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In information based systems, the integrity of the 

information (from unauthorized scrutiny or disclosure, 

manipulation or alteration, forgery, false dating, etc.) is 

commonly provided for by requiring operation(s) on the 

information that one or more of the participants, who know 

some private piece(s) of information not known to all of the 

other participants, can carry out but which (probably) can't 

be carried out by anyone who doesn't know the private infor- 

mation. Encryption/decryption in a single key cryptoalgor- 

ithm is a paradigm of such an operation, with the key being 

the private (secret) piece of information. Although it is 

implicit, it is almost never stated explicitly that in a 

single-key cryptographic communications link, the transmit- 

ter and the receiver must unconditionally trust each other 

since either can do anything that the other can. 

a system are trustworthy, so long as there exists at least 

one identified unconditionally trustworthy element (indi- 

vidual or device), it is generally possible to devise proto- 

cols to transfer trust from this element to other elements 

of Unknown trustworthiness to make it possible for users to 

trust the integrity of the information in the system even 

though they may not trust all of the elements. A paradigm 

for such a protocol is the cryptographic key distribution 

system described in ANSI X9.17 which makes it possible for 

Even if it can't be assumed that all of the elements in 
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users who have had no previous contact, nor any reason to 

trust each other, to trust a common cryptographic session 

key because they each unconditionally trust the key distri- 

bution centers (KDC) . 
The more common (and hence the more realistic) situation 

is that there are no identified unconditionally trustworthy 

elements in a system. Instead, the most that can be assumed 

is that while any specific element may be suspect, i.e., 

possibly subject to either deliberate or inadvertent compro- 

mise, and hence untrustworthy insofar as the faithful execu- 

tion of the part of the protocol entrusted to it, that there 

are some (unidentified) elements in the system which are 

trustworthy. Under these circumstances there is apparently 

only one way to improve the confidence one can have in the 

integrity of the system over the confidence one has in the 

integrity of the individual elements, and that is by intro- 

ducing some form of redundancy. To protect against random 

failures of devices, this is commonly achieved by parallel 

or by series-parallel’ operation of redundant elements or by 

even more complex logical interconnections. In the case of 

individuals, though, since the failure may be both deliber- 

ate and clandestine, redundancy typically takes the form of 

requiring the concurrence of two or more knowledgeable per- 

sons to carry out an action. A paradigm for this would be 

the well-known two-man control rule for access to, or the 

Control of, nuclear weapons. The k-out-of-l shared secret 

or threshold schemes first discussed by Blakley [lo] and 

Shamir 1333, and subsequently by numerous other authors [see 

the bibliography], are a natural generalization of this 

concept. In fact, shared secret schemes exist that are 

adequate to the task of insuring shared capability if all 

that is needed is a simple k-out-of-l participation for the 

reconstruction of a secret piece of information essential to 

the system functioning. Ideally, any collusion of k-1 or 

fewer of the holders of information -- even if they pool 
their private pieces of information in an effort to cheat 



392 

the system -- should have no better chance of success than 
an outsider who knows no private information at all. 

Schemes in which this latter condition holds have been char- 

acterized as "perfect" by Stinson [ 3 3 , 3 4 ] .  We merely remark 

that several perfect k-out-of-l shared secret or threshold 

schemes have been described in the literature. Many of 

these schemes are also unconditionally secure in the sense 

that the security they provide is independent of the comput- 

ing time or power that an opponent may bring to bear on 

subverting the system, or, put in another way, even with 

infinite computing power would-be cheaters can do no better 

than guess (with a uniform probability distribution on the 

choices available to them) at the secret. If the secret is 

a function (such as one of the coordinates, or the largest 

coordinate, or the norm of the coordinates, etc.) of a 

(secret) point in some n-dimensional vector space over a 

finite field GF(q), then by choosing q large enough we can 

make the system be as secure as we wish for an arbitrary 

k < I. These are "plain vanilla" shared secret schemes for 

which several implementations have been devised [see the 

references flagged with an * in the bibliography]. Conse- 

quently, there is no difficulty in providing (and imple- 

menting) simple shared secret schemes for arbitrary choices 

of k and I and f o r  any desired level of security. 

erably more in the way of capabilities in shared secret 

schemes than a simple k-out-of-I concurrence for an action 

to be initiated. 

first enumerate and briefly describe eight of these extended 

capabilities and then (in compliance with the unanimous 

recommendation of the reviewers) describe in detail how to 

realize only one class of these extensions in order to keep 

the length of this paper within reasonable bounds. 

Real-world applications, however, require rather consid- 

In this paper we will do two things: 
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Capabilities Reauired for Various "Reall@ ADvlications of 

Bhared Secret Schemes 

The new capabilities (over and above the simple 

Compartmentedzki-out-of-li shared secret schemes in 

k-out-of-l shared secret schemes) are: 

which the private information is partitioned in such 

a way that reconstruction of the secret requires a 

specified level of concurrence by the participants in 

some specified number (perhaps all) of the compart- 

ments (ki concurrence is required of the members of 

the ith compartment). 

Multilevel2 ki-out-of-li shared secret schemes in 

which the private information is partitioned into two 

or more levels (classes) in such a way that concur- 

rence of the specified number of participants at any 

one of the levels will permit the secret to be recon- 

structed (ki concurrence by the members of the ith or 

higher levels is required). 

schemes, i.e., schemes in which the value of a pri- 

vate piece of information to the reconstruction of 

the secret depends only on its functional relation- 

ship to other pieces of private information, and not 

on its information content (in an information theo- 

retic sense). 

Extrinsic as opposed to intrinsic shared secret 

Prepositioned shared secret schemes in which the 

holders of the private pieces of information are 

unable to recover the secret information, even if 

they all collude to do so, until such time as the 

scheme is activated by communicating additional 

information. 

Prepositioned shared secret schemes in which the same 

collection of private pieces of information can be 

2. Ye have adopted s t M d e r d  secur i ty  terminology in uhich i n f o m t i o n  i s  c t a s s i f i d  i n t o  Levels 
( c l a s s i f i c a t i o r u )  and i n t o  c m p a r t m t s  (need t o  knou) t o  describe the tua types of  psrt i t imiW 
Of the p r i v a t e  pieces of  i n f o m t i o n  i n  a s h a r d  secret rcharr.  
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used to reveal different secrets depending on the 

choice of the activating information. 

information to a confidence of z l-pd, where Pd is 

the probability of guessing the secret. 

Tolerance of erroneous inputs of some number, s, of 

the private pieces of information, i.e., the correct 

secret information will be calculated even though s 

of the inputs are in error, where s is a design 

parameter. 

A cryptographically secure mnemonic technique to make 

it possible for the participants to recover a private 

piece of information that they can't remember using a 

piece that they can. 

Proof of correctness of the reconstructed secret 

It is easy to conceive of situations in which it might 

be desirable that some action require a preselected level Of 

concurrence by two or more parties in order for the action 

to be executed. For example, a treaty might require that 

two out of a Russian control team and two out of a U. S. 

team agree that the controlled action is to be taken before 

it could be initiated. What is different about such a com- 

partmented scheme from the simple k-out-of-l schemes, is 

that no matter how many of the participants of one nation- 

ality (compartment or part) concur, the action is to be 

inhibited unless the preselected number of the other nation- 

ality also concur. Clearly, there is nothing special about 

partitioning the private information into only two parts 

(compartments). The specific application will determine how 

many parts are needed to effect the type of concurrence 

desired. 

In Animal Farm, George Owell's animals have a slogan 

"All animals are equal, but some animals are more equal than 

others" which is certainly descriptive of the apportionment 

of authority in most organizations. while it is not true, 

for example, that two members of the Joint Chiefs of Staff 
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equal one President, it is easy to conceive of circumstances 

in which the President might wish to delegate authority to 

the Joint Chiefs to initiate some action vith the proviso 

that "If two of you agree that the circumstances warrant, 

then this is what you should do...." 

there are also plausible scenarios in which the concurrence 

of larger numbers of persons vith lesser authority (and res- 

ponsibility) could act in the stead of smaller numbers of 

higher authority. For example, it might well be the case 

that any senior officer of a bank can authorize an elec- 

tronic funds transfer up to some specified limit, but that 

in the absence of a senior officer, any two senior tellers 

could do so, etc. The point is that authority in the real 

world is typically different for different classes (levels) 

-- like it or not -- and that consequently control schemes 
for information, i.e., shared secret schemes, need to 

reflect this class structure. We describe such schemes as 

multilevel ki-out-of-li schemes, where realistically the 

number of levels is small and the values of the ki are 

determined by the requirements of the application. 

notion of a hierarchy of shared secret schemes was already 

anticipated in Shamir's paper, but in a form (intrinsic) 

that as we shall see has very serious deficiencies for real- 

world applications. 

pieces of information are grouped into classes (levels) such 

that the private information one class has is more (or less) 

valuable in recovering the secret than that which another 

class has. In all of the perfect shared secret schemes that 

we know of, the private pieces of information are not used 

to directly reconstruct the 'secret" itself but instead are 

used to reconstruct an algebraic variety (a line, a plane Or 

other linear eubspace in many of the previously reported 

schemes but more generally complex varieties defined by 

polynomial constraints in an n-dimensional space) whose 

description, i.e., precise specification, is unknown to the 

On the other hand, 

The 

In a multilevel system, the persons holding the private 
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holders of the private information. If there were no other 

constraints, a multilevel system would be trivial to realize 

for any set of ki, since a simple shared secret scheme is 

possible for each ki. To realize a multilevel system, the 

ith class could simply have its own separate and distinct 

ki-OUt-Of-li shared secret scheme. 

in some applications, but not in general. If, for example, 

a bank vault can be opened by either two VP's or three 

senior tellers, it would probably be unacceptable that one 

VP and two senior tellers not be able to open it. If the 

capabilities (private pieces of information) of members of 

the more privileged classes are to be usable when they 

cooperate with members of other less privileged classes, 

then the schemes are forced to be functionally related. We 

know how to do this in two ways, which leads into the dis- 

cussion in the next paragraph of extrinsic and intrinsic 

shared secret schemes. 

