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Two of the most successful methods that are presently available for simulating the quantum dynamics
of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular
dynamics (RPMD). Despite their conceptual differences, practical implementations of these methods
differ in just two respects: the choice of the Parrinello-Rahman mass matrix and whether or not
a thermostat is applied to the internal modes of the ring polymer during the dynamics. Here, we
explore a method which is halfway between the two approximations: we keep the path integral bead
masses equal to the physical particle masses but attach a Langevin thermostat to the internal modes
of the ring polymer during the dynamics. We justify this by showing analytically that the inclusion of
an internal mode thermostat does not affect any of the established features of RPMD: thermostatted
RPMD is equally valid with respect to everything that has actually been proven about the method
as RPMD itself. In particular, because of the choice of bead masses, the resulting method is still
optimum in the short-time limit, and the transition state approximation to its reaction rate theory
remains closely related to the semiclassical instanton approximation in the deep quantum tunneling
regime. In effect, there is a continuous family of methods with these properties, parameterised by the
strength of the Langevin friction. Here, we explore numerically how the approximation to quantum
dynamics depends on this friction, with a particular emphasis on vibrational spectroscopy. We find
that a broad range of frictions approaching optimal damping give similar results, and that these
results are immune to both the resonance problem of RPMD and the curvature problem of CMD.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4883861]

I. INTRODUCTION

Centroid molecular dynamics1, 2 (CMD) and ring poly-
mer molecular dynamics3, 4 (RPMD) are two closely related
approximate techniques for including quantum mechanical
zero point energy and tunnelling effects in molecular dynam-
ics simulations of condensed phase systems. Both are based
on the imaginary time path integral formulation of quan-
tum statistical mechanics,5 but in different ways: RPMD is
classical molecular dynamics in the extended phase space of
the imaginary time path integral (or ring polymer6), whereas
CMD is classical molecular dynamics on the potential of
mean force generated by the thermal fluctuations of this ring
polymer around its centroid.

Both of these techniques are now well established and
have been used in a wide variety of applications.7, 8 They
are especially useful for calculating diffusion coefficients and
other transport properties of liquids,9–20 and for including
zero-point energy and tunnelling effects in the calculation of
chemical reaction rates.21–36 In these contexts, both methods
appear to be reasonably reliable, on the basis of comparisons
with full quantum mechanical results in cases where these
are available,25–27, 29, 30, 33 and exact quantum mechanical mo-
ment constraints in cases where they are not.13, 14, 37–39 One
explanation for why RPMD works well for these problems
is that diffusion coefficients and reaction rate coefficients are

determined by the zero-frequency components of the rele-
vant (velocity and reactive flux) autocorrelation spectra, and
are therefore comparatively insensitive to the artificial high-
frequency dynamics of the ring polymer internal modes.8

There are however some important situations in which
RPMD and CMD are known to give unphysical results,
the classic example being in the simulation of vibrational
spectroscopy. Here, RPMD fails because of the so-called
resonance problem:40–42 when the frequency of a physical vi-
bration (such as an O–H stretch in liquid water) comes into
resonance with an excited internal mode of the ring polymer
in another degree of freedom (such as a librational mode of
the liquid), the resulting interaction causes a spurious split-
ting of the physical peak in the calculated spectrum.41 In
a simulation at room temperature, the first internal excita-
tion of the ring polymer occurs at a wavenumber of kT/¯c
∼1300 cm−1, and so any spectral feature beyond this
wavenumber could in principle be affected by this problem.

The resonance problem does not occur in CMD because
the high-frequency vibrations of the internal modes of the
ring polymer are averaged over in this method to calculate
the centroid potential of mean force: they do not appear
as dynamical variables. However, CMD can also give un-
physical vibrational spectra, for a different reason known as
the curvature problem.42, 43 This problem is again inherently
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multidimensional and is expected to arise whenever a high
frequency stretching coordinate is combined with an angu-
lar coordinate, such as a rotational or a torsional degree of
freedom. At low temperatures, the ring polymer spreads out
around the angular coordinate, resulting in a softening of the
centroid potential of mean force along the stretch.42, 43 Be-
cause of this, the stretching peak in the simulated spectrum
is artificially red-shifted and broadened. In the extreme case
of a combination with a free rotation, the frequency of the
stretching peak can even tend to zero as T → 0.42

In this paper, we shall show that both of these problems
can be avoided by adopting a method that is halfway between
RPMD and CMD. Despite their conceptual differences, prac-
tical implementations of these two methods are very similar.
In RPMD, the masses of the ring polymer beads are chosen
to be the physical particle masses, and the dynamics that is
used to calculate correlation functions is microcanonical.3 In
the adiabatic implementation of CMD,54 the internal modes of
the ring polymer are given much smaller masses so that they
vibrate at frequencies well beyond the physical spectral range,
and a thermostat is attached to these internal modes to gener-
ate the canonical centroid potential of mean force. We shall
show here that, in the context of vibrational spectroscopy, at-
taching a thermostat to the internal modes of the ring poly-
mer during the dynamics is a good idea, because it damps out
the spurious resonances from RPMD. However, adiabatically
separating the internal vibrations of the ring polymer from the
centroid motion is a not such a good idea, because it is the ori-
gin of the curvature problem in CMD.

The reason why it is legitimate to attach a thermostat to
the internal modes of the ring polymer during the dynamics
is discussed in Sec. II: provided the thermostat only acts on
the internal modes and not on the centroid, it does not have
any impact on any of the established properties of RPMD.
Section III goes on to present some numerical examples to
illustrate how attaching a thermostat to the internal modes
while keeping the bead masses equal to the physical masses
cures both the resonance problem of RPMD and the curva-
ture problem of CMD, for a variety of model and more real-
istic vibrational problems. It also happens to be the case that
thermostatted RPMD (TRPMD) provides the simplest com-
putational scheme, because it avoids both the non-ergodicity
of the microcanonical dynamics in RPMD and the need to use
a small integration time step in CMD. Finally, to emphasise
that it is not restricted to the calculation of vibrational spectra,
we show that TRPMD gives a diffusion coefficient and orien-
tational relaxation times for liquid water that are very similar
to those obtained from RPMD and CMD. Section IV contains
some concluding remarks.

