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Abstract. With version 3.0, the OpenMP specification introduced a
task construct and with it an additional dimension of concurrency. While
offering a convenient means to express task parallelism, the new construct
presents a serious challenge to event-based performance analysis. Since
tasking may disrupt the classic sequence of region entry and exit events,
essential analysis procedures such as reconstructing dynamic call paths
or correctly attributing performance metrics to individual task region in-
stances may become impossible. To overcome this limitation, we describe
a portable method to distinguish individual task instances and to track
their suspension and resumption with event-based instrumentation. Im-
plemented as an extension of the OPARI source-code instrumenter, our
portable solution supports C/C++ programs with tied tasks and with
untied tasks that are suspended only at implied scheduling points, while
introducing only negligible measurement overhead. Finally, we discuss
possible extensions of the OpenMP specification to provide general sup-
port for task identifiers with untied tasks.

1 Introduction

In parallel computing, a task denotes an independent unit of work that con-
tributes to the solution of a larger problem. A task is usually specified as a
sequence of instructions to process a given subproblem. Tasks can be assigned
to different threads and can be executed concurrently with other tasks, as long
as input and output dependencies between tasks are observed. To offer a more
convenient way of expressing task parallelism, version 3.0 of the OpenMP spec-
ification [1] introduced a task construct along with synchronization mechanisms
and task scheduling rules.

The OpenMP specification distinguishes between tied and untied tasks. Tied
tasks can be suspended only at special scheduling points such as creation, com-
pletion, taskwait regions, or barriers. In contrast, untied tasks can be suspended
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at any point. In addition, a tied task can be resumed only by the thread that
started its execution, whereas an untied task can be resumed by any thread of
the team.

The task construct provides an additional concurrency dimension within
OpenMP programs, as threads can migrate between tasks and tasks can mi-
grate between threads, although the latter option is available only for untied
tasks. This creates a challenge for traditional event-based performance analysis,
which instruments certain code locations such as code region entries and exits.
Event-based analysis characterizes the control flow of a thread as a sequence of
code region enter and exit events, whose consistency may be disrupted by the
task scheduler. For example, tasking may violate the proper nesting of enter and
exit events, impeding the reconstruction of dynamic call paths or the distinction
between inclusive and exclusive performance metrics for a given code region.
Furthermore, the sudden suspension of one task in favor of another makes it
hard to correctly attribute performance metrics to the first task.

To monitor the missing events that can restore the consistency of the ob-
served sequence and properly expose this additional dimension of concurrency
to performance measurement, we have developed portable methods

– to track task suspension and resumption so that it becomes known when a
task region is left and reentered;

– to identify individual task instances so that different instances of the same
task construct can be properly distinguished; and

– to recognize parent-child relationships between tasks so that it can be de-
termined whether one task acts on behalf of another.

Implemented as an extension of the automatic source-code instrumenter
OPARI [10], our solution supports C/C++ programs with tied tasks and with
untied tasks that are suspended only at implied scheduling points, a restriction
that some OpenMP implementations (e.g., the current Sun compiler) still sat-
isfy. Introducing only negligible measurement overhead, the extra instrumenta-
tion inserted for tasking opens the door to a rich variety of performance-analysis
applications including the mapping of task instances onto threads.

The outline of the paper is as follows: We start with a survey of related work
in Section 2. Then, we present a detailed problem statement in Section 3. After
explaining how to obtain unique task identifiers in Section 4, we describe how
to establish parent-child relationships between tasks in Section 5. In Section 6,
we discuss possible extensions of the OpenMP specification to provide general
support for task identifiers with untied tasks. Automated instrumentation for
tracking task suspension and resumption with OPARI is the subject of Section 7,
followed by an experimental evaluation with respect to measurement dilation in
Section 8. The last section draws a conclusion and outlines future work.



2 Related work

Unlike MPI, OpenMP does not specify a standard way of monitoring the dy-
namic behavior of OpenMP programs, although in the past various proposals
have been presented.