This might be acceptable 

To illustrate an intrinsic shared secret scheme, assume 

that we have a 4-out-of-l scheme in some n-dimensional space 

over GF(q). The private pieces of information are points in 

the space, i . e . ,  n-tuples over GF(q), chosen so that any Set 

of four Of these points suffice to define the secret but any 

set of three or fewer will provide no information whatsoever 

about the secret. Clearly we could construct a 2-out-of-l 

class by making the private pieces of information for the 

members of this more privileged class consist of pairs of 

the points out of the original set, i.e., two n-tuples. In 

fact, this is how Shamir proposed to realize what he called 

hierarchical control schemes. This type of construction of 

the private pieces of information is what we call an intrin- 

sic scheme in which the value of a piece of private informa- 

tion (i.e., its contribution toward recovering the secret 

information) is internal to the private information itself. 

In an information theoretic sense, the more privileged 

pieces of information are more valuable simply because they 

contain more information about the shared secret. This 
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means that the most privileged members would be responsible 

for the largest amounts of private information, and in the 

case of several levels with widely differing ki perhaps 

responsible for infeasibly much information for them to 

handle (securely). Such hierarchical schemes have been 

discussed before, not only by Shamir (321, but by Ito, et 

al. [23], and other authors. 

In an extrinsic scheme all the private pieces of infor- 

mation are alike in an information theoretic sense, say the 

coordinates of a single point in some n-dimensional space, 

and its value in recovering the secret is determined not by 

anything internal to that piece of information but rather by 

the functional relation between that particular piece of 

private information (point) and the private pieces of infor- 

mation (points) held by the other participants. In other 

words, the value is determined by something external to the 

private pieces of information. An extrinsic scheme does not 

penalize the more privileged classes by requiring them to 

handle more information than members of less privileged 

classes. 

Prior to the results described here, there was no means 

known to realize either extrinsic multilevel control schemes 

or compartmented (multipart) schemes. Ito, Saito and 

Nishizeki [23] had devised an intrinsic general access con- 

trol scheme which, however, can not be extended to an 

extrinsic scheme and all (k,l) threshold schemes can be 

adapted in an obvious way to intrinsic (hierarchical) 

multilevel schemes similar to those Shamir proposed [32]. 

In a prepositioned shared secret scheme, say a simple 

k-out-of-l scheme, the I pieces of private information can 

all be placed in the hands of the participants in advance of 

when the scheme will be needed; with the added property that 

Until the scheme is activated by providing some additional 

information, that even if all I of the private pieces of 

information were to be exposed in violation of the protocol, 

the secret would not only not be exposed but it would be 



398 

just as unlikely to be recovered, i.e., just as secure, as 

if none of the private pieces of information had been com- 

promised. 

made available does the system become activated, after which 

any set of k of the pieces of private information will allow 

the secret to be recovered. It is worth remarking that 

there is a trivial realization of a prepositioned shared 

secret scheme by simply making l = k-1, i.e., by designing a 

k-out-of-l shared secret scheme, in which all of the private 

pieces of information when taken together are inadequate to 

recover the secret, but such that one more piece (the acti- 

vating information) is required. We are not interested in 

such schemes since they fail to meet the most fundamental 

requirement of k-out-of-n systems, namely, avoiding the 

necessity to have to bring together a designated set of k 

private pieces of information in order to reconstruct the 

secret information. The main reason for being interested in 

prepositioned shared secret schemes is that the (relatively) 

large quantity of private information can be disseminated, 

authenticated, etc., in times of low stress and easily 

available communication and the small quantity of informa- 

tion needed to activate the scheme can be communicated under 

extreme duress -- such as a state of advanced alert for the 
military or even the outbreak of war. 

up a prepositioned shared secret scheme, i.e., preposition- 

ing the private pieces of information, with the additional 

property that there are several activating pieces of infor- 

mation available, each of which would lead to the recovery 

of a distinct secret piece of information. This could be a 

very valuable characteristic in some military applications 

where there are several different actions -- any one of 
which higher command might wish to enable -- but subject to 
a k-out-of-l shared secret control in execution. The basic 

idea is that one needn't change the private pieces of infor- 

mation (which would require a great deal of communication, 

Only when the additional piece of information is 

A relatively new discovery is the possibility of setting 
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authentication, etc., and presents an enormous human factors 

problem) in order to change the secret protected by the 

shared secret scheme. 

If the consequence of exercising a shared secret scheme 

is immediate -- for example, if after the VP's enter their 

private pieces of information, the bank vault door either 

opens or it doesn't -- then there is no need to provide a 
supplemental indication that the correct value for the 

secret has been recovered. If however the effect is dis- 

tant, in either time or  physical location, then it may be 

vital to the acceptability of the scheme that the partici- 

pants have an immediate indication that the correct value of 

the secret has been reconstructed. If, f o r  example, a 

shared secret scheme is to be used to control the enabling 

of a warhead in a missile, it is clearly desirable to have a 

confirmation that the correct value has been entered prior 

to launch as opposed to learning that the weapon had not 

been enabled after its arrival at the target. Providing an 

indication that the correct secret has been reconstructed is 

similar to the function of error detecting codes which, in 

probability, indicate when a received code word is in error, 

although we hasten to add that the functions are not iden- 

tical. This last remark requires more discussion than is 

appropriate to an abbreviated description of the extended 

capabilities for shared secret schemes, but basically it is 

possible to cause a shared secret scheme to indicate when it 

has reconstructed the correct secret even though the secret 

itself was unknown prior to the reconstruction (and not 

available from any other source for direct comparison after 

reconstruction to determine its validity). This is Similar 

to being able to verify a digital signature without being 

able to utter one. In general (but not in all cases which 

is the basis of the preceding remark), this costs one more 

piece of private information to achieve than is necessary 

for a simple shared secret scheme, i.e., k + l  instead of k 

inputs of private pieces of information. 
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If the capability discussed in the preceding paragraph 

was only similar in function to error detecting codes, the 

capability of recovering from erroneous inputs of private 

pieces of information is precisely the same as the function 

of error correcting codes. In other words, we can design 

shared secret schemes so that up to s of the inputs can be 

in error and not only will the correct value for the secret 

be found, but if we desire, a proof of correctness can be 

output to show that the right value has been reconstructed. 

Clearly this cannot be done for free, since if only k inputs 

are needed and s can be in error, k-s of the participants 

could collude and input their correct private pieces of 

information, after which any s random inputs would suffice 

to recover the secret. Roughly speaking (not so roughly as 

a matter of fact since the result is true within one 

required input) k+s+l inputs of private pieces of informa- 

tion are needed to guarantee k-concurrence (i.e., k-man 

control), recovery from s erroneous entries, and a positive 

indication of the correctness of the secret value recovered. 

Several authors have addressed the problem of detecting 

cheating (falsified inputs) in a secret sharing or threshold 

scheme [13,16,17,28,36]. McEliece and Sarrwate [28] 

actually construct a secret sharing scheme based on a Reed- 

Solomon error detecting and correcting code which can toler- 

ate s incorrect entries. In their construction any set of 

k + 2s participants (holders of private pieces of informa- 

tion) will be able to correctly reconstruct the secret so 

long as at most e of the inputs are incorrect or falsified. 

Tompa and Woll [36] give a construction for an uncondition- 

ally perfect k-out-of-l shared secret scheme. In both of 

these constructions the participants will (probably) be able 

to tell that cheating has occurred, but they cannot neces- 

sarily determine who the cheaters are. The combinatorial 

scheme of Brickell and Stinson [13] is also an uncondition- 

ally perfect k-out-of-l scheme which also has the property 
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that the cheater(s) will be identified in the process (with 

high probability). 

Finally, in this list of capabilities, if k-1 inputs of 

correct private pieces of information are to provide no 

information whatsoever about the secret information, then 

every other piece of private information must appear com- 

pletely random even though k-1 pieces are known. This says 

that an unknown n-tuple, if the setting is in an n-dimen- 

sional space over some GF(q), must itself appear random, not 

in all n coordinates, but effectively in Q of them if the 

secret is a dimensional; by which we mean that the equivo- 

cation about the secret must be the same as the uncertainty 

of guessing a point in an a-dimensional space over GF(q). 

must be large enough to provide the desired level of secur- 

ity against random picking of points. 

tational standards, 56 bits is regarded as barely large 

enough to be secure, witness the continuing debate over the 

long-term security of the DES, but 100 bits is unquestion- 

ably secure against a brute-force search of the key space. 