II. SOME PROPERTIES OF THERMOSTATTED RPMD

A. Standard ring polymer molecular dynamics

Although RPMD can also be used to approximate cross
correlation functions, we shall confine our attention here to
Kubo-transformed autocorrelation functions of the form45

c̃AA(t) = 1

βZ

∫ β

0
dλ tr[e−(β−λ)Ĥ Â e−λĤ Â(t)], (1)

where

Z = tr[e−βĤ ] (2)

and

Â(t) = e+iĤ t/¯Â e−iĤ t/¯. (3)

Correlation functions of this form arise in a wide variety of
contexts, including the theory of diffusion (in which Â is the
operator for the velocity of a tagged particle in a liquid), the
theory of reaction rates (in which Â is the operator for the flux
of particles through a transition state dividing surface), and,
most relevantly to the present study, the theory of vibrational
spectroscopy (in which Â is the dipole moment operator of
the entire system).

Since the multi-dimensional generalisation is
straightforward,8 and it does not add anything other than
more indices, we shall present all of the following equations
for a model one-dimensional system with a Hamiltonian of
the form

Ĥ = p̂2

2m
+ V (q̂). (4)

Furthermore, since most physically interesting correlation
functions involving non-local operators can be obtained by
differentiating correlation functions of local operators (for ex-
ample, the velocity autocorrelation function of a tagged par-
ticle in a liquid is minus the second time derivative of its po-
sition autocorrelation function), we shall restrict our attention
to the case where Â is a local Hermitian operator A(q̂).

The n-bead RPMD approximation to the correlation
function in Eq. (1) is then simply3

c̃AA(t) = 1

Nn

∫
dp

∫
dq e−βnHn(p,q)An(q)An(qt ), (5)

where Nn = (2π¯)nZn with

Zn = 1

(2π¯)n

∫
dp

∫
dq e−βnHn(p,q). (6)

Here, Hn(p, q) is the classical Hamiltonian of a harmonic ring
polymer with a potential of V (q) acting on each bead,

Hn(p, q) =
n∑

j=1

[
p2

j

2m
+ 1

2
mω2

n(qj − qj−1)2 + V (qj )

]
, (7)

with ωn = 1/(βn¯), βn = β/n, and q0 ≡ qn. The coordinates
qt = qt(p, q) in Eq. (5) are obtained from the classical dynam-
ics generated by this Hamiltonian,

ṗ = −∂Hn(p, q)

∂q
, (8)

q̇ = +∂Hn(p, q)

∂p
, (9)
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and the functions An(q) and An(qt) are averaged over the beads
of the ring polymer necklace at times 0 and t,

An(q) = 1

n

n∑
j=1

A(qj ). (10)

The approximation in Eq. (5) is clearly ad hoc, and no
one has yet been able to derive it from first principles. How-
ever, it is consistent with the path integral description of static
equilibrium properties, it gives a correlation function with the
same time-reversal and detailed balance symmetries as the
quantum correlation function3 (which in the present context
combine to make c̃AA(t) a real and even function of t), it
is exact for problems with continuous spectra in the high-
temperature limit where the ring polymer shrinks to a sin-
gle classical bead, it is as accurate as possible in the short-
time limit for a method based on the classical evolution of
imaginary-time path integral variables,4 and it is exact at all
times for the position autocorrelation function of a simple har-
monic oscillator.3

Furthermore, Richardson and Althorpe46 have recently
established a close connection between RPMD transition
state theory (TST) and the semiclassical instanton approxi-
mation in the deep quantum tunnelling regime, and Hele and
Althorpe47–49 have gone on to show that RPMD TST is in
fact the only known quantum mechanical version of TST with
positive definite statistics that can be derived from the t → 0+
limit of a reactive flux-side correlation function. These impor-
tant findings, which legitimise the use of RPMD for calculat-
ing chemical reaction rates more so than in any other context,
are both clearly associated with the accuracy of the RPMD
approximation in the short-time limit.

The key observation that motivated the present study is
that, as we shall show next, all of the above features of RPMD
continue to hold when the Hamiltonian dynamics of the ring
polymer necklace is augmented with a Langevin thermostat,
provided the thermostat only acts on the internal modes of the
ring polymer and not on its centroid. In effect, RPMD is just
one of a family of dynamical approximations that share the
same correct symmetries and limiting cases, the family being
parameterised by the strength of the Langevin friction. So by
exploring the whole family, one might hope to find a method
that alleviates some of the known problems of RPMD (such as
the resonance problem mentioned in the Introduction), with-
out sacrificing any of its established features.

B. The effect of an internal mode thermostat

The Hamiltonian equations of motion in Eqs. (8) and (9)
can be written out more explicitly as

ṗ = F(q) = f(q) − Kq, (11)

q̇ = 1

m
p. (12)

Here, K is a real, symmetric, positive semi-definite n × n
spring constant matrix with elements

Kjj ′ = mω2
n(2δjj ′ − δjj ′−1 − δjj ′+1), (13)

all indices being understood to be translated by a multiple of n
to lie between 1 and n, and f(q) is a force vector with elements
fj (q) = −V ′(qj ).

An important feature of the spring constant matrix is that
it does not have any impact on the centroid

p̄ = eTp, q̄ = eTq (14)

of the ring polymer, but only on the ring polymer internal
modes. To see this, it suffices to note that

eTK = 0T and K e = 0, (15)

where e is a vector with elements ej = 1/n and 0 is a vector
of zeroes. This feature was used repeatedly by Braams and
Manolopoulos4 to investigate the short-time limit of RPMD,
and we shall use it again in this context below.

Using the same notation, suppose that we now attach a
Langevin thermostat to the dynamics by replacing Eq. (11)
with

ṗ = F(q) − γ p +
√

2mγ

βn

ξ (t), (16)

where γ is a real, symmetric, positive semi-definite n × n
friction matrix and ξ (t) is a vector of uncorrelated normal
deviates with unit variance and zero mean (〈ξ j(t)〉 = 0 and
〈ξj (0)ξj ′(t)〉 = δjj ′δ(t)). Then the thermostat will also be de-
tached from the centroid (i.e., only act directly on the ring
polymer internal modes) if e is an eigenvector of γ (and there-
fore also of

√
γ ) with eigenvalue zero,

eTγ = 0T and γ e = 0. (17)

So let us consider whether any of the established properties
of RPMD are affected by replacing Eq. (11) with Eq. (16)
subject to this constraint on γ .

