastic. Finally, observed variables are shaded, and 
unobserved variables are not shaded. The graphical model 
for the one-sample t test is shown in Figure 1.

In the graphical model, X represents the observed data, 
distributed according to a normal distribution with a mean 
of X and a variance of 2

X. Because  X/ X, X is given 
by X    X. The null hypothesis puts all prior mass 
for  on a single point—that is, H0 : —whereas the 
alternative hypothesis assumes that  is Cauchy(0,1) dis-
tributed: H1 :  Cauchy(0,1). It is relatively straight-
forward to implement this graphical model in WinBUGS, 
obtain samples from the posterior distribution for , and 
carry out the SD test.

X ~ Normal(
X
,  

X
2)

H
0
: 0

 ~ Cauchy(0, 1)

X
  

X

X
  ~ Cauchy(0, 1)

X
2 X

X

H
1
: ~ Cauchy(0, 1)

Figure 1. Graphical model for the Savage–Dickey one-sample 
t test. Cauchy(0,1)  denotes the half-Cauchy(0,1) defined for 
positive numbers only.
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The top panel of Figure 5 shows the unrestricted prior 
and posterior distributions for  for the data from Dr. Smith. 
Negative values of  indicate that the effect of glucose is 
larger in summer than in winter. From the SD method, we 
can compute the Bayes factor in favor of H0 :  0 ver-
sus the unrestricted alternative H1 :  , instantiated as 
  Cauchy(0,1). Note that the result—BF01  6.08—is 

identical to the Bayes factor that is obtained from the JZS 
test: The data are about six times more likely under H0 than 
under H1.

The middle panel of Figure 5 shows the SD test that ap-
plies to the prediction that Dr. Smith seeks to test—that is, 

groups. The results of this simulation study are shown in 
Figure 4. The results demonstrate that for the two- sample 
scenario, the SD test closely mimics the JZS test.

Extension 1: Order Restrictions
Recall once again the experiment by Dr. Smith (see 

Table 1). The SMM predicted that the effect of glucose 
would be larger in summer than in winter. We now show 
how the SD test can be used to test such order-restricted 
hypotheses, allowing Dr. Smith to quantify exactly the ex-
tent to which the data support the null hypothesis versus 
the alternative SMM hypothesis.
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Figure 2. Comparison between the one-sample Savage–Dickey (SD) values and Jeffreys–Zellner–Siow (JZS) values for vari-
ous sample sizes. The black dots represent the SD values, and the solid line represents the JZS values.

X ~ Normal( /2,  2)

H
0
: 0

 ~ Cauchy(0, 1)

  

2

X

H
1
: ~ Cauchy(0, 1)

Y
Y ~ Normal(  /2,  2)

 ~ Cauchy(0, 1)
 ~ Cauchy(0, 1)

Figure 3. Graphical model for the Savage–Dickey two-sample 
t test. Cauchy(0,1)  denotes the half-Cauchy(0,1) defined for 
positive numbers only.
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When this assumption is false and both groups have un-
equal numbers of observations, results of the JZS t test 
should be interpreted with care.

This complication (i.e., testing for the difference of two 
normal means with unequal variances) is known as the 
 Behrens–Fisher problem, and it is one of the oldest problems 
in statistics. Within the paradigm of p value hypothesis test-
ing, several solutions to the Behrens–Fisher problem have 
been proposed (Kim & Cohen, 1998). These solutions (i.e., 
corrections for unequal variances) have been implemented in 
popular statistical software packages such as SPSS and R.

In order to address the Behrens–Fisher problem, we 
adjusted the SD test in two ways. First, as is illustrated 
in Figure 6, each of the two groups now has its own vari-
ance. Second, the previous relation     no longer 
holds, since we now have two  parameters. We use a stan-
dard solution and calculate the pooled standard deviation 
(Hedges, 1981):

 

1
2

1 2
2

2

1 2

1 1

2

( ) ( )
.

n n

n n  
(11)

After implementing these changes, calculation of the 
Bayes factor proceeds in the same fashion as before.