However even the modestly secure limit of 100 bits is a 20 

alphanumeric character string that must appear totally ran- 

dom by the remarks above, which is beyond anyone but a stage 

memory expert's ability to recall. Since shared secret 

schemes are not communication channels, the standards for 

the security of a communications cryptographic key do not 

necessarily apply. But even at 56 bits or 12 alphanumeric 

characters as required for a DES key, it is still impossible 

for most people to recall a random string of this length as 

their private piece of information. Fortunately, there 

exists an approved mnemonic technique for generating a one- 

time key of sufficient length, using easily remembered pri- 

vate phrases or verses, to permit the secure recovery of 

something that can't be remembered (the random appearing 

private piece of information) from something that can (the 

private phrase). 

q 

By present-day compu- 
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There are a great many other technical aspects of shared 

secret schemes which need to be considered, however the main 

ones which we have been able to identify that affect the 

operational acceptability of these schemes have been des- 

cribed here. 

The Basic Construction for Shared Secret Gchemes 

We illustrate the essential elements in the construction 

of shared secret schemes using the simplest possible exam- 

ple: a 2-out-of-l scheme. L e t  the secret be a single 

numerical value, i.e., having a l-dimensional uncertainty, 

which is equivalent to the identification of a point, p, on 

a line, q. 

... P L d  
0 . 0  

Figure 1. 

If we now consider La to be embedded in the projective plane 

PG(2,q), and randomly choose any other line, Li, in the 

plane, Li z La, then the private pieces of information can 

be taken to be distinct points on Li, none of which are the 

point p. Li is kept secret, only the fact that such a line 

exists, etc., is public knowledge. For the purposes of this 

paper, Ld will be assumed to be known a priori. 

applications in which this is not the case, but we will not 

have time to discuss them here. 

There are 

Y 

Figure 2. 
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Any pair of points on Li determine the line and thence its 

intersection with La; the point p. On the other hand, know- 

ing any one of the points, q, on Li leaves p totally unde- 

termined since for each choice of a point, r, on La there 

exists a unique line <q,r> lying on q and r which could 

(with equal probability) be the unknown line Li -- in which 
case the (secret) point of intersection of Li with La would 

be the arbitrary point r. 

equally likely candidate to be the secret point p given 

either no knowledge of the private pieces of information 

(points on Li) or else of only one private piece. 

example, since p could (equally likely) be any point on the 

line, Pd = l / q + l ,  while the number of participants, 1 ,  can 

be as great as g, i.e., any point on Li other than p could 

be used as a private piece of information. 

It should be remarked that the point p, although it is 

unknown in advance of the 2-out-of-P scheme being exercised, 

is not itself the secret. The secret is recovered by eValU- 

ating a predesignated function, f, at the point p: f could 

be as simple as one of the coordinate values of p or the 

distance of p from some reference point or it could be a 

much more complex function. Whatever the function is, it is 

assumed to be known a priori so that as soon as p is deter- 

mined, so is the secret. There are restrictions on f that 

must be satisfied in order for it to be suitable for this 

sort of application. For example, if f were a simple parity 

check (on the coordinate values) mapping the points on Ld 

into the set (O,l), then the uncertainty about the secret 

would be at most one bit irrespective of how many different 

Values p could take. For our purposes, we assume that f 

conserves entropy, i.e., that the uncertainty about f(p) is 

the same as the uncertainty about p. 

Therefore every point on Ld is an 

In this 

Returning to the simple example shown in Figure 2 ;  p was 

an (unknown) point in a larger set -- all of the points on 
the line La. The secret revealing function, f, is defined 

(at least) on all of the points in Vd and as mentioned 
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above, conserves entropy. It is worth noting that it is 

immaterial (to the secret sharing scheme) whether f is also 

defined for points in the plane not on u. In our construc- 
tion of shared secret schemes, the line will be replaced 

by a more general type of geometrical object -- an algebraic 
variety, Vd, in some n-dimensional space: i.e., the set of 

points in satisfying a set of specified polynomial con- 

straints. This collection of points, any one of which could 

be the unknown point p, we will refer to as the domain (var- 

iety) for the function f hence the notation Vd. The line Li 

can be thought of as t*pointing** to the point p in La. In 

the most general formulation, the private pieces of informa- 

tion (points in the n-dimensional space) suffice to define a 

second algebraic variety, Vi, whose function it is to 

ttpoint" to the point p in Vd. We will say that Vi is the 

indicator (variety) using the term indicator with its pre- 

ferred meaning of pointing to or indicating a specific item, 

i.e., of pointing to the point p.  p we will call the index. 

Without saying precisely how the private pieces of informa- 

tion determine the indicator, pictorially our shared secret 

schemes are of the form: 

domain (variety) n 
Figure 3 .  

where Vi and Vd are two algebraic varieties having only the 

single point p in common. 

line in Figure 3 to emphasize the fact that it is pointing 

to a unique point in Vd, but in general it can be any 

The indicator Vi is shown as a 
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algebraic variety satisfying the conditions for a shared 

secret scheme. Xn order for the scheme to be acceptable, we 

will also require that any compromise (collusion) of less 

than the required number and types of private pieces of 

information will leave every point in vd an equally likely 

candidate to be the unknown point p. As mentioned earlier 

Stinson has characterized shared secret schemes meeting this 

latter condition as perfect [33,34] and we will adopt that 

terminology also. 

Figure 4. 

An example of a perfect 3-out-of-l scheme is shown in 

2 

Y 

Figure 4. 

The private pieces of information are points in general 

position in the indicator (plane) Vi, i.e., none of them are 

p and no three (including p) are collinear. The domain is 

the set of points on the line vd. f could be any entropy 

COnSeFJing function defined on the points in Vd, say the 

value of the z-coordinate if vd is chosen not to lie in a 

plane perpendicular to the z axis. To see that this scheme 

is perfect, consider the case in which two holders of pri- 

vate pieces of information collude in an attempt to cheat 

the system. The two points that they know defines a line, 

1 ,  in vi which does not intersect Vd. Given any point r on 

Vd there exists a unique plane <1,r> lying on P and 1: which 
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is equally likely to be the unknown variety Vi as that 

determined by any other point on Vd. Consequently, for this 

collusion all points on Vd are equally likely candidates to 

be the unknown point p, and the scheme is perfect. 

worth remarking about the construction of Figure 4 that 

while the secret can be any one of q+l points on the line, 

Vd, so that the security of the scheme is Pd = l / q + l ) ,  the 

number of participants, I, could be as great as q or q+l  

depending on whether q is odd or even, respectively. This 

follows from the well known result that the maximum number 

of points that can be selected in the plane PG(2,q)  such 

that no three of them are collinear is a set of q+l points 

on a conic (plus the nucleus of the conic of q is even) and 

that the point p is neither collinear with any pair of the 

private points nor equal to any one of them. The point of 

the remark is that while we wish to make Pd be small, i.e., 

for the scheme to be secure, which requires that q be very 

large, I is normally quite small. There is a price exacted 

for this unused capacity as we shall see later. 

ceeds in two steps. First we must find two families of 

algebraic varieties which intersect pairwise in single 

points, i.e., one of which can be considered to indicate a 

point in the other. In order for  such a construction to be 

applicable to constructing shared secret schemes it must 

also be the case that all of the points in the domain vari- 

ety can be indicated by the varieties of the other type, and 

in fact, the even stronger restriction must hold that each 

point in the domain is an equally likely index of the indi- 

cator (variety) as the indicator ranges over all possible 

values. The second step is: given two families of algebraic 

varieties satisfying these conditions, one must devise ways 

to define a unique member of one of these families that 

requires the specified level of concurrence on the part of 

the holders of the pieces of private information. In the 

two simple examples t h i s  took the form of 2-out-of-l or 

It is 

The construction of perfect shared secret schemes pro- 
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3-out-of-P concurrence in order for the indicator (a line or 

a plane in the examples) to be reconstructed. In general, 

the required concurrence can be arbitrarily complex; for 

example, at least one member of each of n committees must be 

present for a vote to be binding or two, or three, etc. The 

point is that we want it to be possible to reconstruct the 

indicator variety only when the specified concurrence occurs 

and for it not only to be impossible in all other cases, but 

that the even stronger result will hold that every point in 

the domain, Vd, will be equally likely to be p in all other 

cases (collusions). 

Our constructions will generally be based on a simple 

result from point geometry -- the rank formula: 

(1) r(S) + r(T) = r(s n T) + r ( S  u T) 

which holds f o r  all subspaces S and T of the n-dimensional 

projective space K(n,q) or Q” in short. For notational 

consistency the empty subspace is defined to have rank 0 and 

dimension -1. To illustrate how (1) applies, consider the 

following construction: ~1 and “ 2  are planes in a 4-dimen- 

sional space, 44, which do not lie in a common 3-dimensional 

subspace. ~1 u “ 2  = 44 in this case, and we have 

Therefore, 

r(r1 n ~ 2 )  = 1 

~1 n r 2  = p , p a point. 

and 

Restated; in 4-dimensional space any pair of planes that do 

not lie in a common 3-dimensional subspace intersect in a 

point. 

pair of Varieties we need to construct a shared secret 

Clearly this is a candidate construction for the 
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scheme. We still have to show that the desired uniformity 

of intersection holds, i.e., that for a fixed -1, as x2 

ranges over all of the planes in 44 that do not intersect x i  

in a line, each point of x 1  will occur equally often as the 

intersection ~1 n x 2 .  To see that this is true, fix “1 and 

choose any line I in 44 skew with respect to x i .  

an arbitrary point in X I ,  then <q,P> = x is the unique plane 

lying on q and I. If % n x l  were a line I*, i.e., if x u x i  

is a 3-dimensional subspace of Q4, then I* and I are both in 

x and hence must intersect in a point. But this point would 

be in both I and “1 which contradicts the assumption that I 

is skew to X I .  Therefore (I and ~1 intersect in only the 

single point q. But q was an arbitrary point in x i ,  hence 

for each skew (to x 1 )  line I there is a unique plane on I 

intersecting “1 at point q. Now let I range over all lines 

skew to x l ,  etc. 

