@% Transactions on Information and Communications Technologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

How to schedule a flow shop plant by agents
T. Daouas, K. Ghedira, J.P. Muller

Institute of Computer Science and Artificial Intelligence,
Emile Argand 11, 2007 Neuchatel, Switzerland

Abstract

The flow shop scheduling problem consists, according to a certain number of
criteria, in finding the best possible allocation of n jobs on m resources, so that
operations of every job must be processed on all resources in a unique order.
Because of its highly combinatorial aspect, this scheduling procedure has been
widely studied in the literature by exact and mostly heuristic methods. The
approach, we adopt here to deal with this problem, combines a Multi-Agent
system with a stochastic combinatorial optimization tool, the simulated
annealing. This paper stresses the efficiency and the optimality of a distributed
implementation of this tool compared to a classical one.

1 Introduction

Scheduling is very important in manufacturing systems. Because of its NP-
Complete aspect, its combinatorial character, its dynamic nature and its practical
interest for industrial applications, scheduling, generally speaking and more
exactly in a plant [5], has been widely studied in the literature using exact and
mostly heuristic methods.

Among these methods, some ones based on constraint propagation
techniques, for instance ISIS [5], SOJA [15], etc. A CSP, for Constraint
Satisfaction Problem, perspective has also been proposed in [6] and used by
[17] to modelize the scheduling problem in terms of variables involved in
constraints, the solution being a variable's instanciation satisfying the set of
constraints. Moreover, stochastic methods providing sub-optimal solutions have
been suggested; among these ones, we name [16] which uses SA techniques, [2]
which uses Taboo search and [14] which bases its search on genetic algorithms.
Scheduling has also been dealt with as a Constrained Optimization Problem
(COP) in the CORTES approach [7], which is a factory scheduling system that
solves resource allocation COP's using Constrained Heuristic Search.

Despite the variety of the methods just mentioned, scheduling problem
remains difficult to solve, justifying us to explore a new direction: Multi-Agent

@% Transactions on Information and Communications Technologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

74 Artificial Intelligence in Engineering

Systems (MAS), for instance the Eco-problem solving [4], an approach based
on interactions between agents, each of them trying to reach its own satisfaction.
In this framework, scheduling has been formulated by Sycara and Liu [17] as a
Distributed CSP. An agent has to instanciate a sub-set of variables assigned to it.
Constraints may exist between agents. A solution is reached when all constraints
intra-agents and inter-agents are satisfied. Operations represent variables, their
possible values represent reservations (start time and required resources) and
both precedence relations and resource capacities represent constraints.

A similar approach combining MAS with Simulated annealing (SA) has been
proposed for the resource allocation problem [12]. The underlying efficient
revision mechanism to deal with the dynamic aspect [13] [8] as well as the good
experimental results | 12] encouraged us to extend this approach to the flow shop
scheduling problem. Moreover, this approach has been successfully adapted to
both static aspect [9] [11] and dynamic aspect of CSP [10].

After describing the problem we deal with, we introduce a model based on the
combination of MAS and SA [3]. Then, comparisons between both distributed
and classical centralized implementations of SA, will be done thanks to examples
randomly generated.

2 The Problem

Given a set of jobs attached, each one, to its process plan (directed graph of
operations), its quantity (number of components to be produced) and its
deadline, and given a physical model consisting of resources separated by stock
stations, the scheduling here consists in allocating each operation to possible
resources taking into account the precedence relations existing between
operations and the deadlines of jobs in order to provide the best possible
sequence of jobs.
From now on, and given an operation, we call its previous (resp. next), the
operation being directly before (resp. after) with respect to the partial order
defined by the process plan. We call its precedent (resp. following), the
operation which will be executed directly before (resp. after) on the same
resource.

In the framework of the flow shop scheduling problem, we adopt the
following hypotheses:
* The graph structure of resources and stock stations representing the physical
model is reduced to a linear one. Consequently, the process plan becomes a
linear sequence of operations. These operations have strict precedence relations
between each other, that is to say, if A;4+/ is the next operation to Aj, execution
of Aj4+ 7 cannot start before the completion of, at least, one component of A;.
* A stock station can have only two possible states. Given two resources R and
R} separated by a stock station $Sy2, it R7 is faster than R then $S;2 is
assumed to be full otherwise it is empty.

To optimize the sequence of jobs, we choose the following criteria:
* Minimizing the setup duration for each resource. The setup duration is the time
required by a resource to change tool. Instead, each operation needs one or more
specific tools to be performed, so a time setup may exist between two successive
operations on the same resource.
» Maximizing the slack time of each job. A slack time is the difference between
the deadline and the completion time of the job.
More formally, we are concerned with maximizing a cost function f such that:

f=-a* (nb_setup * dur setup) + B* slack

@% Transactions on Information and Communications Technologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 75

- ovand f are weighting parameters provided by the user,
- nb_setup is the total number of setups,

- dur setup is the setup duration and

- slack denotes the sum of slack times of all jobs.

