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Abstract

There are now many methods available to assess the relative citation performance of peer-

reviewed journals. Regardless of their individual faults and advantages, citation-based met-

rics are used by researchers to maximize the citation potential of their articles, and by

employers to rank academic track records. The absolute value of any particular index is

arguably meaningless unless compared to other journals, and different metrics result in

divergent rankings. To provide a simple yet more objective way to rank journals within and

among disciplines, we developed a κ-resampled composite journal rank incorporating five

popular citation indices: Impact Factor, Immediacy Index, Source-Normalized Impact Per

Paper, SCImago Journal Rank and Google 5-year h-index; this approach provides an index

of relative rank uncertainty. We applied the approach to six sample sets of scientific journals

from Ecology (n = 100 journals),Medicine (n = 100),Multidisciplinary (n = 50); Ecology +

Multidisciplinary (n = 25),Obstetrics & Gynaecology (n = 25) andMarine Biology & Fisheries

(n = 25). We then cross-compared the κ-resampled ranking for the Ecology + Multidisciplin-

ary journal set to the results of a survey of 188 publishing ecologists who were asked to

rank the same journals, and found a 0.68–0.84 Spearman’s ρ correlation between the two

rankings datasets. Our composite index approach therefore approximates relative journal

reputation, at least for that discipline. Agglomerative and divisive clustering and multi-

dimensional scaling techniques applied to the Ecology + Multidisciplinary journal set identi-

fied specific clusters of similarly ranked journals, with only Nature & Science separating out

from the others. When comparing a selection of journals within or among disciplines, we

recommend collecting multiple citation-based metrics for a sample of relevant and realistic

journals to calculate the composite rankings and their relative uncertainty windows.

Introduction

Love them or loathe them, ‘objective’metrics designed to measure a peer-reviewed journal’s

performance relative to others are here to stay. Journal rankings and scores are, rightly or

wrongly [1, 2], used ubiquitously now by academic selection panels to assess applicant track

records, by scholars choosing journals to which they will submit their research findings, and by

publishing companies seeking to market their journals [3, 4]. The ISI1 Impact Factor—calcu-

lated as the average number of times the articles from a journal published within the past two
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years have been cited in the Journal Citation Reports year—has, to date, received the most

attention [5] and hence, the most criticism [6–8]. Critics have shown that the Impact Factor

does not compare well among disciplines [9, 10], it tends to increase over time regardless of

journal performance [10, 11], and the methods behind its calculation are not transparent (par-

ticularly, what types of articles are counted). This has led to gaming, and as a result, there have

been many suggested modifications to the algorithm [1, 2, 12–14]. Nonetheless, the Impact

Factor is now entrenched in the psyche of researchers and has arguably changed the dynamic

of journal assessment and bibliometrics more than any other single method [15].

Despite its established dominance, the Impact Factor today has many competitors that are

all, to some degree, based on citation data. These include inter alia ISI’s other metrics such as

the five-year average Impact Factor, the Immediacy Index, Cited Half-life, Eigenfactor Score

and Article Influence Score, plus Elsevier’s Source-Normalized Impact Per Paper, Impact Per

Publication and SCImago Journal Rank, and now Google’s 5-year Hirsch-type [16] index [17]

and its median [18]. It has been shown that these different metrics can deliver vastly different

rankings for individual journals [18, 19] (and see Supporting Information of this paper). No

single metric can be viewed as ideal because some tend to overestimate citations (e.g., Google

Scholar) [20], while others underestimate them (e.g., Web of Science- and Scopus-based met-

rics) [8, 21].

Another issue is the subjective interpretation of journal ‘quality’, for reasons that go well

beyond methodological questions of how to combine or relativize citation performance. This is

because journal reputation amongst peers, its impact on policy and practice, and the quality of

the articles themselves, do not necessarily reflect the number of citations an article or a journal

will ultimately receive [22]. It is for these reasons, and the impossible task of choosing a ‘best’

metric, that journal metrics should only ever be considered as indices of relative, average-cita-

tion performance from within a discipline-specific or personally selected sample of journals

[9]. By itself, the value of a particular journal citation metric is largely meaningless.

