
1470 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

How to SAIF-ly Boost Denoising Performance
Hossein Talebi, Student Member, IEEE, Xiang Zhu, Student Member, IEEE, and Peyman Milanfar, Fellow, IEEE

Abstract— Spatial domain image filters (e.g., bilateral filter,
non-local means, locally adaptive regression kernel) have achieved
great success in denoising. Their overall performance, however,
has not generally surpassed the leading transform domain-
based filters (such as BM3-D). One important reason is that
spatial domain filters lack efficiency to adaptively fine tune their
denoising strength; something that is relatively easy to do in
transform domain method with shrinkage operators. In the pixel
domain, the smoothing strength is usually controlled globally by,
for example, tuning a regularization parameter. In this paper,

we propose spatially adaptive iterative filtering (SAIF)1 a new
strategy to control the denoising strength locally for any spatial
domain method. This approach is capable of filtering local
image content iteratively using the given base filter, and the
type of iteration and the iteration number are automatically
optimized with respect to estimated risk (i.e., mean-squared
error). In exploiting the estimated local signal-to-noise-ratio, we
also present a new risk estimator that is different from the often-
employed SURE method, and exceeds its performance in many
cases. Experiments illustrate that our strategy can significantly
relax the base algorithm’s sensitivity to its tuning (smoothing)
parameters, and effectively boost the performance of several
existing denoising filters to generate state-of-the-art results under
both simulated and practical conditions.

Index Terms— Image denoising, pixel aggregation, risk
estimator, spatial domain filter, SURE.

I. INTRODUCTION

S INCE noise exists in basically all modern imaging sys-

tems, denoising is among the most fundamental image

restoration problems studied in the last decade. There have

been numerous denoising algorithms, and in general they

can be divided into two main categories: transform domain

methods and spatial domain methods.

Transform domain methods are developed under the

assumption that the clean image can be well represented as a

combination of few transform basis vectors, so the signal-to-

noise-ratio (SNR) can be estimated and used to appropriately

shrink the corresponding transform coefficients. Specifically, if

a basis element is detected as belonging to the true signal, its

coefficient should be mostly preserved. On the other hand, if

an element is detected as a noise component, its coefficient

Manuscript received May 31, 2012; revised September 20, 2012; accepted
November 1, 2012. Date of publication December 4, 2012; date of current
version February 6, 2013. This work was supported in part by the AFOSR
Grant FA9550-07-1-0365 and NSF Grant CCF-1016018. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Richard J. Radke.

The authors are with the Department of Electrical Engineering, Uni-
versity of California, Santa Cruz, Santa Cruz, CA 95064 USA (e-mail:
htalebi@soe.ucsc.edu; xzhu@soe.ucsc.edu; milanfar@soe.ucsc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2012.2231691
1SAIF is the Middle Eastern/Arabic name for sword. This acronym

somehow seems appropriate for what the algorithm does by precisely tuning
the value of the iteration number.

should be shrunk more, or removed. By doing this, noise

can be effectively suppressed while most structures and finer

details of the latent image are preserved.

Different algorithms in this category vary in either the

transform selection or the shrinkage strategy. Fixed transforms

(e.g. wavelet, DCT) are often employed as in [1], [2], and

are easy to calculate. However, they may not be effective

in representing natural image content with sparse coefficient

distributions, and that would inevitably increase the require-

ment on the shrinkage performance. Non-fixed transforms are

also applied. For example, Muresan [3] and Zhang [4] use

principle component analysis (PCA). Compared with fixed

transformations, PCA is more adaptive to local image content

and thus can lead to a more sparse coefficient distribution.

However, such decompositions can be quite sensitive to noise.

K-SVD [5] and K-LLD [6] use over-complete dictionaries

generated from training, which is more robust to noise but

computationally expensive. The shrinkage strategy is another

important factor that needs to be fully considered. Though

there are many competing strategies, it has been shown that

the Wiener criterion, which determines the shrinking strength

according to (estimated) SNR in each basis element, is perhaps

the best strategy that gets close to the optimal performance

with respect to mean-squared-error (MSE) [7]. In fact, in

practice it has achieved state-of-the-art denoising performance

with even simple fixed transforms (such as DCT in BM3D) [2].

Spatial domain methods concentrate on a different noise

suppression approach, which estimates each pixel value as a

weighted average of other pixels, where higher weights are

assigned to “similar” pixels [8]–[12]. Pixel similarities can be

calculated in various ways. For the bilateral filter, similarity

is determined by both geometric and photometric distances

between pixels [8]. Takeda et al. proposed a locally adaptive

regression kernel (LARK) denoising method, robustly measur-

ing the pixel similarity based on geodesic distance [9]. Another

successful method called non-local means (NLM) extends the

bilateral filter by replacing point-wise photometric distance

with patch distances, which is more robust to noise [10].2

In practice, determining the denoising strength for spatial

domain methods is a general difficulty. For example, these

methods always contain some tuning (smoothing) parameters

that may strongly affect the denoising performance. A larger

smoothing parameter would suppress more noise and mean-

while erase more useful image information, ending up with

an over-smoothed (biased) output. Less smoothing would

2Spatial domain methods include any method that is based upon the
computation of a kernel that is applied locally to the pixel data directly. It is
possible to approximately implement many regularization based methods in
this framework, but we do not believe there is a one to one correspondence
between kernel spatial domain methods and regularization based Bayesian
methods [13].

1057–7149/$31.00 © 2012 IEEE

TALEBI et al.: SAIF-ly BOOSTING DENOISING PERFORMANCE 1471

preserve high-frequency signal but also do little denoising

(estimation variance). An interesting alternative to tedious

parameter tuning is iterative filtering. With this approach,

which we promote here, even with a filter estimated from

a badly misplaced smoothing parameter, we can still get a

well estimated output by applying the same denoising filter

several times. But it would seem that the iteration number then

becomes another tuning parameter that needs to be carefully

treated. Some approaches were developed to handle such para-

meters. Ramani’s Monte–Carlo SURE is capable of optimizing

any denoising algorithm with respect to MSE [14], but it

requires Gaussian assumption on noise. In [15] we developed a

no-reference image content measure named Metric Q to select

optimal parameters. However, both Monte–Carlo SURE and

Metric Q can only adjust the filtering degree globally. Much

more efficient estimates could be obtained by smartly changing

the denoising strength locally as we propose in this paper.

More specifically, we present an approach capable of auto-

matically adjusting the denoising strength of spatial domain

methods according to local SNR. A second contribution is a

novel method for estimating the local SNR.

In [13] Milanfar illustrates that a spatial domain denoising

process can always be approximated as a transform domain

filter, where the orthogonal basis elements are the eigenvectors

of a symmetric and positive definite matrix determined by

the filter; and the shrinkage coefficients are the correspond-

ing eigenvalues ranging in [0, 1]. For filters such as NLM

and LARK the eigenvectors corresponding to the dominant

eigenvalues could well represent latent image contents. Based

on this idea, we propose a spatially adapted iterative filtering

(SAIF) strategy capable of controlling the denoising strength

locally for any given spatial domain method. The proposed

method iteratively filters local image patches, and the iteration

method and iteration number are automatically optimized with

respect to local MSE, which is estimated from the given

image. To estimate the MSE for each patch, we propose a

new method called plug-in risk estimator. This method is

biased and works based on a “pilot” estimate of the latent

image. For the sake of comparison, we also derive the often

used Stein’s unbiased risk estimator (SURE) [16] for the data

dependent filtering scheme. While [17] also uses SURE to

optimize the NLM kernel parameters, we illustrate that (1)

the plug-in estimator can be superior for the same task, and

(2) the adaptation approach can be extended to be spatially

varying. The paper is organized as follows. In Section II we

briefly provide some background, especially [13]’s analysis on

spatial domain filters. Section III reviews two iterative methods

to control the smoothing strength for the filters. Section IV

describes the proposed SAIF strategy in detail. Experimental

results are given in Section V to show the performance of the

SAIF strategy using several leading filters. Finally we conclude

this paper in Section VI.