We now show how the geometrical result of the preceding 

paragraph can be used to construct a 3-out-of-P shared 

secret scheme to conceal a 2-dimensional secret. Vd is an 

arbitrary, but known a priori, plane in the 4-dimensional 

projective space 44. Vi is a randomly chosen plane which 

does not lie in any common 3-dimensional space with Vd. A 

possible selection procedure for Vi is to choose a point q, 

q # Vd, and a point r, r 1 <vd u q>. Note that q { Vd 

implies by the rank formula that <Vd u q> is 3-dimensional. 

<q,r> is a line skew to Vd. Now choose (with a uniform 

probability distribution) a point p t Vd and define 

Let q be 

The private pieces of information will be points in Vi none 

of which are p, and no three of which (including p) are 

collinear. Clearly this is a 3-out-of-I shared secret 

scheme which can indicate any point p in Vd. 

tation of the uniformity argument proves that the scheme is 

perfect even if two of the pieces of private information 

A simple adap- 
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(points in Vi) are combined in an attempt to cheat the sys- 

tem. 

points in the plane Vd, so that Pd = l/(q2+q+l), while P is 

at most q or q+l depending on whether q is odd or even as 

remarked earlier. 

There are a couple of other important points to make 

about shared secret schemes in general. In the construction 

of a perfect 3-out-of-P shared secret scheme to secure a 

1-dimensional secret shown in Figure 4 ,  the private pieces 

of information were points in a 3-dimensional space, i-e., 

3-dimensional themselves. An alternative construction for a 

perfect 3-out-of-1 scheme which also secures a 1-dimensional 

secret is : 

In this case the secret can be any one of the q2+q+l 

J 

I "d 

P 

X 

Figure 5 .  

where any three points on Vi suffice to define the quadratic 

curve and hence the point p at which it intersects Vd. The 

private pieces of information in this case are 2-dimensionall 

i.el points in the plane. These two examples show that not 

only is a shared secret scheme not fixed by the specifica- 

tion of the level of concurrence (k-out-of-1) and the dimen- 

sion of the secret which is to be secured, but that even the 

dimension of the space in which the scheme is implemented -- 
and hence the dimension of the private pieces of information 

-- is not determined. 
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This leads to the second, and most important, observa- 

tion: the information in the private pieces of information 

is not all of the same type in the sense of how it must be 

secured. To see this, consider the simple 2-out-of-1 scheme 

shown in Figure 2. The private pieces of information are 

points on the line Li, i.e., 2-tuples of the form (Xj,Yj)- 

It is not necessary to keep both of these coordinate values 

secret in order to protect the secret from improper recov- 

ery. One of the coordinate values can be kept secret, say 

Yj, which we indicate by , while the other need not be 

kept secret but only its integrity (against substitution, 

alteration, deletion, etc.) needs to be insured. It is easy 

to show that in the most damaging collusion possible for 

this scheme (an insider misusing his private information 

(Xj , @ ) and the exposed values XI, . . . ,xi for all of the 
other participants) that all points on vd will be equally 

likely candidates to be the index p and hence that the 

scheme is still perfect. 

information must be at least or great as in the secret, 

otherwise a collusion of (k-1)-parties would be faced with a 

lesser uncertainty in guessing a missing piece of private 

information (and hence in recovering the secret) than the 

uncertainty they are assumed to have about the secret -- 
clearly a contradiction. In the example just given, 

H(yj) = H(p), i.e., the information content in the part of 

the private piece of information that has to be kept secret 

is exactly the same as the uncertainty about the secret 

itself. As we shall see for the constructions described 

here this is always possible. What does differ from one 

realization of a shared secret scheme to another (having the 

same specifications) is the amount of information in the 

private pieces of information which doesn't have to be kept 

secret. 

y 0 

Clearly the information content in a private piece of 
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Perfection: At what Price? 

varieties in our model for shared secret schemes, one of 

which was defined by the private pieces of information, and 

then defined the index to be their intersection instead of 

simply defining the index directly in terms of the private 

pieces of information; and whether both of the varieties are 

necessary. A discussion of the main reason for introducing 

the domain variety (in addition to the clearly essential 

indicator variety) will be deferred until a later paper how- 

ever the simple answer to the question is that the domain 

can be dispensed with -- but only by sacrificing perfection 
for the shared secret schemes when k c 1 .  

To illustrate the difficulty, consider the simplest 

possible example of a k-out-of-l shared secret schemes, 

k c I ,  in which the private pieces of information directly 

determine the index shown in the construction in Figure 6. 

The index in this example is a point, p ,  in the plane and 

the private pieces of information are a pencil of lines on 

P- 

The reader has probably wondered why we introduced two 

Y 

I X 

Figure 6. 

Since any two of the lines determine p, while a knowledge of 

any one of them leaves p (linearly) indeterminate this is a 

2-out-of-d S3 for a 1- (2?)-dimensional secret. The ambigu- 

ity as to the dimension of the secret is due to the fact 

that each insider knows that p must lie in the 1-dimensional 

variety which he knows and hence p is only 1-dimensional in 
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uncertainty to him, while to an outsider p has 2-dimensional 

uncertainty since it could be any point in the plane. 

collusion possible is that of a lone individual trying to 

misuse his private piece of information. As a result, this 

example does not adequately illustrate what happens when 

k > 2 and the index is derived directly from the private 

pieces of information without the aid of an indicator. To 

show what happens in general, let the secret, p, be a point 

in a 3-dimensional space and the private pieces of informa- 

tion be a bundle of planes all containing p, but no three of 

which contain any common line. This is clearly a 3-out-of-P 

shared secret scheme for a 3-dimensional (to outsiders) 

secret: 

which, since it isn't in any of the other planes, must 

intersect each of them at p. 

Since k = 2 in this example, the only improper insider 

any pair of the planes defines a line containing p 

9 
Figure 7 .  

However, the secret is only of 2-dimensional uncertainty to 

any single insider since he knows p must be in the plane 

which is his private piece of information and of only 

1-dimensional uncertainty to any pair of insiders since they 

know p must be common to both their planes and must there- 
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fore be contained in the line of intersection of the two 

planes. The problem is that the index is contained in each 

of the private varieties in all of these examples (and in 

general in this type of shared secret schemes) and is iden- 

tified by the intersection of sufficiently many of the pri- 

vate varieties to determine the index. As a result, the 

successive intersections define a sequence of, if not mono- 

tonically decreasing, at least nonincreasing (in dimension) 

varieties converging to the point p. It isn't possible to 

make this sequence of intersections be equal to the dimen- 

sion (2 1) of the secret through the penultimate, (k-1)-st, 

step in the reconstruction of the secret and then on the 

final step at which the k-th private variety is introduced 

to suddenly become of dimension 0. This might be possible 

if the order in which the various pieces of private informa- 

tion had to be used could be specified in advance, but a 

shared secret scheme must be immune to compromise by all 

subsets of k-1 or fewer insiders and in whatever order they 

choose to collude. Hence this isn't possible. Conse- 

quently, erosion of the uncertainty about the index with 

increasing numbers of persons in a collusion is an inherent 

shortcoming of all shared secret schemes in which the index 

(set) is determined directly from the private pieces of 

information. 

An interesting observation, though, is that this need 

not be true if k = I. For example, a perfect 2-out-of-2 

shared secret scheme is easy to realize (for a secret of any 

dimension). One of the participants is given a random 

point, r, in Vd and the other the vector sum (Vernam encryp- 

tion) of p with r, say p-r. Clearly this is a perfect 

2-out-of-2 scheme irrespective of the dimension of Vd. Pic- 

torially, if Vd is 1-dimensional, we have 

... ... 
r P-r P 

Figure 8. 
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Both the secret and the private pieces of information are 

1-dimensional. Their sum recovers the 1-dimensional secret, 

p. To extend this scheme to a perfect k-out-of-k 1-dimen- 

sional shared secret scheme, k > 2, it is only necessary to 

give k-1 of the insiders random numbers, ri, as their pri- 

vate pieces of information and the Vernam cipher p - Cri to 
the k-th individual. In spite of the apparent asymmetry in 

this assignment procedure which appears to give more signif- 

icant information to the holder of p - cri than to the indi- 
viduals whose private information is one of the ri, this is 

not the case and any collusion of k-1 or fewer holders of 

private pieces of information will be totally uncertain of p 

in the sense that it could (equally likely) be any point in 

Vd. 

points is p. Consequently, not only are all of the pieces 

of private information equivalent (in uncertainty) but more 

importantly there is no erosion of the uncertainty about p 

until the k-th and final piece of information becomes avail- 

able, at which point p is determined. 