To illustrate the behavior of the separate variance 
SD Bayes factors, we follow Moreno, Bertolino, and 
Racugno (1999) and apply the tests to hypothetical data 
from Box and Tiao (1973, p. 107). These data have the 
following properties: n1  20, var1  12, n2  12, and 
var2  40. As can be seen from Table 2, the support for 

H0 :  0 versus the order-restricted hypothesis H1 : , 
instantiated as   Cauchy(0,1) , a half-Cauchy(0,1) dis-
tribution that is defined only for negative numbers. In order 
to calculate the height of the order- restricted posterior dis-
tribution at   0, we focus solely on that part of the un-
restricted posterior for which   0. After renormalizing, 
we obtain a truncated but proper posterior distribution that 
ranges from    to   0. Figure 5 shows both the 
half-Cauchy(0,1) prior (solid line) and the truncated poste-
rior (dashed line). The SD ratio at   0 yields a Bayes fac-
tor of BF01  13.75. This means that the data are almost 14 
times more likely under H0 than under the order-restricted 
H1 that is associated with the SMM. When H0 and H1 are 
equally likely a priori, the posterior probability in favor of 
the null hypothesis is about 13.75/14.75  .93, which is 
considered positive evidence for the null hypothesis (Raf-
tery, 1995; Wagenmakers, 2007).

For completeness, the bottom panel of Figure 5 shows 
the SD test for the alternative order restriction. In this 
case, we seek to test H0 :  0 versus H1 : , instanti-
ated as   Cauchy(0,1) , a half-Cauchy(0,1) distribution 
that is defined only for positive numbers. The SD density 
ratio yields a Bayes factor of BF01  3.91, which indicates 
that the data are almost four times more likely under H0 
than under H1.

Extension 2: Variances Free to  
Vary in the Two-Sample t Test

For the two-sample scenario, the JZS test assumes that 
the separate samples share a common unknown variance. 
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Figure 4. Comparison between the two-sample Savage–Dickey (SD) values and Jeffreys–Zellner–Siow (JZS) values for various 
sample sizes. The black dots represent the SD values, and the solid line represents the JZS values.
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Summary and Conclusion
In this article, we have developed an SD Bayesian t test 

that extends the Bayesian JZS t test recently proposed by 
Rouder et al. (2009). Our sampling-based SD test can han-
dle order restrictions and addresses the situation in which 
two groups have unequal variance.

One of the advantages of the SD test is its flexibility; 
for instance, it would be trivial to replace the default priors 
with priors that are informed by previous experiments or 
detailed expert knowledge about the problem at hand. We 
chose to use the Cauchy(0,1) prior for effect size , as 
proposed by Rouder et al. (2009), but many more prior 
distributions are possible. For example, Killeen (2007) 
argued that, on the basis of extensive research in social 
psychology (Richard, Bond, & Stokes-Zoota, 2003), the 
distribution of effect sizes is normally distributed with a 
variance of 0.3.

Another advantage of the SD test, and Bayesian meth-
ods in general, is that they allow for sequential inference. 
As has been stated by Edwards, Lindman, and Savage 
(1963), “the rules governing when data collection stops are 
irrelevant to data interpretation. It is entirely appropriate 
to collect data until a point has been proven or disproven, 
or until the data collector runs out of time, money, or pa-
tience” (p. 193). More concretely, this means that one can 
apply the SD t test and monitor the resulting Bayes factor 
after every new subject, stopping data collection whenever 
the evidence is sufficiently compelling. Note that within 

the null hypothesis decreases as the difference in group 
means increases. The separate variance SD test tends 
to favor the null hypothesis more than does the shared 
variance SD test, although the difference is small. The 
intrinsic Bayes factor (i.e., a default Bayes factor that 
uses minimal training samples and uninformative priors; 
Berger & Pericchi, 1996; Moreno et al., 1999) supports 
the null hypothesis the most. A more detailed treatment 
of the Behrens–Fisher problem is beyond the scope of the 
present article; we include it here only to highlight the 
flexibility of the SD test.
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Figure 5. The prior and posterior distributions of effect size , 
based on the data from Dr. Smith (see Table 1). The top panel 
illustrates the unrestricted Savage–Dickey (SD) test, the middle 
panel illustrates the order-restricted test associated with the sea-
sonal memory model, and the bottom panel illustrates the SD test 
for the alternative order restriction. The dots mark the height of 
the prior and posterior distributions at   0.