II. BACKGROUND

Let us consider the measurement model for the denoising

problem:

yi = zi + ei , for i = 1, . . . , n (1)

where zi = z(xi) is the underlying image at position xi =
[xi,1, xi,2]T , yi is the noisy pixel value, and ei denotes zero-

mean white noise3 with variance σ 2. The problem of denoising

is to recover the set of underlying samples z = [z1, . . . , zn]T .

The complete measurement model for the denoising problem

in vector notation is:

y = z + e. (2)

As explained in [9], [13] most spatial domain filters can be

represented through the following non-parametric restoration

framework:

ẑi = arg min
zi

n∑

j=1

[zi − y j]2 K (xi , x j , yi , y j) (3)

where ẑi denotes the estimated pixel at position xi , and

the weight (or kernel) function K (·) measures the similarity

between the samples yi and y j at positions xi and x j ,

respectively.

Perhaps the most well known kernel function is the Bilateral

(BL) filter [8], which smooths images by means of a nonlinear

combination of nearby image values. The method combines

pixel values based on both their geometric closeness and

their photometric similarity. This kernel can be expressed in a

separable fashion as follows:

Ki j = exp

{
−‖xi − x j‖2

h2
x

+ −(yi − y j)
2

h2
y

}
(4)

in which hx and h y are smoothing (control) parameters.

The NLM [10] is another very popular data-dependent filter

which closely resembles the bilateral filter except that the

photometric similarity is captured in a patch-wise manner:

Ki j = exp

{
−‖xi − x j ‖2

h2
x

+
−‖yi − y j‖2

h2
y

}
(5)

where yi and y j are patches centered at yi and y j , respectively.

In theory (though not in actual practice,) the NLM kernel has

just the patch-wise photometric distance (hx → ∞).

More recently, the LARK (also called Steering Kernel in

some publications) [9] was introduced which exploits the

geodesic distance based on estimated gradients:

Ki j = exp

{
− (xi − x j)

T Ci j (xi − x j)

}
(6)

in which Ci j is a local covariance matrix of the pixel gradients

computed from the given data.4 The gradient is computed from

the noisy measurements y j in a patch around xi . Robustness to

noise and perturbations of the data is an important advantage

of LARK.

In general, all of these restoration algorithms are based on

the same framework (3) in which some data-adaptive kernels

are assigned to each pixel contributing to the filtering. Min-

imizing equation (3) gives a normalized weighted averaging

process:

ẑi = wT
i y (7)

3We make no other distributional assumptions on the noise.
4Refer to [9] for more details on Ci j .

1472 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

where the weight vector wi is

wi = 1∑n
j=1 Ki j

[Ki1, Ki2, . . . , Kin]T . (8)

By stacking the weight vectors together, the filtering process

for all the sample pixels can be represented simultaneously

through a matrix-vector multiplication form

ẑ =

⎡
⎢⎢⎢⎣

wT
1

wT
2
...

wT
n

⎤
⎥⎥⎥⎦ y = Wy (9)

where ẑ and W denote the estimated signal and the filter

matrix, respectively. While the data-dependent filter W(y)

is not generally linear, in Appendix VI we show that our

employed filter W(̃z), which is computed based on the pre-

filtered patch z̃, can be closely treated as a filter that is not

stochastically dependent on the input data.

W is a positive row-stochastic matrix (every row sums up

to one). This matrix is not generally symmetric, though it has

real, positive eigenvalues [13]. The Perron-Frobenius theory

describes the spectral characteristics of this matrix [18], [19].

In particular, the eigenvalues of W satisfy 0 ≤ λi ≤ 1; the

largest one is uniquely equal to one (λ1 = 1) while the

corresponding eigenvector is v1 = 1√
n
[1, 1, . . . , , 1]T . The

last property implies that a flat image stays unchanged after

filtering by W.

Although W is not a symmetric matrix in general, it

can be closely approximated with a symmetric positive

definite matrix5 [20]. The symmetrized W must also stay

row-stochastic, which means we get a symmetric positive

definite matrix which is doubly (i.e., row- and column-)

stochastic. The symmetric W enables us to to compute its

eigen-decomposition as follows:

W = VSVT (10)

where S = diag[λ1, . . . , λn] contains the eigenvalues in

decreasing order 0 ≤ λn ≤, . . . ,< λ1 = 1, and V is an

orthogonal matrix V = [v1, . . . , vn] containing the respective

eigenvectors of W in its columns. Since V is orthogonal,

its columns specify a set of basis functions. So the filtering

process can be explained as:

ẑ = Wy = VSVT y (11)

where the input data y is first transformed into the domain

spanned by the eigenvectors of W; then, each coefficient

is scaled (shrunk) by the factor λi ; and finally an inverse

transform is applied, yielding the output.

From the above analysis we see that the denoising strength

for each basis of a given filter is thus controlled by the

shrinkage factor {λi }. In the following sections we will discuss

this more explicitly.

5Indeed, it can be shown that 1
n ‖W − Wsym‖F = O(n− 1

2). That is, the
RMS error gets smaller with increasing dimension.

III. ITERATIVE FILTERING METHODS

Optimal shrinkage strategies based on various spatial

domain filters have been discussed in [13], where statistical

analysis shows that the optimal filter with respect to MSE is

the local Wiener filter with λi = 1

1+snr−1
i

, where snri denotes

signal-to-noise ratio of the i -th channel. However, the local

Wiener filter requires exact knowledge of the local signal-

to-noise (SNR) in each basis channel, which is not directly

accessible in practice. In denoising schemes such as [2] and [4]

the Wiener shrinkage criterion works based on a pilot estimate

of the latent image. Still, the Wiener filter’s performance

strictly relies on accuracy of this estimate. Iterative filtering

can be a reliable alternative for reducing sensitivity of the

basis shrinkage to the estimated local SNR. Then, the iteration

number will be the only parameter to be locally optimized.

To approach the locally optimal filter performance in a

stable way, we propose the use of two iterative local oper-

ators; namely diffusion and boosting. In [21] we have shown

that performance of any type of kernel could be enhanced

by iterative diffusion which gradually removes the noise in

each iteration. Yet, diffusion filtering also takes away latent

details from the underlying signal. On the other hand, iterative

boosting is a mechanism to preserve these lost details of the

signal. By using the two iterative filtering methods, we can

avoid either over-smoothing or under-smoothing due to incor-

rect parameter settings. In other words, these two methods

provide a way to start with any filter, and properly control the

values of shrinkage factors {λi } to achieve a good and stable

approximation of the Wiener filter. In the following we discuss

the two approaches, separately.

A. Diffusion

The idea of diffusion in image filtering was originally

motivated by the physical principles of heat propagation and

described using a partial differential equation. In our context,

we consider the discrete version of it, which is conveniently

represented by repeated applications of the same filter as

described in [13]:

ẑk = Wẑk−1 = Wky. (12)

Each application of W can be interpreted as one step of

anisotropic diffusion with the filter W. Choosing a small

iteration number k preserves the underlying structure, but

also does little denoising. Conversely, a large k tends to

over-smooth and remove noise and high frequency details at

the same time. Minimization of MSE (or more accurately

an estimate of it) determines when is the best time to stop

filtering, which will help avoid under- or over- smoothing.

As long as W is symmetric, the filter in the iterative model

(12) can be decomposed as:

Wk = VSkVT (13)

in which Sk = diag[λk
1, . . . , λ

k
n]. It is worth noting that despite

the common interpretation of k as a discrete step, the spectral

decomposition of Wk makes it possible to replace k with any

positive real number.