First of all (and perhaps most importantly), the consis-
tency with imaginary time path integral expressions for static
equilibrium properties is maintained. One can either calcu-
late these properties by averaging over short RPMD trajecto-
ries with initial conditions sampled from the Boltzmann dis-
tribution e−βnHn(p,q)/Nn, or by attaching a thermostat to the
dynamics as in Eq. (16). In fact, for the calculation of static
equilibrium properties, attaching a thermostat to the dynamics
is widely recognised as the better way to proceed.

The symmetry properties of RPMD are also unaffected
by replacing Eq. (11) with Eq. (16), at least in the case that
we are considering here: c̃AA(t) is still a real and even func-
tion of t. This follows because the Langevin dynamics is a
stationary process – a process that conserves the equilibrium
distribution and is independent of the origin of time – despite
the appearance of t in the noise term on the right-hand side of
Eq. (16). (The noise is uncorrelated from one instant of time
to the next, and it has the same form at all instants of time.)

In more detail, the autocorrelation function that results
from the Langevin dynamics is

c̃AA(t) = 1

Nn

∫
dp

∫
dq e−βnHn(p,q)An(q)Ān(qt ), (18)

where the overbar denotes an average over the stochastic pro-
cess that takes the integration variables p and q to qt(p, q)
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in time t > 0 (Langevin dynamics is only valid for posi-
tive times). By stationarity, this can be written equivalently as
either

c̃AA(t) = 1

Nn

∫
dp

∫
dq e−βnHn(p,q)Ān(qt0 )Ān(qt0+t ), (19)

or

c̃AA(t) = 1

Nn

∫
dp

∫
dq e−βnHn(p,q)Ān(qt0−t )Ān(qt0 ), (20)

for any time origin t0 > t, and comparing these two equa-
tions we see that c̃AA(t) = c̃AA(−t). Since A(q̂) is Hermitian,
c̃AA(t) is also real, and therefore a real and even function of t.

So far, we have not made any use of the constraint in
Eq. (17), which detaches the thermostat from the centroid of
the ring polymer. However, this constraint is clearly needed
for the dynamics to give the correct result in the high-
temperature limit, and also for the position autocorrelation
function of a harmonic oscillator.

In the high temperature limit, where a single bead suf-
fices to converge the autocorrelation function, the constraint
makes γ zero, so the thermostat has no effect. One therefore
recovers standard RPMD in this limit, which gives the correct
(classical) result for systems with continuous spectra. As for
the harmonic limit, when Eq. (17) is satisfied the only term in
Eq. (16) that couples the centroid to the internal modes of the
ring polymer is the force vector f(q): in general, eTf(q) is not
just a function of the centroid coordinate q̄ = eTq. However,
when the potential V (q) is harmonic, V (q) = 1

2mω2q2, one
has eTf(q) = −mω2q̄, and the coupling of the centroid to the
internal modes disappears. With the constraint in Eq. (17),
thermostatted RPMD will therefore give the same posi-
tion (q̄) autocorrelation function for a harmonic oscillator
as RPMD.

Finally, let us consider the effect of the thermostat on the
short-time limit of the correlation function c̃AA(t). Braams
and Manolopoulos4 have given a detailed analysis of the
short-time limit of the standard RPMD approximation in
Eq. (5), in which they argued that it has an error of O(t8) for
the position autocorrelation function and of O(t4) for a more
general autocorrelation function of a nonlinear operator A(q̂).
However, this argument assumed the odd time derivatives
of the RPMD autocorrelation function to be continuous at
t = 0, as they are in quantum mechanics. By considering
the special case of a simple harmonic oscillator, for which
the autocorrelation function can be worked out analytically,50

Jang et al.51 have shown that the third derivative of the RPMD
approximation to c̃q2q2 (t) becomes discontinuous at t = 0 in
the limit as n → ∞ (the correlation function contains a term
proportional to |t|3 in this limit51). This implies that the er-
ror in the RPMD approximation to this nonlinear autocorrela-
tion function is O(t3) rather than O(t4).51 Moreover, a simple
argument shows that the error in the RPMD position auto-
correlation function will therefore be O(t7) rather than O(t8).
This follows because c̃(4)

qq (t) = c̃ff (t), where f (q) = −V ′(q)
is the force. In an anharmonic potential, f(q) is a nonlinear
function of q (for example, it could contain a component pro-
portional to q2), so the RPMD approximation to c̃ff (t) has
an error of O(t3), and the approximation to c̃qq(t) an error of
O(t4 + 3).

To see how thermostatting the internal modes of the ring
polymer affects these results, we shall now compare the first
few initial time derivatives of the Langevin-thermostatted cor-
relation function in Eq. (18) with those of the standard RPMD
correlation function in Eq. (5). The kth (forward) initial time
derivative of c̃AA(t) is given by Eq. (18) as

c̃
(k)
AA(0) = 1

Nn

∫
dp

∫
dq e−βnHn(p,q)An(q)Ā(k)

n (q), (21)

where Ā(k)
n (q) is the kth time derivative of the noise-averaged

Ān(qt ) at t = 0. This is given by52

Ā(k)
n (q) = (

D†)k
An(q), (22)

where D† is the adjoint of the Fokker-Planck operator associ-
ated with the Langevin dynamics in Eqs. (12) and (16),

D† = p
m

· ∂

∂q
+ F(q) · ∂

∂p
− p · γ · ∂

∂p
+ m

βn

∂

∂p
· γ · ∂

∂p
.

(23)
The time derivatives of the standard RPMD autocorrelation
are recovered by setting γ = 0 in this operator, which con-
verts it into the adjoint of the Liouville operator associated
with the Hamiltonian dynamics in Eqs. (11) and (12). The
goal is therefore to find the smallest value of k for which
c̃

(k)
AA(0) involves any reference to γ , which suffices to estab-

lish that the thermostatted and standard RPMD autocorrela-
tion functions differ by O(tk).