Table 2 
Comparison of Savage–Dickey (SD) Bayes Factors With the 

Intrinsic Bayes Factor for Hypothetical Data Reported in Box 
and Tiao (1973, p. 107) and Analyzed in Moreno, Bertolino, and 

Racugno (1999) 

 X Y  BF 01
SD1  BF 01

SD2  BF I
01  

0.00 3.93 3.36 5.00
2.20 2.08 2.16 2.86
4.22 0.45 0.81 0.76
5.00 0.21 0.51 0.40
10.0 0.02 0.02 0.02

Note—BF 01
SD1  denotes the SD Bayes factor using a shared variance, 

BF 01
SD2  denotes the SD Bayes factor using two separate variances, 

and BF I
01 denotes the intrinsic Bayes factor reported by Moreno et al. 

(1999).

X ~ Normal(   /2, 
1
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Figure 6. Graphical model for Rouder’s default Bayesian two-
sided t test with unequal variances.
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NOTES

1. This quote is taken from an actual review.
2. The absolute posterior model probabilities hold only when H0 and 

H1 are the sole two models under consideration.
3. Available at http://pcl.missouri.edu/bayesfactor.
4. There may or may not be an analytical solution to the order-

 restricted problem, and here we do not attempt to derive such a solution. 
Instead, the goal is to illustrate the flexibility of the SD test using the 
order-restricted hypothesis test as an example.

5. This is helpful since WinBUGS does not allow the specification of 
improper priors. In any case, because sigma is a nuisance parameter in 
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6. WinBUGS is easy to learn and is supported by a large community 
of active researchers (see www.mrc-bsu.cam.ac.uk/bugs).

(Manuscript received November 7, 2008; 
revision accepted for publication March 10, 2009.)

 WinBUGS—a Bayesian modelling framework: Concepts, structure, 
and extensibility. Statistics & Computing, 10, 325-337.

Moreno, E., Bertolino, F., & Racugno, W. (1999). Default Bayesian 
analysis of the Behrens–Fisher problem. Journal of Statistical Plan-
ning & Inference, 81, 323-333.

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in model-
ing cognition: A Bayesian approach. Psychonomic Bulletin & Review, 
4, 79-95.

Nosofsky, R. (1986). Attention, similarity, and the identification– 
categorization relationship. Journal of Experimental Psychology: 
General, 115, 39-57.

O’Hagan, A., & Forster, J. (2004). Kendall’s advanced theory of sta-
tistics: Vol. 2B. Bayesian inference (2nd ed.). London: Arnold.

Raftery, A. E. (1995). Bayesian model selection in social research. In 
P. V. Marsden (Ed.), Sociological methodology (pp. 111-196). Cam-
bridge: Blackwells.

Richard, F. D., Bond, C. F. J., & Stokes-Zoota, J. J. (2003). One 
hundred years of social psychology quantitatively described. Review 
of General Psychology, 7, 331-363.

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierar-
chical models with an application in the theory of signal detection. 
Psychonomic Bulletin & Review, 12, 573-604.

Rouder, J. N., Lu, J., Morey, R. D., Sun, D., & Speckman, P. L. 
(2008). A hierarchical process dissociation model. Journal of Experi-
mental Psychology: General, 137, 370-389.

Rouder, J. N., Lu, J., Sun, D., Speckman, P., Morey, R., & Naveh-
Benjamin, M. (2007). Signal detection models with random partici-
pant and item effects. Psychometrika, 72, 621-642.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. 
(2009). Bayesian t tests for accepting and rejecting the null hypoth-
esis. Psychonomic Bulletin & Review, 16, 225-237.

Shiffrin, R. M., Lee, M. D., Kim, W., & Wagenmakers, E.-J. (2008). A 
survey of model evaluation approaches with a tutorial on hierarchical 
Bayesian methods. Cognitive Science, 32, 1248-1284.

Spiegelhalter, D. J. (1998). Bayesian graphical modelling: A case–
study in monitoring health outcomes. Applied Statistics, 47, 115-133.

Stone, C. J., Hansen, M. H., Kooperberg, C., & Truong, Y. K. (1997). 
Polynomial splines and their tensor products in extended linear model-
ing (with discussion). Annals of Statistics, 25, 1371-1470.

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2008). A Bayes-
ian approach to diffusion process models of decision-making. In 
V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th 
Annual Conference of the Cognitive Science Society (pp. 1429-1434). 
Austin, TX: Cognitive Science Society.

Verdinelli, I., & Wasserman, L. (1995). Computing Bayes factors 
using a generalization of the Savage–Dickey density ratio. Journal of 
the American Statistical Association, 90, 614-618.

Wagenmakers, E.-J. (2007). A practical solution to the pervasive prob-
lems of p values. Psychonomic Bulletin & Review, 14, 779-804.