TALEBI et al.: SAIF-ly BOOSTING DENOISING PERFORMANCE 1473

Pre-filtering

by Kernel Base

Patch Filter

Computation
Noisy Image

Patch

Filtering

Optimal

Iteration Est.

Optim

Aggregation

Denoised Image

Patch

C

Fig. 1. Diagram of SAIF method.

The latent image z can be written in the column space of V

as b = VT z, where b = [b1, b2, . . . , bn]T , and {b2
i } denote the

projected signal energy over all the eigenvectors. As shown

in [13] the iterative estimator ẑk = Wky has the following

squared bias:

‖biask‖2 = ‖(I − Wk)z‖2 =
n∑

i=1

(1 − λk
i)

2b2
i . (14)

Correspondingly, the estimator’s variance is:

var(̂zk) = tr(cov(̂zk)) = σ 2
n∑

i=1

λ2k
i . (15)

Overall, the MSE is given by

MSEk = ‖biask‖2 + var(̂zk) =
n∑

i=1

(1 − λk
i)

2b2
i + σ 2λ2k

i .

(16)

As the iteration number k grows, the bias term increases, but

the variance decays to the constant value of σ 2. Of course,

this expression for the MSE is not practically useful yet, since

the coefficients {b2
i } are not known. Later we describe a way

to estimate the MSE in practice. But first, let us introduce the

second iterative mechanism which we will employ. Boosting

is discussed in the following and as we will see, its behavior

is quite different from the diffusion filtering.

B. Boosting

Although the classic diffusion filtering has been used

widely, this method often fails in denoising image regions with

low SNR. This is due to the fact that each diffusion iteration

is essentially one step of low-pass filtering. In other words,

diffusion always removes some components of the noise and

signal, concurrently. This shortcoming is tackled effectively by

means of boosting which recycles the removed components

of signal from the residuals, in each iteration. Defining the

residuals as the difference between the estimated signal and

the noisy signal: rk = y − ẑk−1, the iterated estimate can be

expressed as

ẑk = ẑk−1 + Wrk

=
k∑

j=0

W(I − W) j y =
(

I − (I − W)k+1
)

y (17)

where ẑ0 = Wy. As can be seen, as k increases, the estimate

returns to the noisy signal y. In other words, the boosting

filter has fundamentally different behavior than the diffusion

iteration where the estimated signal gets closer to a constant

after each iteration. The squared magnitude of the bias after

k iterations is

‖biask‖2 = ‖(I − W)k+1z‖2 =
n∑

i=1

(1 − λi)
2k+2b2

i . (18)

And the variance of the estimator also is

var(̂zk) = tr(cov(̂zk)) = σ 2
n∑

i=1

(
1 − (1 − λi)

k+1
)2

. (19)

Then the overall MSE is

MSEk =
n∑

i=1

(1 − λi)
2k+2b2

i + σ 2
(

1 − (1 − λi)
k+1

)2
. (20)

As k grows, the bias term decreases and the variance increases.

Contrasting the behavior of the diffusion iteration, we observe

that when diffusion fails to improve the filtering performance,

it can be replaced by boosting. This is the fundamental

observation that motivates our approach. More specifically,

the contribution of this work is that we simultaneously and

automatically optimize the type and number of iterations

locally to boost the performance of a given base filtering

procedure.

IV. PROPOSED METHOD

Based on the analysis from Section III we propose an

image denoising strategy which, given any filter using the

framework (3), can boost its performance by utilizing its

spatially adapted transform and by employing an optimized

iteration method. This iterative filtering is implemented patch-

wise, so that it is capable of automatically adjusting the local

smoothing strength according to local SNR. Fig. 1 depicts a

1474 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

0.01

0.02

0.03

2

4

6

8

10
x 10

-3

2

4

6

x 10
-3

0

0.005

0.01

0.015

0

0.05

0.1

0

0.01

0.02

0.03

Fig. 2. Filters based on the NLM kernel with different iteration number k. (a) Smooth patch and the j th pixel. (b) j th row of the patch filter W.
(c) and (d) j th row of the iterated patch filter Wk for different iteration numbers. (e) Texture patch and the j-th pixel. (f) j th row of the patch filter W.
(g) and (h) j th row of the iterated patch filter Wk for different iteration numbers.

block diagram of the proposed approach. Starting from the

noisy image Y and splitting it into N overlapping patches

{yl}N
l=1, we aim to denoise each noisy patch yl , separately.

To calculate the local filter Wl , we use an estimated image Z̃

which is filtered by the standard kernel baseline. After that,

MSEs for the two iteration approaches (diffusion and boosting)

are estimated for each patch and by comparing their values,

the optimal iteration method and consequently the iteration

number k̂l is selected, generating the filtered patch ẑl . Since

these filtered patches are overlapped, an aggregation method

is finally carried out to compute the denoised image Ẑ. The

key steps of this approach are the optimal iteration estimation

and the aggregation, which will be described in the rest of this

section.

A. Optimal Iteration Estimation

Given a patch y and its filter matrix W, the task of this

step is to select the best iteration method (either diffusion or

boosting) and its iteration number that minimizes the MSE.

More explicitly, the optimal stopping time k̂ for each iteration

method can be expressed as:

k̂ = arg min
k

MSEk . (21)

One way to compute an unbiased estimate of MSE is the

often-used SURE [16]. An alternative we propose here is the

plug-in risk estimator, which is biased and works based on

an estimate of the local SNR. First, note that in practice,

eigenvalues and eigenvectors of the filter are always estimated

from a pre-filtered patch z̃, obtained using the base filter with

some arbitrary parameter settings. More explicitly we have:

W(̃z) = VSVT. (22)

It is worth repeating that despite the earlier interpretation

of k as a discrete step, the spectral decomposition of Wk

makes it clear that in practice, k can be any positive real

number. To be more specific, Wk = VSkVT , with Sk =
diag[λk

1, . . . , , λ
k
n] where k is any non-negative real number. In

actual implementation, the filter can be applied with modified

eigenvalues for any k > 0. This may seem like a minor point,

but in practice can significantly improve the performance as

compared to when k is restricted to only positive integers. In

effect, a real-valued k automatically and smoothly adjusts the

local bandwidth of the filter. Fig. 2 illustrates the iterated filters

for two different patches. As can be seen, while decreasing

the iteration number k can be interpreted as smaller tuning

parameter h y for NLM kernel, larger k is equivalent to a wider

kernel.

Next, We discuss the two risk estimators and show that the

plug-in can exploit the estimated local SNR to have better

performance as compared to the SURE estimator.

1) Plug-In Risk Estimator: The plug-in estimator is

described in Algorithm 1. In this method, risk estimators

for diffusion and boosting are computed based on the pre-

filtered patch z̃, computed using the base filter with arbitrary

parameters. More explicitly, the signal coefficients can be

estimated as:

b̃ = VT z̃. (23)

This estimate’s contribution can be interpreted as equipping

the risk estimator with some prior knowledge of the local SNR

of the image. The estimated signal coefficients allow us to use

(16) and (20) to estimate MSEk in each patch:

Diffusion Plug-in Risk Estimator:

Plug-in
d f
k =

n∑

i=1

(1 − λk
i)

2b̃2
i + σ 2λ2k

i . (24)

Boosting Plug-in Risk Estimator:

Plug-inbs
k =

n∑

i=1

(1 − λi)
2k+2b̃2

i + σ 2
(

1 − (1 − λi)
k+1

)2
.

(25)

In each patch, minimum values of Plug-in
d f
k and Plug-inbs

k as

a function of k are computed and compared, and the iteration

type with the least risk is chosen. It is worth mentioning that

since the optimal iteration number k̂ can be any real positive

value, in the implementation of the diffusion filter, Wk̂ is

replaced by VSk̂VT y in which Sk̂ = diag[λk̂
1, . . . , , λ

k̂
n]. This

has been similarly shown for the boosting filter in Algorithm 1.