In the special case of the position autocorrelation func-
tion, for which A(q̂) = q̂ and An(q) = eTq, a straightforward
but lengthy calculation that combines Eqs. (21)–(23) with the
simplifications in Eqs. (15) and (17) gives

c̃(0)
qq (0) = 〈eTq qTe〉, (24a)

c̃(1)
qq (0) = 0, (24b)

c̃(2)
qq (0) = − 1

βnm
〈eTe〉 ≡ − 1

βm
, (24c)

c̃(3)
qq (0) = 0, (24d)

c̃(4)
qq (0) = + 1

βnm2
〈eTH(q)e〉, (24e)

c̃(5)
qq (0) = 0, (24f)

c̃(6)
qq (0) = − 1

βnm3
〈eTH(q)2e〉, (24g)

c̃(7)
qq (0) = + 1

βnm3
〈eTH(q) γ H(q)e〉. (24h)

Here, the angular brackets denote an equilibrium average

〈F (q)〉 = 1

Nn

∫
dp

∫
dq e−βnHn(p,q) F (q), (25)

and H(q) is a diagonal matrix with diagonal elements
Hjj (q) = V ′′(qj ).
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When the potential V (q) is harmonic, eTH(q)γ H(q)e is
proportional to eTγ e, which vanishes by virtue of Eq. (17). All
subsequent occurrences of γ in the higher derivatives c̃(k)

qq (0)
also vanish for the same reason, so the thermostat has no ef-
fect on the position autocorrelation function. But when the
potential V (q) is anharmonic, there is no such simplification,
and it follows from Eqs. (24) that the difference between the
thermostatted and standard RPMD autocorrelation functions
is O(t7). Since this is exactly the same order as the error in
the RPMD position autocorrelation function (see above), the
short-time accuracy of the approximation is unaffected by at-
taching a thermostat to the internal modes of the ring polymer
during the dynamics.

By contrast, changing the Parrinello-Rahman53 mass ma-
trix so as to adiabatically separate the internal modes from the
centroid mode, as is done in the adiabatic implementation of
CMD,44 certainly does have an effect on the short-time accu-
racy. The leading error is then O(t6) even before a thermostat
is attached to the internal modes,4 and the leading error in
the fully converged CMD position autocorrelation function in
which the centroid moves classically on its potential of mean
force is only O(t4).54

In the more general case of the autocorrelation function
of a nonlinear operator A(q̂), RPMD is considerably less ac-
curate in the short-time limit,4, 51 and the same is true of ther-
mostatted RPMD. In this case, one finds from Eqs. (21)–(23)
that the first time derivative c̃

(k)
AA(0) to involve γ is

c̃
(3)
AA(0) = + 1

βnm
〈eTA′(q) γ A′(q)e〉, (26)

where A′(q) is a diagonal matrix with diagonal elements
A′(qj). If A(q̂) were a linear operator, these diagonal elements
would all be the same, and c̃

(3)
AA(0) would be zero by virtue

of Eq. (17). But for a nonlinear operator, the right-hand side
of Eq. (26) is non-zero, so TRPMD differs from RPMD by a
term of O(t3). Again, since this is the same order as the er-
ror in the RPMD autocorrelation function,51 nothing is lost
by attaching a thermostat to the internal modes during the
dynamics. (CMD is not really applicable to autocorrelation
functions of nonlinear operators, but it is nevertheless often
used for this purpose in the form of the “CMD with classical
operators” approximation.7 The leading error is then O(1) –
again 3 orders less accurate than RPMD.)

A closely related question is whether attaching a
Langevin thermostat to the internal modes of the ring polymer
will affect any of the results of Richardson and Althorpe46 or
Hele and Althorpe47–49 concerning RPMD TST. The RPMD
TST rate is obtained from the t → 0+ limit of a flux-side
correlation function, which is (minus) the first time deriva-
tive of a side-side correlation function. The question is there-
fore whether the thermostat will affect the short-time limit of
this side-side correlation function to O(t). This can be inves-
tigated using Eqs. (21)–(23) by replacing An(q) in Eq. (10)
with An(q) = h[f(q)], where h(x) is the Heaviside step func-
tion and f(q) = 0 is a transition state dividing surface in the
ring polymer configuration space.46, 47 Since this gives Ā(1)

n (q)
= δ[f (q)]∂f (q)/∂q · p/m, which does not involve the fric-

tion matrix γ , it is clear that attaching a thermostat to the
dynamics will not have any effect on RPMD TST.

C. Specification of the friction matrix

So far, our discussion of TRPMD has been fairly gen-
eral: we have not specified the friction matrix γ in Eq. (16)
beyond saying that it is real, symmetric, and positive semi-
definite and that it satisfies the constraint in Eq. (17). One
could go further by considering a generalised Langevin equa-
tion thermostat in the form of a Langevin thermostat in an ex-
tended momentum space,55 which has the potential to provide
an even milder perturbation to the Hamiltonian ring polymer
dynamics. But that would lengthen the discussion consider-
ably, and we have not yet explored this option in any detail.
So instead, to make things more concrete, we shall now sim-
ply describe the particular family of friction matrices we have
used for illustrative purposes in the calculations presented in
Sec. III.

These friction matrices are based on the path integral
Langevin equation (PILE) thermostat introduced in Ref. 56.
The basic idea is to transform to the normal mode representa-
tion by diagonalising the harmonic spring constant matrix K
in Eq. (13), and then to construct a diagonal friction matrix
γ̃ c in this representation. This has the advantage that the nor-
mal mode friction matrix can be chosen to give critical damp-
ing (optimum canonical sampling of the harmonic oscillator
Hamiltonian) for each excited (non-centroid) normal mode of
the free ring polymer.56 To make the connection with the no-
tation we have used above, γ̃ c can then be transformed back
into the ring-polymer bead representation to give a friction
matrix for use in Eq. (16).