This construction for 1-dimensional k-out-of-k shared 

secret schemes in which there is no indicator but in which 

there is also no erosion of the uncertainty about the index, 

p, with the compromise of fewer than k of the private pieces 

of information can easily be extended to the concealment of 

secrets of any dimensionality. 

secret (point in Qn). 

mation to be k-1 randomly chosen points, ri, in Vd, and the 

point p - C ri- The combining operation will be the vector 
sum -- component addition in the underlying finite field. 
Under these circumstances any subset of k-1 or fewer of the 

points will leave the index completely undetermined since it 

could be any point in vd while the vector sum of all k will, 

by construction, be p. We remarked earlier that it wasn't 

possible to make the dimension of the secret and of the pri- 

vate pieces of information both be n in a perfect k-out-of-2 

Obviously, by construction the sum of all k of the 

Let p be an m-dimensional 

Choose the k private pieces of infor- 

k- 1 

i = l  
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shared secret schemes in the space Qn if k < 1 .  What we 

have seen in the constructions of this section is that there 

are perfect shared secret schemes in which an indicator 

doesn't appear and in which this common dimensionality is 

possible if k = I. We will utilize these perfect k-out-of-k 

shared secret schemes, later in a class of constructions for 

realizing compartmented shared secret schemes in which more 

than a single group of persons must concur in order f o r  a 

controlled action to occur. 

The emphasis on dimension in the preceding discussion is 

slightly misleading. While it is certainly true that for a 

fixed ground space Q, less information is needed to specify 

a point in Qm than in Qn, where m < n, as we have already 

pointed out, this information is not all equally costly to 

generate, distribute or to protect. In fact the expensive 

secret part of the private information can be made to be the 

same in all realizations f o r  a particular set of specifica- 

tions. 

The application normally dictates the level of concur- 

rence, k, required to provide the desired level of confi- 

dence in the proper execution of the controlled action and 

the number of participants, i.e., the number of private 

pieces of information that the scheme needs to accommodate. 

The application also dictates the maximum probability, Pd, 

that can be tolerated of someone (either outsiders or an 

improper collusion of insiders) guessing the shared secret 

on whose concealment the control scheme is predicated. If 

the values that the secret can assume are equiprobable, then 

the number of such values, i.e., the number of points in the 

domain, IVd1,'must be at least 

There 

as we 

sider 

may also be other parameters involved. For example, 

have pointed out earlier, it may be natural to con- 

the secret information as having a dimension, d, etc. 
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In summary, both the indicator and domain varieties are 

essential to the realization of a perfect shared secret 

scheme. Given the basic construction (concept) of having 

one variety point to a point in the other at which the 

secret is defined, the geometrical nature of the resulting 

shared secret schemes is virtually forced. The problem is 

to devise ways to insure that the desired level(s) of con- 

currence will define the indicator and such that no lesser 

level of collusion will reveal anything about it. There are 

also important questions connected with making such schemes 

be practical such as minimizing the amount of secret infor- 

mation that needs to be protected by the holders of the 

private pieces of information, or of making such schemes 

robust against either deliberate or unintentional erroneous 

inputs. However, the basic principal for constructing 

shared secret schemes is the same in all cases. 

Fn AuDlicatioa (and TWO Realieationsl of COmDattULented 

Bhared Secret 6chemeg 

scheme: there are two parties (compartments) to the shared 

control, both of whom must concur for the controlled action 

to be initiated. Because of the sensitivity of the action, 

each party wishes to impose the requirement that at least 

two members of their control team must agree that the action 

should be initiated before their party's concurrence can be 

obtained. To be less abstract, assume that there is some 

treaty controlled action that requires U. S. and U.S.S.R. 

concurrence for its initiation. Each country has a team of 

its own representatives (controllers) at the site. Because 

the controller6 are trusted -- but not unconditionally 
trusted -- to carry out their nation's commitment to the 

protocol, each country requires that at least two of their 

controllers must concur before their national input to the 

shared control scheme is to be possible. Clearly, this is 

We consider first the simplest possible compartmented 
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quite a different control situation than occurs in a simple 

(k,l) threshold scheme. In the present case, even if all 1 

of the Americans (1  could be a large number) and one of the 

Russians agree, the controlled action is to be inhibited! 

For simplicity, we will assume that the secret has l-dimen- 

sional uncertainty, i.e., that it is equivalent to identi- 

fying a point on a line. 

There are two approaches (using the construction for 

shared secret schemes described here) to constructing com- 

partmented schemes. We will describe both of them and anal- 

yze their relative efficiencies in order to justify our 

choice of a preferred scheme. The first approach is to let 

the private information for each part(y) determine a sub- 

variety Vj: ordinarily a (kj-1)-dimensional subspace where 

the j-th part requires a kj-out-of-lj control. 

varieties are all chosen to be linearly independent sub- 

spaces of a common space, i.e., so that no pair of them have 

a point in common. The indicator variety is then the union 

of the required number of these subvarieties (both of them 

in the present example). Vd, as usual is a variety (sub- 

space) any point of which could with equiprobability be p. 

We have in this case 

These sub- 

Vi = V1 u V2 

and 

V i n V d = p  , 
where 

dim(Vi) = dim(V1) + dim(V2) + 1 . 

This is conceptually the simpler approach since the result- 

ing compartmented scheme is essentially the same as we have 

already given for simple k-out-of-m shared secret scheme. 

Because of the complexity of the general case, we will des- 

cribe a construction of this type (for the simple two-part 

example) before describing the other type of construction 

for compartmented schemes. 



We note that a 2-out-of-1, 1 > 2, control scheme always 

determines a line in some space. If the line (shared vari- 

ety) determined by the u. s. control team is to be indepen- 
dent of the line determined by the U.S.S.R. team, i.e., if 

the two lines are to be skew so that they do not intersect, 

then the subspace they span, the indicator Vi, will be 

3-dimensional. The domain (variety), which is 1-dimensional 

from the problem statement, must be independent of the sub- 

space spanned by the two shared varieties, hence the lowest 

dimensional space in which a scheme of the type we are con- 

sidering could possibly be constructed would be I-dimen- 

sional. This can be done as follows. Take as the two 

shared varieties a pair of skew lines, L1 and L2, in Q4.  

The domain is a third line, Vd, skew to both L1 and L2. As 

Usual in a 2-out-of-P shared secret scheme, the private 

pieces of information will be points on the lines L1 or L2, 

subject to the side condition that none of them are on the 

unique line, w ,  that intersects all three of the lines.3 

The points at which o intersects the lines Ll, L2 and Vd are 

q, r and p, respectively. The lines L1 and L2 span a 3-flat 

Vi = <L1,L2> which does not contain Vd. Hence 

which is the index for this particular shared secret scheme. 

Since a clear understanding of how this scheme functions 

is essential to understanding the extensions to,be described 

later, we rephrase in nonmathematical terms what has just 

been said geometrically. Any two members of the first group 

3. -&&: Ue prove rather mre then i s  mdcd for the present construction. In d there i s  0 

miwe l i ne  pessing t h r e  a given point, p, d intersecting eech of two skw lim L1 ud L2, 
neither of &id l i e s  on p. To see this, note that p snd 11 dctemine a p l n c ,  A. 

. K t 8  IT in a point, q; q # p by construction since ~2 dces not l i e  on p. The t i n  w = 9 , ~  i s  
in IT as i s  the l i n e  L A ,  so they intersect in s point r. Heme w i s  the mique l i n e  ly ing  on p 
ud intersecting L1 ad ~2 ( in points q arri r, respectively). YOU consider my .p.cr P", n > 4. 
Let L1 8nd L2 bc a pa i r  o f  skew l i nes  in Po. L1 ard 1 s p ~  3-d ims io ru l  urbspsce 5 o f  an. 
Given en arbi t rary (n-S)-dirmsioruL sthspce, 1, o f  Pil, imkpmdent of 5, T intersects S in a 
r ino le  point, p. by the r t  theoran. 
tion, t tc .  
each o f  a pe i r  of skew l ines cmd with an (n-3)-di-iaul s h p M e  independent o f  each of  these 
lines. 

L2 in te r -  

Let th is  point, p, bc the point in the above conetruc- 
Ue therefore hove proven that in On, n > 4 ,  there i s  a mi- Line inc idmt  u i t h  
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can determine the line L1 from their private pieces of 

information. Similarly any two members of the second group 

can determine the line L2. Once L1 and L2 are known, it is 

easy to calculate the 3-flat they determine, in other words 

to determine the polynomial constraints that must be satis- 

fied by all of the points in Vi. 

assumed to be known a priori, is itself defined by a poly- 

nomial constraint. The index, p, is the unique point satis- 

fying all of these constraints. The geometry of the con- 

struction quarantees that there is one and only one point 

satisfying both. Pictorially: 

The domain Vd, which is 

"d 

Figure 9. 

The most threatening form of collusion for this scheme 

would be if two (or more) persons from one group and one 

from the other pooled their private pieces of information in 

an effort to defeat the control scheme. With no loss of 

generality, assume that L1 has been compromised and one 

point, x, on L2; x + r by construction. To prove that the 

scheme is perfect we must show that every point on Vd is 

equally likely to be the secret datum under these circum- 

stances. We extend Kerchoff's criteria from cryptography to 

shared secret schemes and assume that the geometrical nature 

of the scheme is known a priori to both insiders and out- 

siders, i.e., to all would-be cheaters. By this assumption 
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a participant in a collusion knows that Ll, L2 and Vd are 

skew lines in 44 and that the secret datum is the point of 

intersection of Vi = <Ll,L2> with the line Vd. 