The first proposal for a portable OpenMP monitoring interface (named
POMP) was written by Mohr et. al [10]. Based on an abstract OpenMP ex-
ecution model, POMP specifies the names and properties of a set of callback
functions, including where and when they are invoked. The proposal also de-
scribes the reference implementation OPARI, a portable source-to-source trans-
lation tool that inserts POMP calls in Fortran, C, and C++ programs. OPARI
is widely used for OpenMP instrumentation, for example, in the performance
tools Scalasca [6] and TAU[11]. In an attempt to standardize an OpenMP mon-
itoring interface, a second and significantly enhanced version of POMP [9] was
developed by a larger group of people, taking into account experiences with
OPARI, the European INTONE project, and the GuideView performance tool
from KAI. A prototype tool based on binary instrumentation for this second
version of POMP was implemented by DeRose et al. [3]. However, the OpenMP
ARB decided to reject POMP 2 because it was seen as too complex and costly
to implement and also dropped the idea of standardizing an official monitor-
ing interface for OpenMP. The tools subgroup of the OpenMP ARB agreed on
publishing a whitepaper describing a much simpler and less powerful monitoring
interface based on a proposal by Sun [7]. OpenMP compiler vendors are encour-
aged to follow this specification if they want to provide tool support for their
OpenMP implementations. To our knowledge, only Sun and Intel include (un-
documented and incomplete) implementations of this interface in their compiler
offerings. Finally, the group around the OpenUH research compiler investigated
various ways of compiler-based instrumentation for OpenMP monitoring [2].

All this work was carried out before the introduction of tasks in OpenMP.
Very little has been done so far on tools supporting the monitoring of OpenMP
tasks. Fürlinger et al. [5] did initial work on instrumenting OpenMP tasks using
OPARI. However, their solution, which simply encloses task regions with enter
end exit calls, supports only tied tasks and lacks a task-identification mecha-
nism. In addition, Lin and Mazurov [8] extended the whitepaper API to support
tasking and presented a prototype implementation based on the Sun Studio
Performance Analyzer.

3 An additional concurrency dimension

Before version 3.0, an OpenMP program had just one concurrency dimension –
threads. The latest version of the OpenMP specification added a second dimen-
sion. Similar to a thread, a task can be created, suspended, resumed, and carries
some state with it. This can have a serious impact on traditional event-based
performance analysis tools, which usually consider only the first concurrency
dimension.



1 #pragma omp task // Task 1

2 {

3 f1();

4 }

5 #pragma omp task // Task 2

6 {

7 f2();

8 }

9 #pragma omp taskwait

10

11 void f1()

12 {

13 enter_event(f1);

14 #pragma omp task // Task 3

15 {

16 // do something

17 }

18 #pragma omp taskwait

19 exit_event(f1);

20 }

21

22 void f2()

23 {

24 enter_event(f2);

25 #pragma omp task // Task 4

26 {

27 // do something else

28 }

29 #pragma omp taskwait

30 exit_event(f2);

31 }

Fig. 1. Example OpenMP code with tasking.

Event-based performance analysis tools, which are also sometimes referred
to as direct-instrumentation tools, instrument certain points in the code, usu-
ally the entries and exits of nested code regions, and trigger an event whenever
such a point is reached. At runtime, the execution of a thread then appears as
a sequence of events delineating nested code region instances. For each code re-
gion instance, performance metrics can be individually calculated. Code region
instances executed within one another are assumed to be executed on behalf of
the enclosing code region instance, establishing the notion of inclusive and ex-
clusive performance metrics (i.e., covering or not covering child region instances,
respectively).