The relevant equations are simply

CTKC = mω̃2, (27)

γ̃ c = 2ω̃, (28)

γ c = C γ̃ cCT, (29)

where C is an orthogonal transformation matrix56 and ω̃ is a
diagonal matrix of free ring polymer vibrational frequencies:
ω̃kk′ = 2ωn sin(kπ/n)δkk′ for k, k′ = 0, 1, . . . , n − 1.

Note that, since ω̃00 = 0, the friction matrix γ c does not
have any effect on the centroid (k = 0) mode of the ring
polymer, consistent with the constraint on γ in Eq. (17). (In
Ref. 56, a separate Langevin thermostat was applied to the
centroid to facilitate the canonical sampling of static equilib-
rium properties, but to do so here would invalidate most of the
results we have established for the autocorrelation functions
obtained from thermostatted RPMD.) Note also that, while
critical damping of the free ring polymer internal modes is
certainly a good idea for the calculation of static equilibrium
properties,56 there is no a priori reason to suppose that it will
be the best thing to do in thermostatted RPMD. We have there-
fore explored a range of dampings by defining the family of
friction matrices

γ = λγ c, (30)
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where λ > 1 gives over-damping of the free ring polymer vi-
brations, λ = 1 gives critical damping, λ < 1 gives under-
damping, and λ = 0 recovers standard RPMD. The upshot is
that λ = 1/2 is close to optimum for all of the problems we
have studied. This is perhaps not surprising, because it is the
choice that gives the most efficient canonical sampling of the
configuration space of the free ring polymer (i.e., of its poten-
tial energy rather than its Hamiltonian).56 In retrospect, λ =
1/2 might also be better than λ = 1 for the calculation of static
equilibrium properties. We shall use this “optimal” value of λ

throughout Sec. III unless we specify otherwise.

III. A SOLUTION TO THE RESONANCE
AND CURVATURE PROBLEMS

In Sec. II, we have shown that adding a stochastic ther-
mostat to the internal degrees of freedom of the ring polymer
without changing its mass matrix preserves all of the estab-
lished properties of RPMD. Here, we will demonstrate that,
for several model and more realistic systems, the use of a
PILE thermostat with optimal damping produces a method
that is immune to both the resonance problem of RPMD and
the curvature problem of CMD.

A. Model molecules: Harmonic OH and CH4

We shall start by considering two of the model molecules
that were originally used to highlight the curvature and reso-
nance problems.42 These are simplistic approximations to the
OH and CH4 molecules with harmonic interaction potentials

V =
∑
bonds

kb

2
(r − re)2 +

∑
angles

ka

2
(θ − θe)2, (31)

in which the values of kb, ka, re, and θ e are given in Ref. 42.
For each of these model molecules, we have calculated

the dipole absorption cross section σ (ω) ∝ βω2Ĩ (ω), where
Ĩ (ω) is the Fourier transform of the Kubo-transformed au-
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FIG. 1. Absorption cross sections for the harmonic OH molecule: (a) and (b)
CMD and TRPMD methods at 100, 200, and 300 K; (c) and (d) RPMD and
TRPMD methods at 109, 350, and 436 K. The dotted grey line indicates the
correct harmonic vibrational frequency of the model, ωOH = 3715.6 cm−1.
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FIG. 2. Absorption cross sections for the harmonic CH4 molecule: (a) and
(b) CMD and TRPMD methods at 100, 200, and 300 K; (c) and (d) RPMD
and TRPMD methods at 136, 273, and 400 K.

tocorrelation function of the molecular dipole moment.41

RPMD, CMD, and TRPMD all yield approximations to this
autocorrelation function. The resulting spectra are shown in
Fig. 1 for the harmonic OH molecule and in Fig. 2 for CH4.
For the sake of comparison, these simulations were performed
with translations and rotations removed using the procedure
described in Ref. 42, and at the same temperatures and with
the same number of beads as in that study.

In both figures, we show in panels (a) and (c) the CMD
and RPMD spectra, which are fully consistent with the results
reported in Ref. 42. The curvature problem of CMD is appar-
ent for both molecules. The high-frequency stretching peaks
shift (quite dramatically) to lower frequencies and broaden
significantly with decreasing temperature. The shift is more
pronounced for the OH molecule than for the CH4 molecule,
because the presence of a harmonic bending term in the poten-
tial for methane reduces the spread of the ring polymer in the
directions orthogonal to the stretch, thereby limiting the soft-
ening of the centroid potential of mean force along the stretch-
ing coordinate. For RPMD, one clearly sees that the peaks in
the spectrum are split by resonances at temperatures where
the free ring polymer frequencies coincide with the physical
frequencies (109 K and 436 K for OH and 136 K and 273 K
for CH4). This resonance problem is just as severe for both
molecules, because it is caused by the coupling between the
physical vibrations of the stretching coordinate and compar-
atively low amplitude vibrations of the internal modes of the
ring polymer in the directions orthogonal to the stretch.

In panels (b) and (d), we show the optimally damped (λ
= 1/2) TRPMD results for both molecules at the same tem-
peratures used for the CMD and RPMD calculations. In all
cases the resonant peak splitting disappears and the curva-
ture problem is absent. This shows that the curvature prob-
lem originates from the choice of the Parrinello-Rahman mass
matrix used in CMD, rather than from the thermostatting
of the internal modes. As we will discuss more in detail in
Sec. III B, the peaks in the TRPMD spectrum are found to
broaden as the temperature is lowered. This is because the
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FIG. 3. Absorption cross sections for the harmonic OH molecule at 109 K.
(a)-(e) The various plots compare the RPMD spectrum to the TRPMD spec-
trum with different damping parameters λ. On the left side of the figure, the
cross sections have been multiplied by a factor 10 for better visualisation.

internal vibrations of the ring polymer are damped by the
Langevin friction but not eliminated. With optimal damping,
they do not appear as sharp resonances, but they do lead to
an indirect damping of the physical vibrations that becomes
more pronounced as the temperature is lowered and the spac-
ing between the internal frequencies of the ring polymer de-
creases.