Next, for the sake of comparison, the SURE estimator is

discussed.

TALEBI et al.: SAIF-ly BOOSTING DENOISING PERFORMANCE 1475

Algorithm 1: Plug-in Risk Estimator

Input: Noisy Patch: y, Pre-filtered Patch: z̃, Patch

Filter: W

Output: Denoised Patch: ẑ

Eigen-decomposition of the filter W(̃z) = VSVT ;1

b̃ = VT z̃ ⇐ Compute the signal coefficients;2

Plug-in
d f
k , Plug-inbs

k ⇐ Compute the estimated risks;3

if min{Plug-in
d f
k } < min{Plug-inbs

k }4

k̂ = argmin
k

Plug-in
d f
k ⇐ Diffusion optimal iteration

5

number;

ẑ = VSk̂VT y ⇐ Diffusion patch denoising;6

else7

k̂ = argmin
k

Plug-inbs
k ⇐ Boosting optimal iteration

8

number;

ẑ = V
(

I − (I − S)̂k+1
)

VT y ⇐ Boosing patch9

denoising;

end10

2) SURE Estimator: Denoting F(y) as an estimate of the

latent signal z, the SURE estimator or MSE is defined as:

SURE(y) = ‖y − F(y)‖2 + 2σ 2div(F(y)) − nσ 2 (26)

where div(F(y)) ≡
∑

i
∂Fi (y)

∂yi
. Under the additive Gaussian

noise assumption, this random variable is an unbiased estimate

of the MSE. In our context, F(y) is replaced by Wky which

can be approximately treated as a linear filtering framework

(see Appendix A). With this linear approximation we have:

div(F(y)) ≈ tr(Wk), and then the SURE estimator for the

diffusion process can be expressed as:

SURE
d f
k = ‖(I − Wk)y‖2 + 2σ 2tr(Wk) − nσ 2. (27)

Considering the eigen-decomposition of the filter, replacing y

with Vb̌ (where b̌ is the energy distribution of the noisy signal

over the eigenvectors; b̌ = VT y) after some simplifications,

we have

SURE
d f
k = (Vb̌)T V(I − Sk)2VT (Vb̌) + 2σ 2tr(Wk) − nσ 2

=
n∑

i=1

(1 − λk
i)

2b̌2
i + 2σ 2λk

i − σ 2. (28)

It is easy to show that the expected value of SURE
d f
k will

replace b̌2
i with b2

i + σ 2, which after simplification indeed

yields (16). Replacing F(y) with ẑk =
(
I − (I − W)k+1

)
y for

boosting filtering, we can get the corresponding SURE as:

SUREbs
k = ‖(I − W)k+1y‖2

+ 2σ 2tr(I − (I − W)k+1) − nσ 2. (29)

Doing the same simplifications as before and replacing y

with Vb̌, we get

SUREbs
k = (Vb̌)T V(I − S)2k+2VT (Vb̌)

+2σ 2tr(I − (I − W)k+1) − nσ 2 =
n∑

i=1

(1 − λi)
2k+2b̌2

i

+2σ 2(1 − (1 − λi)
2k+2) − σ 2. (30)

(a) (b) (c)

Fig. 3. Clean patches from Barbara. (a) Edge. (b) Corner. (c) Texture.

Again, we can show that the expected value of SUREbs
k

yields (20). This SURE estimator also has a similar

algorithmic description to the plug-in represented in

Algorithm. 1.

3) Plug-In Versus SURE: While SURE estimator is widely

used for the task of risk estimation, our introduced plug-

in estimator is superior in many cases. Figs. 4, 5 and 6

illustrate MSE denoising curves of the three patches shown

in Fig. 3, perturbed6 by AWGN with σ = 25. Three denoiser

kernels (Bilateral [8], NLM [10] and LARK [9]) are used in

our experiments, true MSE values of diffusion and twicing

methods and corresponding estimated risks are compared for

each patch. As can be seen, the plug-in outperforms the SURE

estimator in most instances, certainly insofar as the shape of

the curves are concerned.7 While this experiment anecdotally

shows that the plug-in is superior to the SURE estimator, a

theoretical analysis is much more convincing. We detail this

analysis in Appendix B, and summarize it below. Our study

shows that two important factors affect performance of the

plug-in estimator; namely the pre-filter, and the baseline kernel

type. Intuitively, the major advantage of the plug-in is use of

the local SNR, which is estimated by the pre-filter. However,

the SURE estimator is only a function of the kernel type

(eigenvalues of the kernel {λi }).
The accuracy of these two risk estimators is analyzed in

Appendix VI. With Gaussian assumption for the noise in the

pre-filtered patch z̃ = z+η where η = N(0, ν2I), and defining

β = ν2

σ 2 as relative variance of the noise in the pre-filtered and

noisy signal, we prove that the plug-in estimator outperforms

SURE when in each channel i :

snri ≥ β2(n + 2) − 2

4(1 − β)
(31)

where snri = b2
i

σ 2 is the signal-to-noise ratio of channel i .

For the plug-in estimator to be superior to SURE, regardless

of snri , the relative variance must be β ≤
√

2
n+2

. This

implies that for a typical patch size (say n = 11 × 11)

and a moderately effective pre-filter (β ≤ 0.13), the plug-in

estimator is consistently better than SURE.

6Averaging over 50 noise realizations in a Monte–Carlo simulation.
7We also compared the SURE estimator with the Monte–Carlo SURE

in [14], but this did not yield better results. As Ramani et al discuss [14],
their Monte–Carlo SURE has a sufficiently low variance estimate when F(y)
mostly performs “local” operations (or equivalently, W(y) is quite sparse in
F(y) = W(y)y). Yet, when y is an image patch, F(y) is not a local operator
(or equivalently, W(y) is not “nearly” diagonal). As a result, variance of the
Monte–Carlo SURE estimator will be large for the purpose of patch-based
risk estimation.

1476 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

)noisuffid(erutxeT)noisuffid(renroC)noisuffid(egdE

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

−100

0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

−100

0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

)gnitsoob(erutxeT)gnitsoob(renroC)gnitsoob(egdE

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

0

200

400

600

800

1000

1200

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

0

200

400

600

800

1000

1200

k

Plug−in

SURE

Actual

Fig. 4. MSE of the three patches using Bilateral kernel [8] with diffusion/boosting iterations and plug-in/SURE estimators.

)noisuffid(erutxeT)noisuffid(renroC)noisuffid(egdE

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−100

0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

)gnitsoob(erutxeT)gnitsoob(renroC)gnitsoob(egdE

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

1400

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
−200

0

200

400

600

800

1000

1200

1400

k

Plug−in

SURE

Actual

Fig. 5. MSE of the three patches using NLM kernel [10] with diffusion/boosting iterations and plug-in/SURE estimators.

Another key factor in the comparison of the two esti-

mators is their relative sensitivity to the type of kernel. In

Appendix VI we study the effect of kernel type, specifically

the filter eigenvalues. This analysis shows that when λi → 0,

as long as (31) holds, the plug-in is less sensitive than

SURE. NLM and Bilateral are examples of these “aggressive”

kernels with many eigenvalues close to 0. On the other

hand, our sensitivity analysis also implies that for filters with

typically larger eigenvalues {λi }, the plug-in estimator is more

sensitive.

These results motivate replacing SURE with the plug-in risk

estimator for many estimation instances. In our experiments

(Section V) on the whole image we compare performance

of the two estimators for each base kernel and confirm our

claims. But before moving on to the experiments, we explain

our aggregation strategy in the next section.