Tasking now disrupts this event sequence. A task can be suspended in the
middle, and another arbitrary task can be assigned to the executing thread in-
stead. As a consequence, a thread may switch between tasks potentially without



Fig. 2. Timelines of tasks in the program from Figure 1 using a FIFO scheduler.
Each task is represented as a separate timeline. The continuous thick line indi-
cates the task currently being executed. The dashed thick lines indicate intervals
during which tasks are temporarily blocked. The numbers next to the continuous
thick line correspond to the source-line numbers in Figure 1.

any parent-child relationship between them. However, since the OpenMP spec-
ification provides no method for identifying such relationships, it becomes very
hard to calculate meaningful inclusive metrics. Moreover, the execution of tasks
may not be properly nested so that call paths can no longer be calculated in
the traditional way. Even worse, defining call paths along the execution of tasks
without a parent-child relationship might not make sense at all.

This problem is illustrated by the example shown in Figure 1. A potential
scheduling order for this program when executed with a single thread is given in
Figure 2. The example assumes FIFO scheduling with tasks being immediately
suspended once they have been created. The code is supposed to be part of
an initial Task 0. Obviously, the order of enter and exit events in this scenario
violates the nesting property. Although executed by only a single thread, the
events appear in the following order:

enter f1() → enter f2() → exit f1() → exit f2()

In addition, we can observe that one task (Task 2) was suspended in favor of
another (Task 3) that was not a descendant of the previous one. It is clear that
the familiar notions of call paths and of inclusive and exclusive metric values
cannot be maintained in this type of event sequence.



If task identifiers were available and events were produced on every task
switch, we could correctly measure values which are exclusive for each single
task and consider call-path information separately for each task instance. How-
ever, a complex computation often contains many tasks, which potentially create
child tasks. Having aggregate (inclusive) metrics for a computation including the
values of its child tasks eases the location of problem candidates. For this reason,
knowing the creation relationships is of importance as well.

4 Obtaining task identifiers for tied tasks

One way to provide unique task identifiers for tied tasks is to have a task-private
and globally accessible variable that is uniquely initialized on task creation and
remains unchanged and valid throughout the active lifetime of the task – whether
functions are called from within the task or whether the task is interrupted
during its lifetime.

Such a task-private variable can be emulated using a threadprivate global
variable that is constant during the execution of a task but changes its value
at task scheduling points. If we proceed with a newly created task, we set the
variable to the identifier of the new task, and if we resume a previously suspended
task, we set the variable to the corresponding previous value. For this purpose,
we need a mechanism to store and to restore task identifiers at scheduling points
as well as a method to obtain unique identifiers for new tasks.

This can be implemented by declaring a threadprivate variable
current task id in the global scope that will give us the valid task identi-
fier any time during program execution (see Figure 3). It is initialized with a
value corresponding to the initial, implicit task. A function to obtain fresh task
identifiers, get new task id(), can be implemented by concatenating the 32 bit
OpenMP thread identifier with a 32 bit threadprivate variable that is incre-
mented everytime the function is called. The resulting 64-bit combination will
provide globally unique identifiers within every parallel region. Another advan-
tage of this combination is that we do not require any synchronization to obtain
new and unique task identifiers.

To store and to restore task identifiers, we place a local (i.e., automatic
storage) variable old task id before each scheduling point and initialize it with
the value of current task id. If a task is suspended and resumed later on,
the corresponding local variable is still valid and used to restore the value of
current task id.

To maintain task identifiers throughout the entire execution of an application,
instrumentation must be applied

– to parallel regions,
– to taskwait as well as implicit and explicit barrier constructs, and
– to task constructs.

Before we enter a parallel region (see Figure 4), we need to store the current
task identifier so that it can be restored afterwards. Therefore we add a local



int64_t current_task_id = ROOT_TASK_ID;

#pragma omp threadprivate(current_task_id)

Fig. 3. Declaration and initialization of task identifiers.

{

int64_t old_task_id = current_task_id;

#pragma omp parallel

{

current_task_id = get_new_task_id();

// do something

}

current_task_id = old_task_id;

}

Fig. 4. Maintaining task identifiers at parallel regions.

variable old task id and assign to it the identifier of the current task. After
the completion of the parallel region, the local variable is still valid and we can
restore the original value by assigning old task id to current task id.