Choose any point, u, on vd. ~n opponent knows that if u 

is to be the secret datum, it must be collinear with a point 

of L1 (which has been exposed by the collusion) and a point 

on the line L2. He doesn't know L2 of course, only that it 

is a line lying on x and skew to both L1 and vd. Let w be 

an arbitrary point on L1; not one of the exposed private 

points (pieces of information) since by construction none of 

these points are the (unknown) point of intersection, q, of 

w with L1. The line W *  = <u,w> lies in <LI,v~> since u c Vd 

and w E L1. x is not in <Ll,Vd>, however, since 

L2 n <Ll,Vd> = r and x + r. Therefore, for each point, 2 ,  

on w * ,  2 + u or w, a line Li = <x,z> is determined which is 

independent of <Ll,Vd> and for which 

Consequently, if L2 = L;, i.e., if the constructed line, Li, 

were the unknown L2, then the secret datum would be u. This 

is true for every choice of a point w c Ll, where w is not 

one of the points exposed in the collusion, and for all 

points 2 on w * ,  z * u or w. Therefore the cardinality of 

the set of schemes lying on L1 and x in L2 is the same for 

all choices of u c vd; which for small numbers of colluders 

from group one is of the order of the cardinality of a 

2-flat in 44. 

Since the private points on L1 were chosen to be differ- 

ent from q, a natural question to ask is whether the equivo- 

cation about p might be a function of the number of insiders 

from group one who join in the collusion. 

is not the case consider the most extreme case possible in 

which I equals the number of points on the line less on ly  

the excluded point, q, and all P of the private points are 

exposed in the collusion. 

To see that this 

By elimination in this case, q is 
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unambiguously identified and exposed, and the only possible 

choice for w is w = q. For each choice of a point u c vd 

the number of schemes on Ll, x and u is the number of points 

on a line less two, since z rr u or q. Therefore, even in 

this most extreme case of collusion, all points u on vd are 

equally likely to be p insofar as the colluders can deter- 

mine. 

Any other collusion (the line L1 (or L2) or else a point 

on each line, x c L1 and y c La or else a point on only one 

of the lines x c L1 (or y c Lz)) is less damaging than the 

case just analyzed, i.e., the probability of the collusion 

improperly determining the index p cannot be increased as a 

result of the opponent having less information about the 

scheme. Therefore this construction provides a perfect two- 

part scheme in which each part is a 2-out-of-l scheme. 

ize a perfect two-party shared secret scheme to secure a 

1-dimensional secret, in which each part is a 2-out-of-l 

control scheme, is possible in four dimensions. Although we 

haven’t described in detail how the private information is 

to be partitioned into the one part (dimension) which must 

be kept secret and another (three dimensions) which need not 

be, an obvious extension to the earlier discussion of the 

partitioning of the private information applies here as well. 

The other approach to realizing a compartmented shared 

secret scheme is to let the subvarieties determined by the 

private pieces of information individually indicate points 

in a space containing vd which can be treated as inputs to 

the overall concurrence scheme: in the present case 

2-out-of-2 since both of the parties must concur. A s  we 

have already seen, k-out-of-k schemes are special so it 

should come as no surprise that the compartmented scheme iS 

also special in this case (in the sense that it doesn’t 

represent the general behavior of such schemes). Figure 10 

To summarize, a construction of the first type to real- 
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Figure 10. 

shows a two-part scheme of the second type. L1 is the sub- 

variety (line) defined by the private pieces of information 

belonging to one party and L2 is the other. 

tion of L1 with Vd is a point p1 which is treated as an 

input to the perfect 2-out-of-2 scheme defined on Vd. p2 is 

determined similarly by La. Clearly this is a two-part 

scheme. 

The intersec- 

To prove that the scheme in Figure 10 is perfect, we 

introduce a method of proof which, while we have used it 

before, hasn't been explicitly stated. Given any shared 

secret scheme, simple, compartmented, multilevel, etc., it 

suffices to prove that the uncertainty about the index is 

the same for a more compromising collusion as it is for an 

outsider attack to simultaneously prove that it is the same 

for all lower levels of collusion dominated by the case 

under conslderation. For simple k-out-of-l schemes collu- 

sions are linearly ordered, so that it is only necessary to 

consider the most damaging collusion in order to prove 

perfection (a remark we made earlier). Compartmented and 

multilevel schemes however have a lattice (often partial) 

ordering on the collusions. 

five collusions c (0,o) -c( 2 , 1)' is 

For example the ordering on the 

4. The notation C C i . j )  indicates a collusion i n  thich i points f r a  on private p r t  4 j frm the 
other have bem upscd. 
Concurrence C C i , j )  = C ( j , i ) .  C ( 0 , O )  i s  en outsider attack, etc .  The notation ameratires to 
a r b i t r a r i l y  rvly p r t s  i n  an obvious mrner.  

In a tuo-part scheme i n  thich both parts rcquire the sure level of 
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so that if the uncertainty about the index is the same for 

C(2,l) as it is for C ( O , O ) ,  the scheme is perfect. 

priori to be a point on Vd, i.e., of 1-dimensional uncer- 

tainty to collusion C ( 0 , O ) .  Similarly, if one of the input 

points, say p1, is known and any other point on the indi- 

cator variety, say x, on L2 is exposed -- x f p2 by con- 
struction -- then, since for any point on vd there is a 
unique line lying on it and x that could be the unknown (to 

the participants in the collusion) line L2, every point on 

Ld is is an equally likely candidate to be p. p is there- 

fore of 1-dimensional uncertainty to collusion C(2,l) and by 

the remark, to all of the other collusions as well. Hence, 

the shared secret scheme in Figure 10 is perfect. 

Now consider the scheme in Figure 10. p is only known a 

The contrast between the two types of compartmented 

shared secret schemes is significant for the application we 

have been discussing and dramatic for other choices of par- 

ameters: in the present case the private information is 

2-dimensional for the second type of scheme rather than 

4-dimensional as was the case for the first type: and with 

no real difference in capability. The only difference is 

that in the first type, all of the points on the subvari- 

eties which did not lie on the transversal w were available 

for use as private pieces of information while in the second 

type, the points p1 and p2 had to be excluded. In both 

cases the part of the private information that has to be 

kept secret is only 1-dimensional. If there is no cost 

involved in insuring the integrity of the information that 

doesn't need to be kept secret the schemes are equally 

attractive, while if there is a cost the second type is the 
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clear winner since it involves only half as much information 

in the private parts. 

k-out-of-k and k-out-of-l schemes the construction for the 

second type of compartmented system for this example fails 

to illustrate a very important property of this class of 

schemes. 

Unfortunately, because of the difference between 

The smallest example which shows what happens in general 

is a scheme in which there are three parts, at least two of 

which must concur for the controlled action to be initiated. 

Each part, considered separately, is a 2-out-of-l control 

scheme. The essential feature of this example over the one 

discussed earlier is that the highest level concurrence is a 

k-out-of-1, k < l scheme instead of a k-out-of-k scheme. It 

is trivial to extend the construction shown in Figure 9 to 

this case, or to any number of parts, k I q where the con- 

struction is in PG(4,q) f o r  this example. To do this we 

simply choose (appropriately) another line, L3, in the 

3-dimensional subspace Vi to be the variety determined by 

the third party. By "appropriately" we mean that the three 

lines Ll, L2 and L3 must be skew by pairs so that any two of 

them span (determine) Vi and that they all intersect a com- 

mon line w in Vi lying on the point p. The points of inter- 

section of w with Ll, L2 and L3 -- q, r and s, respectively 
-- are not used as one of the private pieces of information, 
although any of the q other points on a line can be. 

later requirement is imposed so that the proof of perfection 

given earlier will still hold for this case as well. Figure 

11 shows the resulting construction. 

This 
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"d 

Figure 11. 

We introduce the notation y G j  or y Vj to indicate the union 
of a designated concurrence of the individual parts: any 

two in this particular example. 

The dimension of the space 8 in which the shared secret 

scheme is implemented is 

and 

as was true in the construction given in Figure 9. Conse- 

quently, for the first type of construction, there is no 

significant effect in having gone from requiring a unanimous 

concurrence by the two parties to requiring only 2-out-of-1, 

I > 2, concurrence. The second type of construction however 

is quite different from that shown in Figure 10 as is evi- 

dent in Figure 12 where a 2-out-of-3 scheme is depicted. 
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Figure 12. 

A simple 2-out-of-3 scheme is implemented in the plane 

V = Vi u Vd. 

the lines Vi and vd. 

p1, p2 and p3, any pair of which suffice to determine the 

indicator Vi, are themselves determined by the intersection 

of the lines Ll, L2 and L3, respectively, with the plane V, 

where the lines themselves are determined by any pair of the 

private points on them. 

space 8 in this construction has increased from 2 (for the 

2-out-of-2 concurrence example) to 3 .  The fact that the 

dimension of the shared secret scheme of the first type 

remained fixed at 4 while the dimension of a scheme of the 

second type increased from 2 to 3 raises the question of 

whether there might be examples in which each type of scheme 

is the more efficient. We next show that this can never be 

the case. 

The index p is defined by the intersection of 

What is different is that the points 

The dimension of the containing 

In general, the first type of construction defines the 

indicator, Vi, by 
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where the Vj are the varieties determined by the individual 

parts, irrespective of whether k = l or k c P. In either 

case, the index is defined by 

In general, to realize a scheme of the second type 

requiring a k-out-of-P concurrence by the parts, we first 

define a space V, 

and embed a simple k-out-of-1 shared secret scheme in it. 