TALEBI et al.: SAIF-ly BOOSTING DENOISING PERFORMANCE 1477

)noisuffid(erutxeT)noisuffid(renroC)noisuffid(egdE

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

)gnitsoob(erutxeT)gnitsoob(renroC)gnitsoob(egdE

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

k

Plug−in

SURE

Actual

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

k

Plug−in

SURE

Actual

Fig. 6. MSE of the three patches using LARK kernel [9] with diffusion/boosting iterations and plug-in/SURE estimators.

B. Aggregation

So far, we have found the best estimate for the iteration

number in each patch. Our optimized per-patch filtering can

be expressed as choosing between one of these two iterations:

Diffusion : ẑ j = Wk̂ j y j (32)

Boosting : ẑ j =
(

I − (I − W)k̂ j +1
)

y j (33)

in which y j and ẑ j are the j -th noisy and denoised patch,

respectively, and k̂ j denotes the estimated ideal stopping time

for this patch. To simplify the notation, let us denote the

two filters in Wk̂ j and
(

I − (I − W)̂k j +1
)

as Ŵ j . In other

words, each patch is estimated as ẑ j = Ŵ j y j , where Ŵ j

can be computed from either diffusion or boosting process.

As a result of the overlapped patches, multiple estimates are

obtained for each pixel. We need to aggregate all of these

estimates to compute the final estimate for each pixel. What

we have is a vector of estimates of the pixel zl which need

to be aggregated to form the final denoised pixel ẑl . Fig. 7

illustrates an example of three overlapping patches and the

computed estimates in each of them. The weighted averaging

can improve the aggregation especially when the weights are

estimated based on the risk associated with each estimate.

Considering that the plug-in and SURE assign, respectively,

biased and unbiased risk estimates to each pixel, we discuss

two aggregation strategies which best fit each estimator. In

our framework, a variance-based aggregation is employed for

SURE and an exponentially weighted averaging is used for

the plug-in estimator.

1) Variance-Based Aggregation: A possible weighted aver-

age is the LMMSE (linear minimum mean-squared-error)

Fig. 7. Overlapping patches give multiple estimates for each pixel. Example
of three overlapping patches ẑ1, ẑ2, and ẑ3 give three estimates ẑi1, ẑi2 , and
ẑi3 for computing the final denoised pixel ẑl .

scheme that takes into account the relative confidence in each

estimate as measured by the inverse of the estimator error

variance. More explicitly, the error covariance of our proposed

estimator is approximated as:

Ce = cov(̂z j − z j) = cov(Ŵ j e j) = σ 2Ŵ
2
j . (34)

We denote ẑi j as the denoised estimate for the i -th pixel in

the j -th patch z j . Then, the variance of the error associated

with the i -th pixel estimate in the j -th patch, vi j , is given by

the i -th diagonal element of Ce. Inverse of the estimator error

variances vi j , are the weights we use for the aggregation:

ẑl =
M∑

j=1

ẑi j

vi j

M∑
j=1

1
vi j

(35)

1478 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

Fig. 8. Some benchmark images that we use to evaluate performance of denoising methods. From left to right: Peppers, Lena, Cameraman, Man, Boat, and
Mandrill.

TABLE I

PSNR VALUES FOR THE APPLICATION OF BILATERAL KERNEL [8] WITH FIXED PARAMETERS FOR EACH NOISE REALIZATION (1ST COLUMN);

SAIF WITH SURE ESTIMATOR (2ND COLUMN), AND SAIF WITH THE PLUG-IN RISK ESTIMATOR (3RD COLUMN)

σ
Peppers (512 × 512) Lena (512 × 512) Cameraman (256 × 256) Man (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 37.12 37.19 37.24 37.31 37.48 37.63 37.30 37.35 37.63 36.01 36.33 36.36

15 31.64 31.18 32.57 31.34 31.10 32.48 30.18 30.35 30.87 29.61 29.82 30.29

25 28.69 27.87 30.44 28.48 27.78 30.29 27.03 26.66 28.14 26.97 26.81 27.94

σ
Boat (512 × 512) Stream (512 × 512) Parrot (256 × 256) Mandrill (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 35.95 36.24 36.22 34.83 35.05 35.06 36.83 36.93 37.1 34.48 34.50 34.57

15 29.88 29.81 30.60 27.79 28.16 28.21 29.85 29.64 30.52 26.99 27.34 27.33

25 27.16 26.62 28.31 25.32 25.26 25.83 26.86 26.30 27.84 24.20 24.30 25.57

TABLE II

PSNR VALUES FOR THE APPLICATION OF NLM KERNEL [10] WITH FIXED PARAMETERS FOR EACH NOISE REALIZATION (1ST COLUMN);

SAIF WITH SURE ESTIMATOR (2ND COLUMN), AND SAIF WITH THE PLUG-IN RISK ESTIMATOR (3RD COLUMN)

σ
Peppers (512 × 512) Lena (512 × 512) Cameraman (256 × 256) Man (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 37.34 37.62 37.48 38.02 38.42 38.45 37.75 37.98 38.06 36.73 37.01 37.07

15 31.94 33.14 33.34 31.93 33.12 33.39 30.86 31.62 31.73 29.96 30.66 30.82

25 29.10 30.96 31.29 28.91 30.55 30.94 27.84 28.94 28.98 27.05 28.02 28.19

σ
Boat (512 × 512) Stream (512 × 512) Parrot (256 × 256) Mandrill (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 36.62 36.90 36.89 35.36 35.42 35.55 37.18 37.58 37.66 34.92 34.95 35.05

15 30.38 30.83 31.17 28.06 28.53 28.58 30.51 31.24 31.32 27.64 27.96 28.03

25 27.43 28.10 28.58 25.24 25.83 25.88 27.71 28.67 28.87 24.55 24.96 25.13

TABLE III

PSNR VALUES FOR THE APPLICATION OF THE LARK KERNEL [9] WITH FIXED PARAMETERS FOR EACH NOISE REALIZATION (1ST COLUMN);

SAIF WITH SURE ESTIMATOR (2ND COLUMN), AND SAIF WITH THE PLUG-IN RISK ESTIMATOR (3RD COLUMN)

σ
Peppers (512 × 512) Lena (512 × 512) Cameraman (256 × 256) Man (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 36.18 37.20 36.89 36.49 38.39 37.75 36.31 37.92 37.37 35.66 37.16 36.78

15 32.08 33.33 33.13 32.41 33.75 33.52 30.34 31.41 30.98 30.60 31.17 30.95

25 30.04 31.38 31.32 30.12 31.40 31.34 27.95 28.69 28.19 27.95 28.54 28.28

σ
Boat (512 × 512) Stream (512 × 512) Parrot (256 × 256) Mandrill (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

5 35.72 36.57 36.34 34.90 35.66 35.51 36.02 37.73 37.22 34.69 35.16 35.10

15 31.03 31.63 31.54 28.29 28.76 28.20 30.35 31.23 30.92 27.20 28.05 27.38

25 28.43 29.12 28.98 25.69 26.18 25.59 27.58 28.62 28.26 24.01 25.12 24.02

TALEBI et al.: SAIF-ly BOOSTING DENOISING PERFORMANCE 1479

(a)
−6

−4

−2

0

2

4

6

(b) (c)

(d)
−6

−4

−2

0

2

4

6

(e) (f)

(g)
−6

−4

−2

0

2

4

6

(h) (i)

Fig. 9. Denoising example for the plug-in and SURE estimators with different kernels. AWGN with σ = 25 is added to Man image. (a) Bilateral kernel.
(b) Iteration map for the Bilateral kernel. Colorbar: positive iteration numbers for diffusion and negative ones for boosting. (c) Plug-in estimator for Bilateral
kernel. (d) NLM kernel. (e) Iteration map for the NLM kernel. (f) Plug-in estimator for NLM kernel. (g) LARK kernel. (h) Iteration map for the NLM kernel.
(i) SURE estimator for LARK kernel.

where M is the number of computed estimates for the

l-th pixel. This approach is adequate for the case when the

estimated risk is unbiased (as in SURE). When using the plug-

in estimator of risk, we must take bias into account with an

exponential aggregator, described next.