Inside the parallel region, each thread creates an implicit task and we need
to obtain a unique identifier for each of these tasks. This is done in parallel by
assigning the return values of calls to get new task id() to the threadprivate
variables current task id right at the beginning of the parallel region. Each
thread/task has now a unique current task id variable that is valid until we
reach the next scheduling point.

Scheduling points within parallel regions occur at taskwait and barrier

as well as at task constructs. Here we must maintain task identifiers because
the scheduler can suspend the current task and continue either with a newly
created or a resumed task. At taskwait and barrier constructs, we store the
current task id in a new local variable old task id immediately before reach-
ing the scheduling point and restore it afterwards, as shown in Figure 5. At
task creation points the situation is slightly different. In addition to storing and
restoring the identifier of the current task, we need to obtain a new task identi-
fier by calling get new task id() and assign it to current task id, similar to
the procedure used for parallel regions. This is demonstrated in Figure 6.

If applied to all parallel regions and scheduling points, the code sequences
in Figure 4, Figure 5 and Figure 6 are sufficient to maintain task identifiers
throughout the entire execution of a program.

5 Tracking the task creation hierarchy

With task identifiers available, a task creation hierarchy can be constructed. The
instrumentation presented in the previous section allows the identifier of the



{

int64_t old_task_id = current_task_id;

#pragma omp taskwait

current_task_id = old_task_id;

}

Fig. 5. Storing and resetting task identifiers at taskwait statements (applies also
to barrier constructs).

{

int64_t old_task_id = current_task_id;

#pragma omp task

{

current_task_id = get_new_task_id();

// do something

}

current_task_id = old_task_id;

}

Fig. 6. Maintaining task identifiers at task creation points.

parent task to be obtained at the task creation point. Subsequently, the direct
parent-child relationship can be easily extended to a full pedigree by appending
the new task as a child node of the parent task node to the tree of the creation
hierarchy.

When a new task is created, the parent task must have stored its identifier in
the local variable old_task_id in order to restore the identifier when continuing
its execution. Making the value of old_task_id firstprivate in the child task
ensures that it is initialized with the parent’s identifier, establishing a connection
between the two. The instrumentation for task creation is shown in Figure 7,
assuming the creation tree is built using a function named add_child().

{

int64_t old_task_id = current_task_id;

#pragma omp task firstprivate(old_task_id)

{

current_task_id = get_new_task_id();

add_child(current_task_id, old_task_id);

// do something

}

current_task_id = old_task_id;

}

Fig. 7. Tracking the task creation hierarchy.



6 Untied tasks

The mechanisms described so far assume that scheduling happens only at implied
scheduling points that can be easily instrumented. This assumption is always true
for tied tasks. Compared to tied tasks, the scheduling of untied tasks is more
flexible in two ways. An untied task

– may be resumed by a thread different from the one that executed the task
before it was suspended and

– may be suspended at any point, not only at implied scheduling points.

The first condition does not cause any problem as long as rescheduling occurs
only at scheduling points. Since a performance-analysis tool using our interface is
able to verify the identity of a thread, it can easily distinguish between different
threads. For this reason, our solution also works with OpenMP implementations
that reschedule untied tasks only at implied scheduling points. Although not
prescribed by the OpenMP specification, some implementations (e.g., the current
Sun compiler) still follow this rule because rescheduling at scheduling points,
where control is trivially transferred to the OpenMP runtime, is technically
simpler than it is at arbitrary points. However, untied tasks that are rescheduled
at arbitrary points may disrupt the whole measurement.

General support for untied tasks requires additional services from the run-
time system. At least, notification on task scheduling events is necessary so
that whenever a task is preempted performance metrics can be collected and
the task identifier can be set to the new task. One way of implementing such
a notification mechanism would be the option to register a callback function
cb_resume_task() with the OpenMP runtime that is called whenever the exe-
cution of a task is started or resumed. Inside cb_resume_task(), the environ-
ment of the task brought to execution should be visible. Furthermore, because
the runtime system must maintain task identifiers anyway, it would be helpful
and probably more efficient if the OpenMP runtime system offered a standard
way of obtaining task identifiers rather than having to maintain them on the user
level. While in our view an extension of the OpenMP specification would be the
ideal solution, the current situation leaves us with only the following options:

– Exploit the fact that some OpenMP implementations (e.g., Sun) suspend
untied tasks only at scheduling points.