Here we describe a simple method to calculate mean metric ranks (and resampled uncer-

tainty bounds) from specific samples of journals, and we provide a simple computer code (R

Programming Language script) to do the calculations. Our results provide a more integrated

and transparent way for researchers, publishers, and employers to judge a journal of interest

relative to any other. We also validate our approach with a journal-ranking survey of percep-

tions of ‘quality’ from 188 publishing ecologists, both to demonstrate the approach’s utility and

to identify its biases.

Materials and Methods

Metrics
There are many existing algorithms used to rank journals. The most well-known are the ISI1

Web of Knowledge (webofknowledge.com) metrics, including Impact Factor (IF): the average

number of times articles from the journal published in the past two years have been cited in the

Journal Citation Reports year; 5-year Impact Factor (IF5): the average IF over last five years;

Immediacy Index (IM): the average number of times an article is cited in the year it is pub-

lished; Citation Half-Life (HL): the median age of articles cited by the journal in the Journal

Citation Reports year; Eigenfactor Score (EFS): is based on the number of times articles from

the journal published in the past five years have been cited in the Journal Citation Reports year,

but it also considers which journals have contributed these citations so that highly cited jour-

nals will influence the network more than lesser-cited journals. References from one article in a

journal to another article from the same journal are removed, so that EFS is not influenced by

journal self-citation [23]; and Article Influence Score (AIS): calculated by dividing a journal’s
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EFS by the number of articles in the journal, normalized as a fraction of all articles in all publi-

cations [23].

Elsevier also produces three journal metrics based on the Scopus1 citation database (www.

journalmetrics.com), namely the Source-Normalized Impact Per Paper (SNIP): the ratio of a

journal's citation count per paper and the citation potential in its subject field (average length

of reference lists in a field to determine the probability of being cited to correct for differences

between subject fields) [24]; Impact Per Publication (IPP): the ratio of citations in a year to

papers published the three previous years, divided by the number of papers published in those

same years [24]; and SCImago Journal Rank (SJR): a measure of scientific influence of schol-

arly journals that accounts for both the number of citations received by a journal and the

importance or prestige of the journals from where such citations come. It is a variant of the

eigenvector centrality measure used in network theory [25, 26].

Finally, Google (scholar.google.com) has entered the journal ranking fray with its 5-year

Hirsch’s (h) index for journals [16] (h5): the largest number h such that h articles published in

the past five years have at least h citations each; and median 5-year h-index (h5m): the median

number of citations for the articles that make up its h5. Here, a journal’s h-index (or any other

citation-based metric) is entirely unrelated to the original and better known h-index of individ-

ual researchers [16].

Using metrics up to 2013, we decided to cull our sample of metrics to five of the most dispa-

rate, to reduce cross-correlations and redundancy. IF and IF5 were strongly correlated, as were

h5 and h5m (S1 Table). Of the three Elsevier metrics (SNIP, IPP and SJR), IPP was the most

redundant (S1 Table). We also excluded EFS and AIS given their redundancy relative to IF

(webofknowledge.com), as well as HL because that metric did not provide exact values> 10.

Although EFS and AIS are arguably more carefully weighted metrics, we used the raw IF in this

analysis because of its ubiquity; the three metrics are also highly correlated (Spearman’s ρ =

0.83–0.93 based on 85 ‘biology’ journals listed in ISI1Web of Science–data not shown).

Our final list of metrics therefore included IF, IM, SNIP, SJR and h5. For h5, we found a

non-random, positive relationship between h5 and the number of articles published that year

(Spearman’s ρ = 0.52 to 0.75; S1 Table), so we divided h5 by log10(n) to standardize it per jour-

nal. Within each sample of J journals, we ranked each journal and each metric from 1 (highest)

to J (lowest) journals using a simple rank function in the R package [27], with ties treated as

mean ranks. We provide all raw metric data for each of the sample journals (see below) in the

Supporting Information.