Vi is an indicator (variety or subspace) in V which inter- 

sects Vd in the index p, etc., and in which any k points in 

Vi suffice to determine it. V itself is then considered to 

be in a space 8 of a dimension adequate to allow each of the 

subvarieties, Vj, defined by the individual parts to inter- 

sect V in only a single point, pj. Any k of these points of 

intersection will suffice to determine the indicator Vi and 

hence the point of intersection, p, of Vi and Vd to recover 

the secret. 

The essential point to this construction is that 

To simplify the comparison we first consider the case in 

which all of the parts require the same level of concur- 

rence: k’-out-of-1’. If the concurrence required of the 

individual parts is k-out-of-l and the secret is d-dimen- 

sional, then the dimension of the containing space 8 is 

( 3 )  dim ( 8 )  = kk‘ + d - 1 
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for a scheme of the first type irrespective of whether k = I 

or k < 1.  For a scheme of the second type, 

( 4 )  dim(8) = k' + d - 1 

if k = 1 ,  and 

( 5 )  dim(6) = k' + k + d - 2 

if k < 1 .  For the example just analyzed, k = k' = 2 and 

d = 1 so that the dimension of the spaces were 4, 2 and 3, 

respectively. Since it must always be the case that k 1 2 

and k' L 2, it is easy to see that it is always possible to 

construct a shared secret scheme of the second type in a 

lower dimension space than is possible for a scheme of the 

first type. This is also true if the individual parts do 

not all require the same level of concurrence: 

ki L k$ L ... L kd . 

We then have, in analogy to the results above, 

for a scheme of the first type irrespective of whether k = P 

or  k < I. For a scheme of the second type 

( 4 * )  dim(8) = ki + d - 1 

if k = I ,  and 

( 5 * )  dim(6) = ki + k + d - 2 

if k < 1 .  
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In summary, in spite of the simplicity of the first type 

of construction for compartmented shared secret schemes, it 

is never as efficient (in the usage of information) as 

schemes of the second type. 

A Discussion of Exceptional Cases 

It is almost as difficult to provide for unanimity in 

shared secret schemes as it is to secure it in real-life 

situations. In this section we will discuss several exam- 

ples in which one or more of the parts requires unanimity of 

input and in which the overall control scheme may require 

either k-out-of-.!, k c I ,  or k-out-of-k concurrence. 

The smallest -- not necessarily the simplest -- example 
is obtained by modifying the first problem we discussed: a 

two-part scheme in which each part required a 2-out-of-1 

concurrence. If the concurrence required for one of the 

parts is changed from a 2-out-of-1 scheme to a 2-out-of-2 

scheme, it isn't obvious how to construct a compartmented 

scheme of the first type. 

struction the indicator, Vi, is a subspace spanned by the 

varieties determined by the individual parts. 

since there are two parts -- both of whom must concur in 
order for the secret to be recovered -- Vi would be the 
union of the line, say L2, determined by the 2-out-of-1 

scheme and presumably the point, p1, determined by the 

2-out-of-2 scheme. Vi must then be a plane 

Recall that in this type of con- 

In this case, 

The private pieces of information fo r  the second part are 

points on the line L2, etc. The problem is: where are the 

two points (private pieces of information) q1 and rl that 

define p i  f o r  the 2-out-of-2 scheme. They can't be confined 

to the plane Vi, otherwise Vi would be determined by L2 and 

only one of the points q1 or rl. Hence if the system is to 
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be perfect, it must be the case that the two points, 41, and 

rl, lie in a 3-space which contains Via Pictorially: 

P "d 

Figure 13. 

p1 cannot be a point on L2 nor collinear with p and any 

point on L2 used as one of the private pieces of information 

for the second part. The first condition is to insure that 

when the concurrence conditions are satisfied that Vi and 

hence p will be determined. The second is to insure that a 

collusion consisting of p1 and one point on La will not 

reveal the secret. 

The construction in Figure 13 illustrates one (of the 

many) problems associated with k-out-of-k schemes. In this 

case the dimensionality of the containing space S suddenly 

ceases to obey the counting formula given earlier. If part 

one were a 3-out-of-3 or a 4-out-of-4 or in general a 

kl-out-of-kl, kl 5 q, concurrence scheme and part two 

remained a 2-out-of-P scheme, B would still only need to be 

3-dimensional; exactly as shown in Figure 13. In other 

words, we seem to have lost the functional dependence 

between the minimum dimension for the containing space S and 

the concurrence level kl which we had identified earlier. 

Now consider a compartmented scheme of the second type 

Recall that in this type of scheme, for the same example. 



43 1 

the individual parts determine indicators that point to 

points in an intermediate subspace V in which the overall 

shared secret scheme is embedded. Since this highest level 

scheme is a 2-out-of-2 concurrence for this example, V need 

only be a line as shown in Figure 8 .  L2 must be a line 

which intersects V = Vd in a single point p2. 

is a l s o  a point on Vd; for which p = p1 + p2. 
is: where must the points q1 and rl be located? There is 

no reason f o r  them to be outside of the plane determined by 

L2 and Vd, x = <L2,Vd>, but is there any restriction on 

where they  can be located in r ?  For example, the following 

construction in which q1 and rl are constrained to lie on Vd 

satisfies the conditions to be a perfect two-part shared 

secret scheme, etc. 

p1 of course 

The question 

Figure 14. 

However, so does the construction 
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Figure 15. 

In both of these constructions, the dimension of the con- 

taining space B is two so that it doesn't appear to make any 

difference where the points q1 and rl are located. 

On the other hand, if both parts require a 2-out-of-2 

concurrence, as does the overall scheme, there is a 

difference: 

rl PI qt P r2 p2 9 2  

Figure 16. 

versus 

J 

I 

I 
x 

Figure 17. 
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The question is, which of these is the proper, i.e., logic- 

ally consistent, generalization f o r  the type of construc- 

tions we've used earlier. Increasing the number of parts 

from 2 to k doesn't differentiate between the two construc- 

tions either so long as the overall scheme requires 

unanimous agreement by the separate parts. 

all scheme requires the concurrence of only 2-out-of-3 parts 

and in which two of the parts are 2-out-of-2 schemes. 

other part is a 2-out-of-l scheme. In this case, a con- 

struction of the first type is given by: 

We consider next a three-part scheme in which the over- 

The 

J 
Figure 18. 

where L3 and either p1 or p2 determine the plane Vi and 

hence its point of intersection, p, with Vd. Points pi and 

p2 determine the line W ,  which lies in Vi, but which inter- 

sects Vd at p. With the same conditions on the choices for 

p i  and p2 that had to be imposed on the choice of p, in the 

construction of Figure 13 (and for the same reasons) this is 

a perfect shared secret scheme of the first type satisfying 

the problem specifications. 

A construction of the second type is shown in Figure 19. 
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X 

Figure 19. 

V is the plane spanned by the indicator, Vi, and the domain, 

Vd, etc., as before. L3 is a line outside of V which inter- 

sects V at the point p3. The points 91 and vl, and 92 and 

v2 could equally well be in V or outside of V. They cannot 

be confined to be in Vi since if they were then a collusion 

consisting of any pair of points chosen from the set (p3, 

91, rl, 92, r2) would be able to determine Vi and hence p, 

in violation of the specified level of concurrence. 

It is interesting to note that here (for this particular 

example) we have the first instance we have seen in which 

the dimensionality of the optimal constructions are the same 

for both types of schemes. In answer to our earlier ques- 

tion, the k-out-of-k control schemes should be confined to 

the space V = Vi u Vd, since no gain in security is achieved 

by letting them lie outside of this space, and one dimension 

(to B )  may -- for some choices of specifications -- be saved 
by this restriction. 

degenerate case shown in Figures 16 and 17 -- degenerate 
because there is no Vi, so that V = Vd. To see this in the 

Present case, assume that all three parts require 2-out-of-2 

concurrence but that the overall scheme is 2-out-of-3. An 

obvious modification to L3 in Figure 19 yields a 3-dimen- 

We have already seen this in the 
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sional solution. However a 2-dimensional solution is pOSSi- 

ble in exact analogy to the construction in Figure 16. 

J 

“d 

I X 

Figure 20. 

It is interesting to note that in this final example the 

constructions are identical for both type one and type two 

schemes. 

After all of this discussion of exceptional cases, our 

conclusion is the same as it was before: one cannot do 

better (in terms of the efficient use of information) in 

constructing compartmented shared secret schemes than to 

base them on constructions of the second type: in other 

words, to let the individual parts determine subindicators 

that point to points in a space V that define an indicator 

for the overall k-out-of-l concurrence scheme. 

An ADDlication (and Realization) of Hultilevel Shared Secret 

Schemes 

In the brief discussion given earlier of the various 

extended capabilities to shared secret schemes, we described 

one scenario in which any two vice presidents of a bank were 

authorized to approve an electronic funds transfer (up to 

some maximum amount) or in which any three senior tellers 

could do so. As we remarked then, for this application it 

would almost certainly be unacceptable that one vice 
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president and two senior tellers not be able to approve a 

transfer. In other words, in this and many other real-world 

applications, a participant's ability to act must hold not 

only in his own class or level but in all lower-level 

classes as well. We remark that we are only interested in 

extrinsic schemes in which the worth of a particular piece 

of private information is totally dependent on its func- 

tional relationship to other pieces of private information, 

and not (in an information theoretic sense) on its own 

information content. Otherwise the intrinsic hierarchical 

schemes described earlier would be a solution to the prob- 

lem, even though the amount of information a participant has 

to protect (keep secret) might be so great as to make the 

solution totally infeasible for practical application. In 

other words, all the pieces of private information should 

consist of n bits of information, even though some may be 

several times more effective in recovering the secret than 

others. 