– Let the instrumentation make all tasks tied. This changes the behavior of
the measured program, but in some cases still allows a few very limited
conclusions to be drawn (e.g., on the granularity of tasks).

7 Automated instrumentation with OPARI

OPARI [10] is a source-to-source instrumentation tool for OpenMP programs.
To allow automated instrumentation of OpenMP C/C++ programs with task-
ing, OPARI was extended to instrument also the task and taskwait constructs.



Table 1. Examples of how OPARI instruments tasking-related constructs.

OMP directive instrumented directive

#pragma omp task {
{ POMP_Task_create_begin(pomp_region_1);

// do something POMP Task handle pomp old task =

} POMP Get current task();

#pragma omp task firstprivate(pomp old task)

{
POMP Set current task(POMP Task begin(

pomp old task, pomp region 1));

{
// do something
}
POMP_Task_end(pomp_region_1);

}
POMP_Set_current_task(pomp_old_task);

POMP_Task_create_end(pomp_region_1);

}
#pragma omp taskwait {

POMP_Taskwait_begin(pomp_region_1);

POMP Task handle pomp old task =

POMP Get current task();

#pragma omp taskwait

POMP_Set_current_task(pomp_old_task);

POMP_Taskwait_end(pomp_region_1);

}

Furthermore, the instrumentation of OpenMP directives that contain (implicit)
scheduling points or create implicit tasks was modified to maintain and to ex-
pose task identifiers and parent-child relationships based on the ideas presented
in Sections 4 and 5.

Access to current_task_id is encapsulated and provided via two func-
tions: POMP_Get_current_task() and POMP_Set_current_task(). The func-
tion get_new_task_id() is not called directly, but inside the region-begin func-
tion (e.g., in POMP_Task_begin()). Some examples of the instrumentation are
shown in Table 1.

8 Overhead

To evaluate the runtime dilation of our instrumentation, we performed two tests,
the first one based on an artificial benchmark, the second one based on a realistic
code example, the Flexible Image Retrieval Engine (FIRE) code [4]. The instru-
mented calls generated unique identifiers for each task, but did not measure any
further metrics.



8.1 Artificial benchmark

Our benchmark program contained a parallel region in which 10,000,000 tasks
per thread were created. Every task just incremented an integer by one. Before
executing the program with four threads, it was instrumented using the extended
version of OPARI. The execution time was measured and compared against
the uninstrumented version. This test was run on an i686 Linux system with a
2.66 GHz quadcore processor using four threads.

Running the uninstrumented program took 1.89 s, while running the instru-
mented program took 2.50 s. The difference was 0.61 s or 32.3 %. Ignoring pro-
gram initialization and the increment instruction inside the tasks, the uninstru-
mented benchmark spent its execution time almost exclusively managing the
tasks. This implies that our instrumentation adds approximately 32.3 % of the
task management time to the overall runtime. An absolute overhead of 0.61 s
for an application with 10,000,000 tasks per thread doing real work is probably
negligible. However, acquisition of performance metrics upon the occurrence of
task scheduling events might incur additional overhead.

8.2 The FIRE code

The Flexible Image Retrieval Engine (FIRE) [4] was developed at the Human
Language Technology and Pattern Recognition Group of RWTH Aachen Univer-
sity. The benchmark version subject to our study consists of more than 35,000
lines of C++ code. Given a query image and the number of desired matches k,
a score is calculated for every image in the database, and the k database entries
with the highest scores are returned. Shared-memory parallelization is obviously
more suitable than distributed-memory parallelization for the image retrieval
task, as the image database can be easily accessed by all threads and need not
be distributed.