Sample journals
We selected the ‘top’ 100 Ecology, 100Medicine and 50Multidisciplinary journals in which bio-

logically themed papers are regularly published (our choice of the journal pool was necessarily

somewhat arbitrary, but based on reputation of higher-ranked journals, and historical metrics

like IF5). Each journal in each sample was required to have the full set of metrics we examined,

including total number of articles published in 2013 derived from ISI (n), total number of cita-

tions in 2013 derived from ISI (c), IF (ISI), IM (ISI), SNIP (Elsevier), SJR (Elsevier), and h5

(Google).

We also generated a fourth example set, consisting of 25 journals that were ecology-specific,

but which also included several high-ranking multidisciplinary journals (i.e., a mix of journals

from the Ecology andMultidisciplinary journal sets outlined above). Our rationale was that an

ecologist would consider such a range of journals to which she/he might submit a high-quality

manuscript. The same idea could apply equally to any other discipline, and so is not dependent

on the discipline of ecology per se. Given our particular expertise in ecology, we are confident
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that this list includes a representative and realistic selection of relevant journals in our field

(although the final choice of journals is irrelevant to demonstrate our method’s utility). Finally,

we included two more discipline-specific sets of 25 journals from Obstetrics & Gynaecology,

andMarine Biology & Fisheries. Our aim here was to examine ranks within a specialist disci-

pline (without multidisciplinary journals) to investigate within-subdiscipline patterns.

Ranking uncertainty
We did not apply an a priori weighting to any of the five metrics included; instead we calcu-

lated the mean and standard deviation of each metric’s rank per journal. We calculated a

resampled uncertainty interval (i.e., not a true confidence interval because of the finite sample

of journals considered) of that mean rank by resampling (function sample in the R Program-

ming Language) [27] with replacement a random selection of journals for each of 10,000 itera-

tions [28]. For each journal, we took the 0.025th and the 0.975th quantiles of the resampled

ranks as the uncertainty bounds. We also applied a kappa (κ) limitation to the resampled selec-

tions, whereby we only retained the resampled mean ranks within κσ of the overall average

mean (here we set κ = 2), thereafter recalculating the average and standard deviation of the

mean rank, and repeating the process five times. We used this iterative κσ ‘clipping’ approach

—which is often used in image processing to remove artifacts when stacking sub-frames [29]—

to limit the influence of outliers in estimating the range of mean rank across all 10,000 itera-

tions. It is important to understand that the resulting rank uncertainties do not represent an

estimate of a true statistical parameter because we are only concerned with how much the rela-

tive rank of each journal in the selection performs as journals are included or excluded in the

randomly resampled selections. A ‘true’ combined ranking uncertainty is therefore nonsensical

because presumably one would never be interested in knowing a journal’s specific rank relative

to all other existing journals. In other words, it is a random-sampling procedure only for that

sample. We also verified the resampled ranking by calculating a jackknifed estimate of the rank

uncertainty using the jackknife function in the bootstrap library [30] in R. We provide all the R

script necessary to repeat the analysis in the Supporting Information.

Clustering
To determine whether particular journals within a sample fell into distinct groups, we applied

both agglomerative (function: agnes) and divisive (function: diana) hierarchical clustering

(Euclidean metric, complete linkage clustering of standardized metric values) from the cluster

library in R [31]. Clustering was based on the same five metrics used in the κ-resampled

approach described above. To assess the statistical evidence for any group identified, we further

applied function pvclust from the pvclust library [32] to estimate multi-scale bootstrap resam-

pling probabilities for putative clusters [33]. For further visualization of putative clusters, we

also applied principal components analysis to the standardized metrics using the rda function

in the vegan library [34].