2) Exponentially Weighted Aggregation: A way to take

the bias into account is to consider the overall MSE rather

than the variance. This has been studied in [22] and [23]

where the exponentially weighted aggregation is introduced.

The estimated risk associated with the i -th estimate in the

j -th patch, ri j , is computed by the plug-in estimator in

(24) and (26). Thus, the l-th pixel has the following estimate:

ẑl =
M∑

j=1

ẑi j exp(−ri j)

M∑
j=1

exp(−ri j)

(36)

where the confidence coefficients {exp(−ri j)}, are the weights

we use for the aggregation.

V. EXPERIMENTS

In this section we evaluate performance of the proposed

method for denoising various images. Since our method

is motivated to improve performance of any kernel-based

1480 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

TABLE IV

PERFORMANCE OF THE PLUG-IN ESTIMATOR FOR THE NLM KERNEL WITH DIFFERENT

SMOOTHING PARAMETERS UNDER WGN CORRUPTION WITH σ = 15

h y
Peppers (512 × 512) Lena (512 × 512) Cameraman (256 × 256) Man (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

3 29.56 31.84 33.16 29.64 31.99 33.34 28.88 30.71 31.52 28.44 30.29 30.85

6 31.89 32.77 33.30 31.73 32.80 33.40 30.53 31.42 31.63 29.31 30.49 30.79

9 30.63 32.93 33.22 30.20 32.84 33.21 28.57 31.45 31.52 27.38 30.30 30.57

h y
Boat (512 × 512) Stream (512 × 512) Parrot (256 × 256) Mandrill (512 × 512)

Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in Standard SURE Plug-in

3 28.80 30.60 31.31 27.12 28.41 28.61 28.49 30.37 31.09 26.66 27.69 27.90

6 29.80 30.84 31.20 27.23 28.46 28.58 30.25 31.03 31.32 26.72 27.95 28.04

9 27.87 30.68 30.97 25.15 28.25 28.42 28.72 31.06 31.26 24.35 27.79 27.93

TABLE V

DENOISING PERFORMANCE OF SOME POPULAR METHODS (LPG-PCA [4], BM3-D [2]) UNDER WGN CORRUPTION, COMPARED

WITH SAIF FOR THE LARK [9] AND NLM [10] KERNELS. RESULTS NOTED ARE AVERAGE PSNR (TOP)

AND SSIM [24] (BOTTOM) OVER 10 INDEPENDENT NOISE REALIZATIONS FOR EACH σ

σ
Man (512 × 512) Parrot (256 × 256)

LPG-PCA BM3D SAIF (LARK) SAIF (NLM) LPG-PCA BM3D SAIF (LARK) SAIF (NLM)

5
37.13 37.33 37.16 37.07 37.76 37.92 37.73 37.66

0.951 0.956 0.953 0.952 0.966 0.967 0.967 0.964

15
30.84 31.24 31.17 30.82 31.14 31.43 31.23 31.32

0.850 0.863 0.860 0.847 0.892 0.896 0.890 0.890

25
28.25 28.81 28.54 28.19 28.59 28.94 28.62 28.87

0.772 0.794 0.782 0.759 0.843 0.850 0.839 0.847

σ
Stream (512 × 512) Mandrill (512 × 512)

LPG-PCA BM3D SAIF (LARK) SAIF (NLM) LPG-PCA BM3D SAIF (LARK) SAIF (NLM)

5
35.62 35.75 35.66 35.55 35.31 35.25 35.16 35.05

0.963 0.965 0.965 0.963 0.957 0.958 0.959 0.956

15
28.53 28.74 28.76 28.58 28.09 28.17 28.05 28.03

0.835 0.846 0.849 0.834 0.832 0.843 0.844 0.837

25
25.86 26.21 26.18 25.88 25.16 25.45 25.12 25.13

0.720 0.739 0.743 0.710 0.726 0.746 0.737 0.724

denoising, we first compare our results with ones from the

three standard kernels: LARK, NLM and Bilateral. We also

test stability of SAIF when an arbitrary tuning parame-

ter is used. In all cases the proposed estimators show a

promising improvement over the standard kernels. We will

show that the resulting SAIF-ly improved filters are com-

parable, in terms of MSE (PSNR) and SSIM [24], to state-

of-the-art denoising methods, and in many cases visually

superior.

In our first simulations the patch size is set as 11×11 and in

a Monte–Carlo simulation, 10 independent noise realizations

were used. We varied k from 0 to 6 with 0.05 as the step size.

As an initial guess for the smoothing parameters in the kernels,

we set hx = 2
√

2 and h y = 20
√

2σ in the Bilateral kernel,

h y = 0.43σ in the NLM filter and the smoothing parameter

in LARK [9] is fixed as 0.25σ .

Fig. 8 shows some benchmark images we used. Tables I, II

and III show PSNR results of the standard kernel (fixed

parameters in Bilateral, NLM, or LARK), SURE and the

plug-in estimators. It can be seen that for Bilateral and Non-

local means kernels, the plug-in estimator shows consistent

improvement over both the standard estimate using the kernel,

and the optimally iterated kernel from SURE. For the LARK

kernel, the SURE method outperforms the plug-in estimator.

Apparently, this performance difference occurs most notice-

ably for highly textured images such as Mandrill.

In Fig. 9 the two types of iterations, diffusion and boosting,

are compared for the three kernels. The iteration map identifies

the type and number of applied iterations on the patches of the

image. The map colorbar represents positive and negative val-

ues for diffusion and boosting iterations, respectively. As can

be seen, while diffusion recovers most of the flat and smooth

patches, boosting takes care of the texture and more complex

ones. It is worth noting that applying overlapped patches also

has the advantage of computing multiple estimates for each

pixel from the both iteration types. In other words, in the

TALEBI et al.: SAIF-ly BOOSTING DENOISING PERFORMANCE 1481

(a) (b) (c)

(d) (e) (f)

Fig. 10. Comparison of denoising performance on noisy Parrot image corrupted by AWGN of σ = 25. (a) Original image. (b) Noisy input. (c) NLM [10].
(d) LPG-PCA [4]. (e) BM3D [2]. (f) Proposed SAIF (NLM).

aggregation process, some pixels may be from diffusion in

one patch, whereas others may be from boosting in another

overlapping patch. This is especially useful for pixels at the

border of smooth and texture regions.

The effect of the parameter tuning is studied in Table IV.

In this set of simulations, NLM kernel weights with different

control parameter, h y , were computed for each image and

then fed to the plug-in estimator. As can be seen, across a

large range of h y , performance of the proposed estimators

is quite stable and shows consistent improvement over the

baseline kernel. From these results, we can see that it is

possible to improve the performance of the standard ker-

nel with an arbitrary starting parameter by employing the

proper number and type of iteration with the proposed MSE

estimator.

Performances of the proposed SAIF algorithm and other

methods are quantified across different noise levels in Table V,

which shows that the proposed method is quantitatively quite

comparable to LPG-PCA [4] and BM3D [2].

Fig. 10 demonstrates the denoising results of Parrot image

obtained by different methods compared to the proposed

method using the plug-in estimator. In addition to about 1 dB

improvement over the baseline NLM in terms of PSNR,

visual quality of the proposed method also is comparable

and even superior to the state of the art denoising. In this

case SAIF appears to recover some texture regions which

were over-smoothed by BM3D and LPG-PCA. Fig. 11 shows

performance of the SURE estimator for the Stream image. As

can be seen, result by SAIF is visually close to BM3D and

LPG-PCA. We note that our Matlab code and additional results

are available at the project website8.