The initial parallelization of the FIRE code used nested OpenMP threads
on two nesting levels [12]. This version was later modified to use OpenMP tasks
instead of nested threads. The task-based version creates one task per query
image and inside these tasks every comparison of a query picture with a database
entry is represented by another task. This approach offers more flexibility than
using nested threads because every thread can work on any task. With nested
threads, in contrast, we had to assign a fixed number of threads to the lower
nesting level.

For our experiments, we used 18 query images and a database with 1000
elements. Since every comparison generates a task, 18000 tasks were created
in total. We ran the code on an IBM eServer LS42 equipped with four AMD
Opteron 8356 (Barcelona) processors. We conducted ten test runs with and with-
out instrumentation, while varying the number of threads. The average runtimes
are shown in Table 2.

The results clearly show that the overhead generated by the instrumentation
is insignificant. The total absolute overhead when one thread is used is about
5 s. Compared to the total runtime of 527.56 s this is less than 1 %. When more



Table 2. Comparison of the instrumented against the uninstrumented version
of the FIRE code.

runtime overhead

threads not instrumented instrumented in % in seconds

1 522.57 s 527.56 s 0.96 % 4.99 s
2 259.55 s 262.64 s 1.19 % 3.09 s
4 129.52 s 129.93 s 0.32 % 0.41 s
6 86.42 s 86.43 s 0.01 % 0.01 s
8 64.86 s 65.13 s 0.41 % 0.27 s

12 43.13 s 43.00 s -0.30 % -0.13 s
16 32.12 s 32.43 s 0.95 % 0.31 s

threads are used, the overhead scales well with the number of threads. When 16
threads are used the overhead amounts to 0.31 s which is still less than 1 % of
the total runtime of 32.43 s. So even for larger numbers of threads, the instru-
mentation overhead is very low compared to the overall execution time.

9 Conclusion and future work

A portable method was presented that allows the execution and scheduling of
tied and untied OpenMP tasks to be tracked and exposed to performance mea-
surement. Our method can be applied as long as task scheduling occurs only
at the implied scheduling points defined in the OpenMP specification, which is
always the case for tied tasks and in some implementations (e.g., the current
Sun compiler) even for untied tasks.

Implemented as an extension of OPARI, the necessary instrumentation can
be automatically inserted into the source code of OpenMP programs written in
C/C++. In a next step, we plan to extend our solution to Fortran. The runtime
dilation caused by the instrumentation was shown to be negligible, although we
believe that the overhead could probably be further reduced if the task identifier
was provided by the runtime environment. Performance tools using OPARI are
now encouraged to implement a rich variety of analyses of the events delivered by
our interface, taking advantage of the two concurrency dimensions (i.e., threads
and tasks) being fully exposed – including the mapping between them. Applica-
tion candidates include analyzing the task synchronization overhead in view of
many small tasks, determining the granularity distribution among tasks, study-
ing the task creation hierarchy, and drawing execution timelines of parallel tasks.
Code studies will have to show which ones are most relevant. Displaying data
related to the two concurrency dimensions in a meaningful way and handling
the potential non-determinism of task scheduling will pose major challenges.

General support for untied tasks, which are in principle allowed to be sus-
pended at arbitrary points, cannot be provided unless the OpenMP runtime ex-
poses task scheduling events, which would require an extension of the OpenMP



specification. At a minimum, the user should be given the option to register a
function to be called whenever a task’s execution is started or resumed.
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the ParCo 2007 Conference, Jülich, Germany, September 2007.

3. Luiz DeRose, Bernd Mohr, and Seetharami Seelam. Profiling and tracing OpenMP
applications with POMP based monitoring libraries. In Proc. of the European
Conference on Parallel Computing (Euro-Par), volume 3149 of Lecture Notes in
Computer Science, pages 47–54, Pisa, Italy, August - September 2004. Springer.

4. Thomas Deselaers, Daniel Keysers, and Hermann Ney. Features for image retrieval
- a quantitative comparison. In 26th DAGM Symposium, Pattern Recognition
(DAGM 2004), volume 3175 of Lecture Notes in Computer Science, pages 228 –
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