Survey of ecologists for qualitative validation
We designed an online survey using Google Forms (http://goo.gl/forms/5Kqz8OMtBb) aimed

specifically at publishing ecologists of any stage of career. We used targeted email lists and

social media (Twitter, Facebook,WordPress) to encourage participation. We removed any

entries providing an e-mail address not directly associated with a tertiary academic institution,

NGO, government agency or private-sector corporation with research capacity, but retained

no personally identifying information. We also included an ecology-specific ‘validation’ ques-

tion to identify and remove answers from bots and non-ecologists–we also deleted any suspect
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entries based on the answer to that question. In addition to the journal ranking questions (see

below), we asked each participant to provide the stage of their career (Undergraduate; Post-

graduate; Technical Officer; Postdoctoral Fellow; Junior Academic; Senior Academic; Professor;

Other), number of peer-reviewed publications published to date (0; 2–5; 6–10; 11–25; 26–50;

51–100;>100); institution type (University; NGO; Government; Private Sector); gender, and

current country of residence. All participants were aware their responses would be used for

research purposes and published.

For each of the 25 ‘ecology sample’ journals, we asked respondents to classify the journal

into one of the following categories: 1-Elite; 2-Prestigious; 3-Reputable; 4-Respectable; 5-Other.

Although our meaning was an ordinal scale, we were deliberately vague about how a respon-

dent should classify each journal and interpret the category descriptions, asking them to clas-

sify based on instinct and without consulting any specific journal metric. We also did not show

them any of our results on the metric-based calculations. Our intention was to have a journal’s

reputation—in their opinion—guide their selection. To provide a mean rank of the 25 journals,

we calculated the mean and standard deviation of the category values across all (188) vetted

respondents. To examine the effect of publication experience on these survey results and their

correlation to the compound ranks, we subsetted the survey respondents to those with> 50

published articles and repeated the above analyses.

Results

Resampled ranks and clusters
The κ-resampling of the mean ranks across metrics revealed an overlapping series of journal

ranks per disciplinary sample (Fig 1). Using a mean or median provided similar rankings, but

with a few small journal-specific differences (S1 Fig). Ranks were also axiomatically similar

based on the jackknife approach (S2 Fig), although the estimated uncertainty was narrower (S3

Fig) given the low number of journal metrics (5) from which to jackknife. For theMedicine

sample, the greater overall (sample-specific) uncertainty among ranks means that the top-

ranked journals in particular are similar, with no clearly dominant journal within the seven or

so top-ranked journals within that sample. Given the finite sample of journals, the rank uncer-

tainty windows were necessarily wider in the middle of the range (S4 Fig).

The ecology-specific sample of 25 journals (Ecology +Multidisciplinary) yielded another

overlapping ranking (Fig 2A) that diverged for some journals from the resampled mean ranks

derived from the survey of publishing ecologists (Fig 2B). We had a total of 188 verified-ecolo-

gist respondents (49 female, 139 male) from 29 countries (but mainly (69%) from Australia,

USA and UK), with an approximately uniform distribution of career stage (postgraduate to

professor; S5 Fig). Respondents had a wide range of publication experience (0 to> 100 papers),

and were mostly (82%) based in universities (S5 Fig). In particular, the journals Proceedings of

the Royal Society of London B-Biological Sciences, Ecology, Conservation Biology and The Amer-

ican Naturalist had higher mean reputation scores (and corresponding rank position) than

expected from the resampled metric-based mean ranks, and Current Biology, Global Ecology

Biogeography and BioScience had lower-than-expected reputation ranks (Fig 2B). All other

journals fell near to their expected mean resampled ranks (Fig 2B), with a Spearman’s rank cor-

relation of 0.68–0.84 (median = 0.77; based on 1000 random uniform resamples of the rank

uncertainty interval) between the composite metric-based and reputation-based rankings (Fig