To demonstrate that optimal damping is indeed the best
choice for the TRPMD method, we have investigated the sen-
sitivity of the results to the choice of the damping parame-
ter. Figure 3 shows the TRPMD spectrum of the model OH
molecule at 109 K calculated with different values of λ, in
both the underdamped and overdamped regimes. The under-
damped spectrum with λ = 0.15 gives a peak very close to the
correct OH stretching frequency, but it still shows a spurious
peak at about 900 cm−1 that corresponds to one of the inter-
nal excitations of the ring polymer in a direction orthogonal to
the stretch. The strongly overdamped TRPMD spectrum with
λ = 5 shows no trace of this spurious peak, but the peak
in the OH stretching region is now significantly red shifted
(although not nearly by so much as it is at this temperature
in CMD). Overall, optimal damping appears to be a reason-
able compromise that washes out the spurious peak without
dramatically red-shifting the physical vibration. Although the
choice of λ does affect the precise position of the stretching
peak, there is a fairly large range of values approaching λ

= 1/2 for which the TRPMD spectrum does a reasonable job
of capturing the correct peak position and masking the reso-
nance artefact.

B. Anharmonic OH

As a second test case, we have considered an OH
molecule with an anharmonic (Morse) interaction potential

V = De[1 − e−α(r−re)]2, (32)
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FIG. 4. Absorption cross sections for the anharmonic OH molecule: (a) and
(b) CMD and TRPMD methods at 100, 200, and 300 K ; (c) and (d) RPMD
and TRPMD methods at 109, 350, and 436 K. The dotted grey line indicates
the correct fundamental transition frequency ω1 ← 0 = 3568 cm−1.

where De = hc ω2
e/4ωexe and α =

√
2μOHhc ωexe/¯2 with

ωe = 3737.76 cm−1, ωexe = 84.881 cm−1, and re

= 0.96966 Å.57 Since the vibrational energy levels of this
potential are known exactly, this test case provides a conve-
nient way to separate the curvature problem of CMD from the
correct anharmonic red shift of the vibrational fundamental
band, and also to study how the TRPMD method performs
for a more realistic potential.

Figure 4 is analogous to Fig. 1, but now for the anhar-
monic OH molecule. For the CMD and RPMD methods (pan-
els (a) and (c)), we see very similar curvature and resonance
problems to those observed in the harmonic case. The position
of the CMD stretching peak is noticeably red shifted with re-
spect to the correct anharmonic result even at 300 K, and the
RPMD stretching peak is plagued by resonances at all three
temperatures considered in the figure.

The optimally damped TRPMD results shown in pan-
els (b) and (d) of Fig. 4 are again unaffected by the curva-
ture and resonance problems. The TRPMD stretching peak
is within 35 cm−1 of the correct fundamental transition fre-
quency, whereas the harmonic vibrational frequency of the
molecule (which would be obtained from a classical simula-
tion at low temperature) is blue shifted from the fundamental
frequency by 170 cm−1. The position of the TRPMD peak
is also independent of the simulation temperature, although
it does broaden as the temperature is lowered, and more so
than in the case of the harmonic OH molecule considered in
Fig. 1.

In order to quantify the extent of this broadening, we have
fitted Lorentzian curves to the CMD and TRPMD peaks in
Fig. 4. The resulting peak positions and full widths at half
maximum (FWHM) are shown as a function of temperature
in Fig. 5, along with the results of classical simulations and
additional calculations at 1000 K. The peaks proved to be al-
most perfectly Lorentzian in all cases except at 1000 K, where
they were slightly asymmetric. From the top panel of Fig. 5
it is clear that, while the TRPMD vibrational peak broadens
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FIG. 5. Full width at half maximum FWHM (top) and peak position (bottom)
as a function of temperature for the CMD and TRPMD spectra shown in
Fig. 4, plus additional data from a classical simulation and points at 1000 K
for all three methods. The dotted line in the bottom panel indicates the correct
position of the peak at 3568 cm−1.

with decreasing temperature, the broadening is less severe
than in the case of CMD. The peak position, shown in the
bottom panel, is also stable in the TRPMD and classical sim-
ulations, but not in CMD. The classical simulation produces a
peak with a FWHM of only 11 cm−1 at 100 K, but the width
increases with temperature, and becomes comparable to the
widths of the CMD and TRPMD peaks at 1000 K.

C. The Zundel cation

Next, to illustrate the limitations of using any method
like RPMD, CMD, or TRPMD to simulate gas phase vi-
brational spectra, we have considered a significantly more

complex test case: the Zundel cation H5O+
2 described by

the coupled-cluster singles, doubles, and perturbative triples
(CCSD(T)) potential energy and dipole moment surfaces of
Huang, Braams, and Bowman.58 The infrared spectroscopy
of this cation has been studied extensively in the past both
theoretically59–64 and experimentally,65–69 and it contains fea-
tures that one should not even hope to capture using a method
that neglects real time quantum interference effects. Among
other things, the low temperature spectrum in the shared pro-
ton region contains a doublet feature that has been interpreted
as a Fermi resonance involving a fourth-order coupling be-
tween the proton transfer mode, the O–O stretching mode,
and the H–O–H wagging mode.59, 60 This feature can only be
captured by high levels of theory that include anharmonic ef-
fects and a fully quantum mechanical treatment of the nuclear
dynamics, such as the multi-configurational time-dependent
Hartree (MCTDH) method at 0 K.59

With this caveat in mind, let us first consider the fre-
quency range corresponding to the OH stretch (Fig. 6(b)).
The present results were obtained from 200 6 ps trajectories at
300 K, using 16 beads and without removing rotations. Exper-
iments at this temperature65 show two distinct peaks at about
3600 and 3700 cm−1. As in the case of the anharmonic OH
discussed above, the classical spectrum is blue shifted from
these peaks by almost 150 cm−1. The RPMD spectrum is
closer to the experiment, but it has an incorrect profile and a
broad tail towards lower frequencies. In a multi-dimensional
problem such as this, there can be resonances with the internal
modes of the ring polymer associated with a variety of differ-
ent molecular vibrational modes, which makes it hard to as-
sess whether and how the RPMD spectrum is contaminated by
resonances. The CMD spectrum is red shifted with respect to
the experiment, and consists of a single broad peak. Given the
high accuracy of the potential energy surface, we believe that
the red shift can be attributed to the curvature problem, and
we have checked this by decreasing the temperature: the red
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FIG. 6. (a) Top panel: experimental infrared multi-photon dissociation (IRMPD) spectrum of H5O+
2 in the 800-2000 cm−1 region at 100 K from Ref. 66.