Figure 21 shows a perfect shared secret scheme for the 

electronic funds transfer problem. 

/ 

Y "d 

Figure 21. 

Vice presidents know points on the line V1 which intersects 

Vd at the point p so that any two of them can determine V1 
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and hence p, etc. Senior tellers know points in general 

position in the plane V2 -- not on V1 -- and no t w o  of which 

are collinear with any of the private points chosen on V1 

nor with p. 

etc. 

points in V2 define V2 as desired, since no such triple of 

points is collinear by construction. 

able) with the way in which shared secret systems are con- 

structed. F o r  example, if we wished to conceal a 2-dimen- 

sional secret instead of a 1-dimensional secret in a 2-level 

scheme in which level one is a 2-out-of-l scheme, we could 

use the same geometrical construction that was used earlier 

to Construct a simple 3-out-of-.! scheme to conceal a 

2-dimensional secret. TWO planes, ~2 and vdl are chosen in 

a 4-dimensional space such that they do not lie in a common 

3-dimensional subspace. This forces them to have a single 

point, p, in common. In fact, we can use the same procedure 

used earlier to construct V2, given Vd, so that a desired 

index p is the point of intersection. An arbitrary point, 

q, in V2, q # p, is chosen and the line Vl = <p,q> used to 

determine the points for the first class participants. The 

second class participants receive points in general position 

in Vz none of which are on V1 and no pair of which are 

collinear with either p or any point from L1 assigned to one 

of the first class participants. Pictorially: 

Any three of them can determine V2 and hence pI 

Clearly any point on V1 taken with a pair of the 

By now the reader should be very familiar (and comfort- 

Figure 22. 
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An obvious extension to these constructions will accommodate 

an arbitrary sequence of concurrence levels, ki, and/or a 

d-dimensional secret. It would appear, therefore, that this 

completely solves the problem of multilevel schemes. 

It is only necessary to examine the construction in 

Figure 21 a little more critically to realize that there is 

more to the problem (and solution) than we have suggested. 

We remarked earlier that the amount of information that had 

to be kept secret in the private pieces of information was 

the same as the information contained in the secret itself. 

In the scheme shown in Figure 21 6 is 3-dimensional while 

the secret is only 1-dimensional. One might think that in 

analogy to what was done with the private pieces of infor- 

mation in the 2-dimensional scheme shown in Figure 2 where 

one coordinate value was kept secret and one was exposed, 

that one coordinate value could be kept secret in this case 

as well, say z, and two exposed: (Xj,yj, 0). If this is 

done however, the secret is revealed to even outsiders -- 
not just to a collusion of insiders. 

of information, i.e., their projection (along the z axis) 

onto the xy plane, 

Anyone knowing the nonsecret parts of the private pieces 

F i g u r e  23. 
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also knows the projection of the line V1 into the line Vf. 

This is easy to determine by finding any set of three or 

more collinear points in the projection. The line V1 is 

therefore known to be in the plane x which is parallel to 

the z axis and includes the line Vf. 

Figure 24. 

In fact the unknown subvariety V1 must be one of the pencil 

of lines with common point p at which the line Vd intersects 

x .  The important point is that it isn't necessary to iden- 

tify Vl, only its intersection, p, with vd. consequently p 

(and the secret) is revealed from only a knowledge of the 

nonsecret parts of the private pieces of information unless 

Vd satisfies some additional constraints. The problem goes 

away if the projection of vd onto the xy plane is in the 

line Vf, in other words, if Vd is a line in X .  In the 

extreme case Vd could be a line parallel to the z axis so 

that the entire line projects into a point p* in Vf. 

the image of p under the projection along the z axis: 

proj,(p) = p*. 

at least one of which must project into the entire line Vf. 

The plane V2 is not the same as x and in fact cannot be 

parallel to the z axis, hence its projection is the whole of 

the xy plane. 

p* is 

~1 and vd are therefore distinct lines in *, 
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/ 

Y 

Figure 25. 

In this figure vd has been chosen to be parallel to the 2 

axis so that p* is the image of all of Vd and hence known. 

Otherwise the projection of Vd is all of Vl and the pro- 

jection of p, p*, would be unknown. 

The problem that we encountered in partitioning the pri- 

vate information into a secret part and a nonsecret part for 

the multilevel scheme shown in Figure 21 without compromis- 

ing the security of the secret is common to almost all mul- 

tilevel schemes. The solution for that particular case, 

while suggestive of the general method of solution, is not 

definitive. To better illustrate the general case, we next 

consider the two-level scheme shown in Figure 22. S was 

4-dimensional in that case and the secret was 2-dimensional 

so that the private information would be (if the previous 

examples are any guide) of the form ( X j  , yj , @ , @ . 
line V1 projects into a line Vf in the xy plane. In this 

case, corresponding to the plane R that was defined on Vf in 

the construction in Figure 2 4 ,  there is a 3-space, S, 

parallel to the z and w axes which includes the line Vf .  

Since 8 is only 4-dimensiona1, the plane vd either inter- 

sects S in a line or else contains s. By the rank formula, 

8 would have to be 6-dimensional for the two subspaces to be 

The 
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skew and 5-dimensional for them to intersect in only a 

point. If S n Vd = 1 ,  P a line, then the scheme cannot be 

perfect since the equivocation about the secret would be 

only of O ( q )  instead of O ( q 2 )  using the exposed (nonsecret) 

parts of the private pieces of information. It must there- 

fore be the case that Vd c s. This does not say that 

but merely that 

This is analogous to the previous case in which projz(Vd) 

was either the point p* (in the line Lf) or else all of Lf. 

Although it is possible to formulate general conditions 

on the subspaces which will insure that these problems are 

avoided -- even if the subspaces are chosen almost at random 
-- there is no gain in security nor a compensating increase 
in capability to justify this additional freedom of choice. 

Instead, in the first example we may as well take Vd to be a 

line parallel to the z axis so that projz(Vd) = p*, p* c vT, 
and in the second to take vd to be parallel to the z and w 

axes so that projz,w(Vd) = p*, p* c projz,w(~l) = VI in this 
case also. If we construct the domain Vd in this manner, 

the secret part of the private information will be totally 

lost in the projection, i.e., in the disclosure of the 

nonsecret part, and the scheme will be secure. 

Finally, given a d-dimensional secret which is to be 

secured in a t-level scheme, where the concurrence required 

at level j is kj, 

and in which a participant at the j-th level is to be able 

to function at all lower levels (having however only the 
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capability associated with that level) we can construct a 

perfect multilevel control scheme with these characteris- 

tics. We start with an n-dimensional space, 8 = PG(n,q), 

where n = d+kt-1. 

parallel to the coordinates xd,q-l,..., xi. 

secret point p in Vd, we construct a (kt-1)-dimensional 

subspace, Vt, of 8 that intersects vd only in the point p. 

We next choose a (kt-l-l)-dimensional subspace Vt-1 of Vt 

lying on the point p. 

yield a chain of nested subspaces 

vd is a d-dimensional subspace of 8 

Given the 

This procedure is repeated to finally 

of dimensions kt-l,kt-l-l, ..., kl-1, respectively, all of 
which lie on the point p. 

Figure 26. 

The private pieces of information are to be chosen so as to 

have rank kj in Vj and to not lie in any of the higher order 

subspaces. In other words, in the construction shown in 

Figure 21, the points in V2 were chosen not to lie on V1 and 

such that no two were collinear with any of the private 

points chosen on V1 nor with the index, p. In general, this 

says that the points in the j-th class are to be chosen in 

general position in Vj\ k: Vi, such that the rank of any set 
of kj points drawn from among all of the private points in 

Under these conditions 
j 
u Vi and the index, p, will be kj. 
i =1 
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clearly any participant can act as a member of any lower 

class. The private information will be of the form 

and the scheme will be perfect since the secret information 

is totally lost in the projection along the first d 

coordinates. 

Conclusion 

In view of the length of this paper we merely remark in 

conclusion that the two types of partitioning of secret 

information which have been described here can be combined 

to form hybrid control schemes involving simple, multipart 

and multilevel controls. For example, it would be easy to 

devise a two-part control scheme in which both the U.S. 

military command and the U.S.S.R. military command had to 

concur in order for the controlled event to be initiated. 

The U. S. could choose to use a multilevel scheme, say one 

in which two or more generals, three or more colonels (or  

generals) five or more lieutenent colonels (or colonels or 

generals) had to concur in order for the U. S. input to be 

made. The U.S.S.R. on the other hand might have entirely 

different requirements; for example they might require the 

unanimous concurrence of three of their general staff in 

order for the U.S.S.R. input to be made. The constructions 

described here are sufficiently general to accommodate both 

arbitrary concurrence of the parties and arbitrary multi- 

level concurrence within the individual parts. There are 

concurrence schemes, however, that can't be satisfied by 

schemes of the type described here, but it appears unlikely 

that any such scheme will be of practical interest: one 

such example would be if participants A and B together could 

cause an event to be initiated but A,  B and C together could 

not. 
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