2C). Recalculating the rank correlation for only those survey respondents who had

published� 50 articles (n = 58), the results were nearly identical (Spearman’s rank correla-

tion = 0.67–0.83; median = 0.76), but the resampled mean rank uncertainty intervals were

slightly wider (S6 Fig).
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Fig 1. Mean rank (± 95% uncertainty limits) of the top 30 journals for two disparate biological
disciplines: Ecology andMedicine, plus oneMultidisciplinary theme. Journals are ordered by mean rank
of five metrics: IF, IM, SNIP, SJR and h5/log10(n); statistics were estimated using κ-resampling with 10,000
iterations, from a total sample of 100 journals for Ecology andMedicine and 50 journals forMultidisciplinary

(see main text for details). Journal abbreviations follow theWeb of Science standard.

doi:10.1371/journal.pone.0149852.g001
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Fig 2. (A) Mean rank (± 95% uncertainty limits via κ-resampling with 10,000 iterations) of the top 25 journals
within a combined Ecology andMultidisciplinary theme. Journals are ordered by mean rank of five metrics:
IF, IM, SNIP, SJR and h5/log10(n) (see main text for details). (B) Mean rank (± 1σ) of the same journals
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Applying the clustering methods to the ecology sample revealed only two statistically sup-

ported groupings according to function pvclust: (i) Nature and Science and (ii) all remaining 23

journals (Fig 3A). The principal components analysis revealed that 95.3% of the variance was

explained by the first principal component axis (Fig 3B), with only an additional 2.1%

explained by the second principal component axis (Fig 3B), thus confirming the Science/Nature

outliers grouped together using agglomerative and divisive clustering.

The two specialist discipline samples (Obstetrics & Gynaecology andMarine Biology & Fish-

eries) of 25 journals each revealed different patterns of ranking. For the former, there were two

clusters of similarly ranked journals from ranks 2–8 and from ranks 10–19, which tended to

truncate the spread of ranks across the 25 journals (Fig 4). The ranks of the 25Marine Biology

& Fisheries journals were more evenly spread across the spectrum such that there were fewer

obvious clusters of similarly ranked journals (Fig 4).

Discussion

We contend that have designed a more objective and intuitive way than has been previously

available to reflect a composite of relative citation-based ranks from within and among specific

research disciplines, by using a logical combination of metrics that speak to different aspects of

journal caliber. While many other discipline-specific ranking systems have been proposed,

such as those based on total downloads [35], author or editor prestige/publishing behavior

[36–38], library holdings [37], database coverage [37], and econometric analyses of citations

and referencing patterns [39, 40], most suffer from an inability to compare journals across dis-

ciplines, rely on overly complex approaches, or make questionable assumptions and subjective

choices of the component metrics. Further, while some have also proposed using several cita-

tion-based metrics to rank journals (e.g., [41, 42]), our simple approach is the only existing

method that explicitly and quantitatively combines the most relevant citation-based metrics

into a composite ranking with associated, selection-specific uncertainties.

It was not our intention, however, to discuss the relative merits, shortfalls or quality of the

component metrics and the databases from which they are calculated (see [4, 8, 20, 21] for

detailed discussion of metric and database issues). Instead, we have provided a method to com-

bine commonly available metrics that most researchers and academic administrators can easily

access. Our particular example lists of ranked journals in five biology disciplines (Ecology,Med-

icine,Multidisciplinary,Marine Biology & Fisheries and Obstetrics & Gynaecology) represent

novel and useful guides for scientists working in these areas (Fig 1 and Fig 4), and we have pro-

vided the computer script that anyone can use to construct a personal list of journals to rank in

this manner.

Further, by using an independent survey of ecologists from different career stages, institu-

tion types, genders and countries of residence, we demonstrated that the perception of relative

journal reputation is largely captured by the combined resampled journal rankings. Our sample

of respondent ecologists provided a ranking that agreed well with the combined resampled

citation-based rankings with a Spearman’s coefficient of 0.68–0.84. This compares favorably to

a previous validation survey of journal reputation for physicians, where R2 were between 0.62