In terms of computational complexity, denoising a 256 ×
256 grayscale image with an unoptimized implementation of

our method in Matlab take, on average, about 180 seconds.

For such images, LPG-PCA (implemented by its authors

for Matlab) take, on average, 280 seconds. BM3D, with its

optimized implementation (implemented by the authors mostly

in C and compiled as Mex for Matlab), takes significantly less

time (about 1 second on average) for these images. However,

our method is sped up significantly by reducing the amount of

overlap between patches. For example, when estimating every

fifth patch, our method requires only 120 seconds on average

(including pre-filtering) with a minor drop in performance

(about 0.1 dB).

VI. CONCLUSION

We have presented a framework for improved denoising by

data-dependent kernels. Given any spatial domain filter, we

can boost its performance to near state-of-the-art by employing

8Available at: http://www.soe.ucsc.edu/∼htalebi/SAIF.php.

1482 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

(a) (b) (c)

(d) (e) (f)

Fig. 11. Comparison of denoising performance on noisy parrot image corrupted by AWGN of σ = 25. (a) Original image. (b) Noisy input. (c) NLM [10].
(d) LPG-PCA [4]. (e) BM3D [2]. (f) Proposed SAIF (NLM).

optimized iteration methods. This iterative filtering is imple-

mented patch-wise. Armed with diffusion and boosting as

two complementary iteration techniques, each patch is filtered

by the optimum local filter. More specifically, by exploiting

the best iteration number and method which minimizes MSE

in each patch, SAIF is capable of automatically adjusting

the local smoothing strength according to local SNR. The

experimental results demonstrate that the proposed approach

improves the performance of kernel based filtering meth-

ods in terms of both PSNR (MSE) and subjective visual

quality.

Using the estimated local SNR as empirical prior knowledge

of the latent signal, we proposed the plug-in estimator which

can outperform SURE estimator in many cases. Comparison

of the plug-in and SURE motivates us to integrate them under

a unique algorithm to automatically select the local estimator

with minimum risk.

We assumed that the noise variance does not vary over

the whole image. However, a local estimate of the noise

variance leads to a better estimate of the local SNR. In other

words, adding this feature to our proposed method can improve

performance of both plug-in and SURE estimators.

APPENDIX A

APPROXIMATION OF THE DATA-DEPENDENT FILTER

By applying an effective pre-filtering, the filter weight

matrix W is largely dependent on the latent image rather than

the noisy input image [20]. To be more specific, consider the

practical implementation of the filter as follows:

ẑ = W(̃z)y. (37)

Denote the estimate of the j -th pixel as:

ẑ j = wT
j (̃z)y (38)

where wT
j denotes the j -th row the filter W(̃z). Assuming

that the pre-filtered image is now only corrupted by a small

additive noise: z̃ = z + η, we can make the following first

order Taylor approximation:

ẑ j = wT
j (̃z)y ≈ wT

j (z)y + η
T G j y (39)

where the n × n diagonal matrix G j contains the vector

∇w j along its diagonal entries, in which ∇w j (z) denotes the

gradient of the vector w j with respect to its argument. The first

term in the above (wT
j (z)y) is the oracle filter. The second term

is the error between the oracle and the practical filter:

△ j = wT
j (̃z)y − wT

j (z)y ≈ η
T G j y. (40)

As can be seen, this error is dependent on the quality

of the pre-filter (how small is η) and also smoothness of

the kernel (∇w j). We note that this gradient refers to the

shape of the baseline kernel, and the way it depends on its

argument (Gaussian being typical) and not on the actual under-

lying image. While a good choice of pre-filter can sufficiently

suppress the noise, tuning the smoothness parameter of the

TALEBI et al.: SAIF-ly BOOSTING DENOISING PERFORMANCE 1483

baseline kernel guarantees the gradient of the filter to be small.

As a result, we can be assured that our approximation is

reliable for the performance analysis in the paper.

APPENDIX B

MEAN-SQUARED ERROR OF THE PLUG-IN

AND SURE ESTIMATORS

Here we derive an expression for expected error of each risk

estimator and then use this to compare the plug-in and SURE

estimators. We start from the expression for diffusion plug-in

risk estimator:

Plug-in
d f
k =

n∑

i=1

(1 − λk
i)

2b̃2
i + σ 2λ2k

i . (41)

We assume that b̃i = bi +ηi , where ηi is the projected noise of

the pre-filtered image on the eigenvectors of the filter, where ηi

are AWGN with mean zero and covariance ν2I. The expected

value of eq. 41 can be expressed as:

E[Plug-in
d f

k] =
n∑

i=1

(1 − λk
i)

2(b2
i + ν2) + σ 2λ2k

i . (42)

Consequently the bias of the plug-in estimator can be written

as:

bias(Plug-in
d f
k) = ν2

n∑

i=1

(1 − λk
i)

2. (43)

The variance term also is:

var(Plug-in
d f
k) = 2ν2

n∑

i=1

(1 − λk
i)

4(ν2 + 2b2
i). (44)

Then the MSE of the Plug-in
d f

k estimator is as follows:

MSEPlug-ind f

k

= ν4(

n∑

i=1

(1 − λk
i)

2)2

+2ν2
n∑

i=1

(1 − λk
i)

4(ν2 + 2b2
i). (45)

Unsurprisingly, as ν decreases, MSE of the estimator tends to

zero. We can also derive MSE of the SURE estimator in (28)

by replacing b̌i with bi + ei where e = N(0, σ 2I). Then the

variance term and the MSE are:

MSESUREd f
k

= 2σ 2
n∑

i=1

(1 − λk
i)

4(σ 2 + 2b2
i). (46)

Comparison of (45) and (46) can determine the better risk

estimator. To accomplish this comparison, we aim to define

an upper bound for the error incurred by the plug-in estimator

risk. Applying the Cauchy-Schwartz inequality to the squared

bias term in (45):

ν4(

n∑

i=1

(1 − λk
i)

2)2 ≤ nν4
n∑

i=1

(1 − λk
i)

4. (47)

Then we have:

MSEPlug-ind f

k

≤
n∑

i=1

(1 − λk
i)

4
(
(n + 2)ν4 + 4ν2b2

i

)
. (48)

Defining β = ν2

σ 2 as relative variance of the noise in the pre-

filtered and noisy signal, comparison of (46) and (48) shows

that the plug-in estimator outperforms SURE when in each

channel i :

snri ≥ β2(n + 2) − 2

4(1 − β)
(49)

where snri = b2
i

σ 2 is the signal-to-noise ratio of channel i .

Similarly for the boosting iteration the MSE of the plug-in

estimator is:

MSEPlug-inbs

k

= ν4

(
n∑

i=1

(1 − λi)
2k+2

)2

+2ν2
n∑

i=1

(1 − λi)
4k+4(ν2 + 2b2

i) (50)

and also for the boosting SURE estimator in (20) we have:

MSESUREbs
k

= 2σ 2
n∑

i=1

(1 − λi)
4k+4(σ 2 + 2b2

i). (51)

Doing the same analysis as we did for the diffusion iteration,

the given constraint in (49) is obtained again for the boosting

iteration.

APPENDIX C

SENSITIVITY OF THE PLUGIN

AND SURE ESTIMATORS

What we study here is the sensitivity of each estimator to

the baseline kernel type. Assuming the MSE expressions as

functions of the filter eigenvalues {λi }, their derivatives can

explain the sensitivity of the risk to the filter (kernel) type.