The other panels show simulated spectra at this temperature obtained from the Fourier transform of the dipole autocorrelation function using the CCSD(T)
parameterised potential energy and dipole moment surfaces of Ref. 58. From top to bottom: classical molecular dynamics, RPMD, CMD, and optimally
damped TRPMD. (b) Top panel: experimental IRMPD spectrum of H5O+

2 in the OH stretch region at 300 K from Ref. 65. The other panels are the same as in
(a), but at 300 K.
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shift then becomes even more pronounced in the same way
as in Figs. 1 and 4. Finally, the optimally damped TRPMD
spectrum shows neither resonances nor any curvature-related
red shift. The position of the absorption band is in reason-
able agreement with the experiment, although the significant
broadening that was also observed for the anharmonic OH
molecule washes out the doublet structure and yields a single
peak centred at about 3650 cm−1.

We have also run simulations at 100 K using 64 beads to
compare RPMD, CMD, and TRPMD with an experiment per-
formed in the intermediate frequency region of the spectrum66

(Fig. 6(a)). All three methods generate very broad peaks in
this region, and the RPMD spectrum displays oscillations in
its bending peak at around 1750 cm−1 that can probably be
attributed to a resonance effect. Interestingly, the CMD bend-
ing peak is red-shifted relative to experiment, suggesting that
at such low temperatures the curvature problem can also af-
fect lower frequency modes than OH stretching vibrations.
The bending peak from the optimally damped TRPMD calcu-
lation is closest to the experiment and shows no signs of reso-
nances. As discussed above, none of the methods investigated
here can reproduce the experimental doublet at around 1000
cm−1, which is due to a subtle Fermi resonance effect.59, 60

The TRPMD calculation simply produces a single broad ab-
sorption band that spans the range of all three experimental
peaks between 800 and 1400 cm−1, and the RPMD and CMD
calculations do not fare any better.

D. Liquid water

Having highlighted a situation in which none of the
present methods is really satisfactory, it is only fair to end with
an application for which methods like RPMD and CMD are
designed: the simulation of liquid water. This is a fundamen-
tally different problem because the exact quantum mechani-
cal dipole autocorrelation function of a liquid decays to zero
at long times, resulting in a continuous spectrum. The classi-
cal approximation to this spectrum (to which both RPMD and
CMD are pinned at high temperatures) becomes exact in the
limit where β¯ω � 1, which is not the case for the discrete
spectrum of a small gas phase molecule. Methods like RPMD
and CMD (and indeed even classical MD) are therefore on far
firmer ground for the simulation of liquids than they are for
isolated molecules.

With this in mind, we have used classical MD, RPMD,
CMD, and optimally damped TRPMD to calculate the dipole
absorption spectrum of the q-TIP4P/F water model.18 This
water model was chosen because it reproduces a wide vari-
ety of structural, thermodynamic, and dynamical properties of
liquid water in path integral simulations, including the vibra-
tional band frequencies which were optimised in the param-
eterisation of the model using a partially adiabatic15 approx-
imation to CMD. Because it is a simple point charge model
rather than a polarisable model, it is missing the induced
dipole contribution to the change in dipole moment along the
OH stretch, which is known to make a significant contribu-
tion to the intensity of the OH stretching band. However, the
frequency of the stretching band in the model is roughly cor-

rect, and the same is true of the intramolecular bending and
intermolecular librational bands.18

In this case, since the volume V of the system is well
defined, it is possible to calculate the absolute signal,41

n(ω)α(ω) = πβω2

3cV ε0
Ĩ (ω), (33)

where n(ω) is the frequency-dependent refractive index of the
liquid, α(ω) is its Beer-Lambert absorption coefficient, and
Ĩ (ω) is the Fourier transform of its Kubo-transformed dipole
autocorrelation function. The present calculations were per-
formed with the i-PI70 path integral code, using LAMMPS71

as the backend to calculate energies and forces. We used 216
water molecules in a periodically replicated simulation box
with the experimental density at 300 K. The classical results
were averaged over 8 independent 100 ps trajectories initiated
from an equilibrated simulation, with a time step of 0.25 fs.
The optimally damped TRPMD calculations were performed
in exactly the same way, but with n = 32 ring polymer beads.
In the CMD calculations, the masses of the internal modes
of the free ring polymer were adjusted to bring them to a fre-
quency of 16 000 cm−1, and we decreased the integration time
step to 0.025 fs to correctly integrate the rapid oscillations of
these modes. RPMD calculations are typically done by aver-
aging over hundreds of short trajectories,3 with the momenta
resampled from the Boltzmann distribution between each one
in order to overcome the non-ergodicity of the microcanon-
ical ring polymer dynamics.72 However, since RPMD is the
λ → 0 limit of TRPMD, it is also possible to run RPMD in
the same way as TRPMD with an under-damped thermostat
(λ = 0.001) that is weak enough not to disrupt the dynam-
ics but strong enough to enhance the ergodicity. This is how
we performed the present RPMD calculations, again using 8
independent 100 ps trajectories with a time step of 0.25 fs.

The results of these calculations are compared with the
experimental absorption spectrum of liquid water73 in Fig. 7.
All four simulations give very similar spectra in the low fre-
quency librational region, where they are in good agreement
with the experiment. In the intermediate frequency bending
region, the peaks of the three path integral methods are again
seen to be in agreement, but they are red shifted from the clas-
sical bending peak by around 35 cm−1. Given the good agree-
ment between the three path integral methods, the absence of
any evident curvature problem in the CMD bending peak, and
the absence of any apparent resonance problem in the RPMD
bending peak, we conclude that this is the correct anharmonic
red shift of the bending band for the q-TIP4P/F water model.