(practitioners) and 0.83 (researchers) [22] compared to Impact Factors. It is likely that our sur-

vey results are not entirely independent of citation metrics because researchers might be

assessed from a survey of 188 ecologists. Journals above the 1:1 correspondence (45° line) are rated higher
by ecologists than their mean metric would indicate, and vice versa. (C) Overall, there was a Spearman’s
rank correlation of 0.68–0.84 (median = 0.77; based on 1,000 random uniform resamples of the rank interval)
between both rankings. Journal abbreviations follow theWeb of Science standard.

doi:10.1371/journal.pone.0149852.g002

How to Rank Journals

PLOS ONE | DOI:10.1371/journal.pone.0149852 March 1, 2016 8 / 15



Fig 3. Quality groupings derived from similar meanmetrics. Top panel: Agglomerative hierarchical clustering tree for 25 Ecology andMultidisciplinary

journals based on the ranks of five metrics (IF, IM, SNIP, SJR and h5/log10(n)); calculated as a Euclidean metric, complete linkage clustering of standardized
metric values, see main text for details). The clustering methods revealed only two statistically supported groupings: (i) Nature and Science and (ii) all
remaining 23 journals. Bottom panel: Principal components analysis of the same sample of journals based on their mean ranks from the same five metrics.
95.3% of the variance was explained by the first principal component axis, with only an additional 2.1% explained by the second principal component axis.
This confirms the Science/Nature outliers grouped together using agglomerative and divisive clustering.

doi:10.1371/journal.pone.0149852.g003
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Fig 4. Median rank (± 95% uncertainty limits) of 25 journals within two specialist disciplines:Obstetrics & Gynaecology (top panel) andMarine

Biology & Fisheries (bottom panel). Journals are ordered by mean rank of five metrics: IF, IM, SNIP, SJR and h5/log10(n); statistics were estimated using
κ-resampling with 10,000 iterations (see main text for details). Journal abbreviations follow theWeb of Science standard.

doi:10.1371/journal.pone.0149852.g004
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subconsciously influenced by them when responding. Regardless of some inevitable circularity,

it is instructive that citation-based and reputational survey rankings largely agreed, despite

some discipline-specific outliers. Outlier journals themselves might be of interest to researchers

to identify an aspect of journal ‘quality’ that is less dependent on citations than what existing

metrics currently provide.

Others have attempted to compare the citation performance of individuals, fields and

institutions across multiple disciplines, such as dividing citation-based performance by the

total number of citations within a specific discipline [43], comparing individual performance

to discipline-specific h-index confidence intervals [44], standardizing based on citation dis-

tribution functions per discipline [45], or comparing multidisciplinary groups using cluster-

ing-based bibliometric maps [46]. While some of these techniques could potentially be

applied to journal metrics, we are confident that our nonparametric ranking of journals from

within any selection represents one of the simplest and most intuitive ways to compare jour-

nals across disciplines.

There are of course many considerations authors must canvass when choosing where to

submit their papers [15]. In terms of maximizing citation impact, we recommend that

researchers consider collecting multiple citation-based metrics for a sample of relevant and

realistic journals (i.e., in which it is plausible the manuscript could be published)—say for

example, 3–10 journals—and calculate the combined rankings and their uncertainty as we

have demonstrated here (see R code provided in S1 File and S2 File for example data). After

taking into account target audience, journal scope, acceptance probability, handling time [15],

discipline-specific reputation among peers and an appreciation of the journals’ overall ‘quality’

(however objectively or subjectively defined), such relative rankings using combined citation-

based metrics might assist researchers to choose the most pertinent journals for manuscript

submission. Sample journals could also be a mix of specialist and multidisciplinary/generalist

periodicals because our approach takes into account relative rank and not the absolute value of

the metrics themselves.

Supporting Information

S1 File. R Programming Language code (text) for repeating analysis.

(R)

S2 File. Raw 2013 journal citation metric data.

(ZIP)

S1 Fig. Comparison of resampled mean- and median-based rankings (with uncertainty

windows) for each of three samples of journals. Samples include (top) Ecology, (middle)Med-

icine, and (bottom)Multidisciplinary. Solid grey lines indicate 1:1 correspondence (45° line);

dashed black lines indicate least-squares linear fits to the central values.