Defining εi = (1 − λk
i)

2, we have

∂MSEPlug-ind f

k

∂ε j
= 2ν4

n∑

i=1

εi + (4ν4 + 8ν2b2
j)ε j (52)

and also for the SURE risk estimator given by (46) the

derivative is

∂MSESUREd f
k

∂ε j

= (4σ 4 + 8σ 2b2
j)ε j . (53)

As ε j → 1, we can see that the plug-in sensitivity is bounded

as:

lim
ε j→1

∂MSEPlug-ind f

k

∂ε j

≤ 2(n + 2)ν4 + 8ν2b2
j (54)

and also for the SURE estimator we have:

lim
ε j→1

∂MSESUREd f
k

∂ε j

= (4σ 4 + 8σ 2b2
j). (55)

Comparison of (54) and (55) shows that when λi → 0, as

long as (49) holds, the plug-in estimator is less sensitive than

SURE.

On the other hand as ε j → 0 the SURE estimator’s

derivative tends to 0 and yet the sensitivity of the plug-in

1484 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

erutxeTrenroCegdE

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1 LARK

NLM

Bilateral

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1 LARK

NLM

Bilateral

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1 LARK

NLM

Bilateral

Eigenvalue index (i (xednieulavnegiE) i (xednieulavnegiE) i)

Fig. 12. Spectrum of filters computed from the patches in Fig. 3. Among the three kernels, LARK eigenvalues are larger than NLM and Bilateral.

method remains dependent on the other eigenvalues of the

filter:

lim
ε j →0

∂MSEPlug-ind f

k

∂ε j

= 2ν4
n∑

i=1

εi . (56)

This, in particular shows that the SURE estimator is more

reliable when the base kernel has eigenvalues {λi } closer to

one. The LARK filter [9] is an example of this type of kernels

with less aggressive spectrum than NLM [10] and Bilateral [8].

Fig. 12 compares spectrum of the three kernels for the selected

patches in Fig. 3. As can be seen, the LARK spectrum has

eigenvalues that are larger than the ones from NLM and

Bilateral kernels for all the tested patches. Overall, we can

conclude that the plug-in estimator better fits aggressive kernel

bases like NLM and Bilateral.

Sensitivity analysis and results of the boosting iteration are

similar to the presented diffusion process. The only differ-

ence is that the derivation variable εi should be defined as

(1 − λi)
2k+2.

REFERENCES

[1] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, “Image
denoising using scale mixtures of Gaussians in the wavelet domain,”
IEEE Trans. Image Process., vol. 12, no. 11, pp. 1338–1351, Nov. 2003.

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.

Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.
[3] D. D. Muresan and T. W. Parks, “Adaptive principal components and

image denoising,” in Proc. IEEE Int. Conf. Image Process., Sep. 2003,
pp. 101–104.

[4] L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image denoising
by principal component analysis with local pixel grouping,” Pattern

Recognit., vol. 43, pp. 1531–1549, Apr. 2010.
[5] M. Elad and M. Aharon, “Image denoising via sparse and redundant

representations over learned dictionaries,” IEEE Trans. Image Process.,
vol. 15, no. 12, pp. 3736–3745, Dec. 2006.

[6] P. Chatterjee and P. Milanfar, “Clustering-based denoising with locally
learned dictionaries,” IEEE Trans. Image Process., vol. 18, no. 7,
pp. 1438–1451, Jul. 2009.

[7] P. Chatterjee and P. Milanfar, “Is denoising dead?” IEEE Trans. Image

Process., vol. 19, no. 4, pp. 895–911, Apr. 2010.
[8] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and

color images,” in Proc. IEEE Int. Conf. Comput. Vis., Jan. 1998,
pp. 836–846.

[9] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image
processing and reconstruction,” IEEE Trans. Image Process., vol. 16,
no. 2, pp. 349–366, Feb. 2007.

[10] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Model. Simulat., Int. J., vol. 4,
no. 2, pp. 490–530, 2005.

[11] C. Kervrann and J. Boulanger, “Optimal spatial adaptation for patch-
based image denoising,” IEEE Trans. Image Process., vol. 15, no. 10,
pp. 2866–2878, Oct. 2006.

[12] J. Boulanger, C. Kervrann, and P. Bouthemy, “Space-time adaptation
for patch-based image sequence restoration,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 29, no. 6, pp. 1096–1102, Jun. 2007.
[13] P. Milanfar, “A tour of modern image filtering,” IEEE Signal Process.

Mag., to be published.
[14] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE: A black-

box optimization of regularization parameters for general denoising
algorithms,” IEEE Trans. Imag. Process., vol. 17, no. 9, pp. 1540–1554,
Sep. 2008.

[15] X. Zhu and P. Milanfar, “Automatic parameter selection for denoising
algorithms using a no-reference measure of image content,” IEEE Trans.

Imag. Process., vol. 19, no. 12, pp. 3116–3132, Dec. 2010.
[16] C. Stein, “Estimation of the mean of a multivariate normal distribution,”

Ann. Statist., vol. 9, no. 6, pp. 1135–1151, Nov. 1981.
[17] M. Van De Ville and D. Kocher, “Nonlocal means with dimensional-

ity reduction and sure-based parameter selection,” IEEE Trans. Imag.

Process., vol. 20, no. 9, pp. 2683–2690, Sep. 2011.
[18] E. Seneta, Non-Negative Matrices and Markov Chains. Berlin, Germany:

Springer-Verlag, 1981.
[19] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, MA:

Cambridge Univ. Press, 1991.
[20] P. Milanfar, “Symmetrizing smoothing filters,” SIAM J. Imag. Sci., to be

published.
[21] H. Talebi and P. Milanfar, “Improving denoising filters by optimal

diffusion,” in Proc. ICIP, Appear Conf., 2012, pp. 1–4.
[22] J. Salmon and E. Le Pennec, “NL-Means and aggregation procedures,”

in Proc. ICIP Conf., Nov. 2009, pp. 2977–2980.
[23] A. S. Dalalyan and A. B. Tsybakov, “Aggregation by exponential

weighting, sharp pac-bayesian bounds and sparsity,” Mach. Learn.,
vol. 72, nos. 1–2, pp. 39–61, 2008.

[24] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,”
IEEE Trans. Imag. Process., vol. 13, no. 4, pp. 600–612, Apr.
2004.

Hossein Talebi (S’11) received the B.S. and M.S.
degrees from the Isfahan University of Technology,
Isfahan, Iran, in 2007 and 2010, respectively. He
is currently pursuing the Ph.D. degree with the
University of California, Santa Cruz, all in electrical
engineering.

He is currently a Researcher with the Multi-
Dimensional Signal Processing Laboratory (MDSP
Lab), University of California. His current research
interests include image and video processing (i.e.,
denoising, interpolation, and superresolution).

TALEBI et al.: SAIF-ly BOOSTING DENOISING PERFORMANCE 1485

Xiang Zhu (S’08)received the B.S. and M.S.
degrees from Nanjing University, Nanjing, China,
in 2005 and 2008, respectively. He is currently
pursuing the Ph.D. degree with the University of
California, Santa Cruz, all in electrical engineering.

His current research interests include the domain
of image processing (denoising, deblurring, super-
resolution, and image quality assessment) and com-
puter vision.

Peyman Milanfar (F’10) received the B.S. degree in
electrical engineering and mathematics from Berke-
ley, and the Ph.D. degree in electrical engineering
and computer science from the Massachusetts Insti-
tute of Technology, Cambridge. He was with SRI,
and was a Consulting Professor of computer science
at Stanford. He is a Professor of electrical engineer-
ing with University of California, Santa Cruz, and
was an Associate Dean of research from 2010 to
2012. He is currently on leave at Google-[x]. He
founded MotionDSP, which has brought state-of-the-

art video enhancement to the market. His technical expertises are in statistical
signal, image and video processing, computational photography, and vision.

Dr. Milanfar is a member of the IEEE Signal Processing Society’s IVMSP
Technical Committee, and its Awards Board.