The differences between the path integral methods oc-
cur in the high frequency OH stretching region. Here, the
RPMD calculation shows clear indications of the resonance
problem, although the resonances are not as pronounced as
those seen previously using the TTM3-F74 water model,41

which has a nonlinear dipole moment operator that accentu-
ates the resonance coupling. The resonances are washed out
in the TRPMD spectrum, which exhibits a single peak that
is red shifted from the classical peak by some 75 cm−1. The
CMD peak is red shifted by a further 80 cm−1. This peak is
clearly in the best agreement with the experiment, but this
is simply because the q-TIP4P/F potential was parameterised
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FIG. 7. (a) Top panel: experimental infrared absorption spectrum of room temperature liquid water from Ref. 73 between 0 and 2000 cm−1. The other panels
show simulated spectra at this temperature obtained from the Fourier transform of the dipole autocorrelation function using the q-TIP4P/F water model.18 From
top to bottom: classical molecular dynamics, RPMD, CMD, and optimally damped TRPMD. (b) Same as in (a), but in the region between 3000 and 4000 cm−1.

to agree with this experiment in a (partially adiabatic) CMD
calculation.18

The issue of the curvature problem in CMD simulations
of liquid water has been the subject of some debate. Paesani
and Voth75 have argued, on the basis of partially adiabatic
CMD simulations with a weak adiabatic decoupling param-
eter of a solvated HDO molecule in H2O and D2O, and com-
parisons of the OD and OH stretching peaks of the solute with
those given by mixed quantum-classical calculations, that the
curvature problem is unlikely to play a significant role in sim-
ulations of liquids like q-TIP4P/F with anharmonic stretch-
ing potentials. On the other hand, Ivanov et al.43 have argued
that the curvature problem is indeed present in the stretch-
ing bands of CMD simulations of neat liquid HDO, H2O, and
D2O with both harmonic and anharmonic OH stretching po-
tentials.

In the present simulations, a comparison with the
TRPMD OH stretching peak, which we would not expect on
the basis of the other vibrational problems we have considered
above to be shifted very far from the correct position, suggests
that the CMD peak does show some evidence of the curvature

TABLE I. Dynamical properties of liquid water at 300 K obtained from
classical, RPMD, CMD, and TRPMD simulations of the q-TIP4P/F water
model. D is the diffusion coefficient and τ

η
l is the lth order orientational re-

laxation time for molecular axis η.

Classical RPMD CMD TRPMD

DH2O (Å2 ps−1) 0.194(5) 0.218(3) 0.219(2) 0.217(2)

τHH
1 (ps) 6.1(2) 5.0(1) 5.1(1) 5.1(1)

τOH
1 (ps) 5.8(2) 4.8(1) 4.9(1) 4.8(1)

τ
μ
1 (ps) 5.2(2) 4.4(1) 4.5(2) 4.4(1)

τHH
2 (ps) 2.55(8) 2.15(7) 2.17(5) 2.08(6)

τOH
2 (ps) 2.23(7) 1.85(5) 1.90(4) 1.81(4)

τ
μ
2 (ps) 1.87(8) 1.42(4) 1.49(4) 1.45(5)

problem. This is not to say that the TPRMD OH stretching
frequency is exactly right, and indeed it may well not be: re-
call the ∼35 cm−1 blue shift that this method gives from the
correct fundamental transition frequency of the anharmonic
OH molecule (Fig. 4). In view of this uncertainty, which pre-
vents us from drawing any more definite conclusions here, we
believe it would be worthwhile in a future study to compare
the present CMD and TRPMD results for q-TIP4P/F liquid
water with those of a more accurate (and expensive) quan-
tum mechanical calculation, for example, using the recently
developed local monomer approximation.76, 77

Finally, Table I compares the diffusion coefficients
and various rotational correlation times τ

η

l obtained from
the present classical, RPMD, CMD, and optimally damped
TRPMD simulations. One sees that all three path integral
methods are in qualitative agreement in predicting a 12% in-
crease in the diffusion coefficient and a ∼20% decrease in the
rotational correlation times relative to the classical simulation,
which is consistent with the earlier results for the q-TIP4P/F
water model reported in Ref. 18. Indeed, the differences be-
tween the path integral methods for these zero-frequency dy-
namical properties are mostly within the statistical error bars
of our simulations (obtained from 8 independent 100 ps tra-
jectories for each method).

IV. CONCLUDING REMARKS

In this paper, we have shown that it is possible to apply
an internal mode thermostat to RPMD without altering any
of its established properties (see Sec. II), and that the result-
ing method – which is halfway between CMD and RPMD –
is significantly better than either of these alternatives for vi-
brational spectroscopy (see Sec. III). The results are still not
perfect, and we would certainly not recommend using any of
the methods we have considered here to simulate the spec-
troscopy of small gas phase molecules. However, for more
complex systems, ranging from large biomolecules to liquids,
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optimally damped TRPMD might at least be expected to pro-
vide a reasonable prediction of the anharmonic shifts in vi-
brational fundamental bands, at a manageable computational
cost.

Since TRPMD is no less valid (or ad hoc!) than standard
RPMD, and we have shown here that it works better for vibra-
tional spectroscopy, it is natural to ask whether it might also
offer an improvement for other applications, such as the cal-
culation of diffusion coefficients and chemical reaction rates.
Does the TRPMD velocity autocorrelation function of a quan-
tum liquid such as para-hydrogen satisfy imaginary time mo-
ment constraints more accurately than the RPMD velocity
autocorrelation function? Their transition state theory limits
are the same, but are the TRPMD transmission coefficients of
some simple chemical reactions (for which the exact rates can
be computed for comparison) more accurate than the RPMD
transmission coefficients? These are interesting questions for
future work.

Finally, we should stress that the PILE thermostat we
have considered here is by no means unique. By moving to a
coloured noise (generalised Langevin equation) thermostat, in
the form of a Langevin thermostat in an extended momentum
space, it may well be possible to find something better. There
is clearly a tremendous amount of leeway in the construction
of extended phase space approximations to quantum dynam-
ics, and it is almost certain that we have yet to find the best
one. Methods like CMD and RPMD have simply scratched
the surface of what might be possible.
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