(TIFF)

S2 Fig. Comparison of mean resampled and jackknife rankings for each of six samples of

journals. Samples include (A) Ecology, (B) Ecology Sample (Ecology and someMultidisciplinary

journals), (C)Medicine, (D)Multidisciplinary, (E) Obstetrics & Gynaecology, and (F)Marine

Biology & Fisheries.

(TIFF)

S3 Fig. Compared journal rankings. Resampled (upper panels) versus jackknife (bottom pan-

els) for each of three journal samples (Ecology,Medicine andMultidisciplinary).

(TIFF)
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S4 Fig. Per-journal rank uncertainty bounds. Rank uncertainty increases nonlinearly through

to approximately halfway through the sample, and decrease thereafter (a characteristic of any

regression fit), due to the imposed limit of 100 journals in each discipline category (50 forMul-

tidisciplinary). Note the greater relative uncertainty for the middle ranks of theMedicine disci-

pline.

(TIFF)

S5 Fig. Ecology survey respondent characteristics (authors are based in Australia).

(TIFF)

S6 Fig. Ecology Sample journal ranks. (A) Mean rank (± 95% confidence limits via κ-resam-

pling with 10,000 iterations) of the top 25 journals within a combined Ecology andMultidisci-

plinary theme. Journals are ordered by mean rank of five metrics: IF, IM, SNIP, SJR and h5/

log10(n) (see main text for details). (B) Mean rank (± 1σ) of the same journals assessed from a

survey of 58 ecologists who had each published� 50 articles. Journals above the 1:1 correspon-

dence (45° line) are rated higher by these ecologists than their mean metric would indicate, and

vice versa. (C) Overall, there was a Spearman’s rank correlation of 0.67–0.83 (compared to

0.68–0.84 for the full 188 survey participants); median = 0.76; based on 1,000 random uniform

resamples of the rank interval) between both rankings. Journal abbreviations follow theWeb of

Science standard.

(TIFF)

S7 Fig. Median rank (± 95% uncertainty limits) of the top 30 journals for two disparate bio-

logical disciplines: Ecology andMedicine, plus oneMultidisciplinary theme. Journals are

ordered by median rank of five metrics: IF, IM, SNIP, SJR and h5/log10(n); statistics were esti-

mated using κ-resampling with 10,000 iterations, from a total sample of 100 journals for Ecol-

ogy andMedicine and 50 journals forMultidisciplinary (see main text for details). Journal

abbreviations follow theWeb of Science standard.

(TIFF)

S8 Fig. Median rank (± 95% uncertainty limits) of 25 journals within two specialist disci-

plines: Obstetrics & Gynaecology (top panel) andMarine Biology & Fisheries (bottom

panel). Journals are ordered by median rank of five metrics: IF, IM, SNIP, SJR and h5/log10(n);

statistics were estimated using κ-resampling with 10,000 iterations (see main text for details).

Journal abbreviations follow theWeb of Science standard.

(TIFF)

S9 Fig. Comparison of median resampled and jackknife rankings for each of six samples of

journals. Samples include (A) Ecology, (B) Ecology Sample (Ecology and someMultidisciplinary

journals), (C)Medicine, (D)Multidisciplinary, (E) Obstetrics & Gynaecology, and (F)Marine

Biology & Fisheries.

(TIFF)

S1 Table. Spearman’s ρ correlation matrix for the individual metrics used to develop the

composite ranking. n = total number of articles published in Journal Citation Reports (JCR;

2013) year; cites = total number of citations to the journal in the JCR year; h5 = Google 5-year

h-index; h5m = median Google 5-year h-index; IF = ISI1 Impact Factor; IF5 = ISI1 5-year

Impact Factor; IM = ISI1 Immediacy Index; SNIP = Elsevier1 Source-Normalized Impact

Per Paper; IPP = Elsevier1 Impact Per Publication; SJR = Elsevier1 SCImago Journal Rank.
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