3 The Multi-Agent_Simulated Annealing model

3.1 The Simulated Annealing tool
Coming from statistical physics, SA allows to avoid as much as possible the
local optima trap which often occurs with greedy algorithms. Let f be a cost
function to maximize, SA consists in:
» allowing cost function deterioration, hoping to improve it later,
+ controlling this possibility with a stochastic process that is guided by a
parameter, the tolerance, which is usually called the temperature: Initially, there
is a high tolerance to cost function deterioration, and progressively this tolerance
decreases until the system reaches the equilibrium state. T(k) denotes the
tolerance at time &, the probability to accept the new state g once generated from
the current state ¢ is equal to:

1 iffg) 2 flc)

Acg = { [M Otherwise
€ Tk

3.2 The Multi-Agent approach

According to the original approach [13], each agent has acquaintances (i.e. the
agents that it knows and with which it can communicate) and a behavior based
on the search of its satisfaction: If satisfied then satisfaction-behavior else
unsatisfaction-behavior.

The proposed model involves two types of agents: Job agents and Resource

agents. Before detailing these agents, let us introduce briefly the global
dynamics:
Each job requests the resources by sending its operations one by one, according
to the precedence relations between these operations. For each job, we associate
a rank representing its position on the resources. This rank is determined
randomly when the first operation is allocated. When a resource is requested by
a job, its behavior, based on the SA, consists of two phases: a) Generation of a
new state, comprising necessarily the new operation just received, and b)
decision on whether to accept or to reject this new state.

3.2.1 The Job agents A job has as acquaintances all the resources. It is
satisfied when all its operations are allocated, and in that case it does nothing. In
the unsatisfaction case, its behavior consists in sending to resources its
operations not yet allocated as follows:

« If A;j is allocated, the operation to be sentis Aj+ /.

« If A; is refused by a resource, the job it belongs takes all its operations out of
the resources, and the next candidate operation will be Aj.

« If A; had been already allocated to a resource and has been rejected later on
because of the overstepping of the deadline, Aj remains the next candidate
operation.

3.2.2 The Resource agents A resource has as acquaintances all the jobs. It
is satisfied when it is not requested by any Job. Whenever a resource is
requested by a job, its unsatisfaction behavior based on SA consists in

@% Tra?sé'\ctiox on. formlalifn and Communicationg Techpologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517
rtificial Intelligence in Engineering

generating a new state, comprising necessarily the incoming job, and deciding
whether to accept it or not. In addition, the more the cost function of a resource
is high the more a resource is satisfied; consequently, if the tolerance is still
greater than zero and all jobs are allocated, an improvement phase is performed
hoping to increase the cost function.
* New state generation: The operation just received is attached with both the
deadline and the earliest completion time of its job. This information helps the
resource to check the deadline overstepping. The earliest completion time of the
job is determined without taking into account neither the setup times nor the
transfer times between operations. To allocate this operation, the resource
behavior consists in:

- attributing a rank to the corresponding job,

- determining the start and finish dates of the operation,

- possibly ejecting other jobs already allocated to make sure that the job in
question does not overstep its deadline, and

- reacting to side effects by ejecting operations that overstep their deadlines
because of the new operation allocation. We notice here that ejecting an operation
implies automatically ejecting all its next operations allocated to next resources
(precedence relations).
* Decision: If the new generated state is accepted, every ejected job takes all its
operations out of the other resources. In the same way, every job having an
operation ejected due to the side effects reaction, takes all the next operations
out. However, if the new generated state is refused, the resource informs the
job, which has requested it, of its decision. Therefore this job takes all its
operations out and tries, later on, to be allocated to another position.

| Solutionl, Cost= 460 |
[ludB]u]
200 350 450 500

0
ke L2]]a]
R3 [2] o] s3] 9]
10 210

360 460 510

R1

Deadline (J1)= 500
Deadline (J2)= 400

[Solution2, Cost= 510 | Deadline (J3)= 500
SRIENEAERED Deadline (J4)= 600
0 150 350 450 500
e |]]B]]
RS ENEA R
10 160 360 460 510

Figure 1: Solution 2 (obtained by permuting J/ and J2) is better than Solution 1.

* Improvement phase: Even if all jobs are allocated, the obtained sequence is not
necessarily optimal. Therefore we add an improvement phase at the level of the
first resource R} which is performed as follows: Resource R} ejects randomly
one job, to allow the system to visit more possible configurations (figure 1).

@% Transactions on Information and Communications Technologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 77

This phase is repeated while the tolerance is greater than zero. We will come
back later to that parameter in the following section. The choice of Ry 1is
justified by the fact that all process plans force any job to first request K.

Let us remark that for some hard problems, the model cannot find a
configuration satisfying all deadlines. Consequently, the final configuration may
have some jobs not allocated. For such jobs, the system asks via the Machine
agent (see next paragraph) the user for possibly relaxing some deadlines.

4 Implementation of simulated annealing

4.1 The machine agent

For the need of implementation, a third class of agents, which contains only one
agent called the Machine agent, has been added. It has as acquaintances the set of
Jobs and the set of resources. It is satisfied when all the jobs are allocated. When
it 1s satisfied, it gives the best configuration found so far during the process. If it
is unsatisfied, it does nothing. We notice that this agent does not interfere in the
problem resolution process, i.e., in the dialogue between Job and Resource
agents. It is only an intermediary between the agents society and the user.

4.2 Two alternatives

It has been proved in [1] that the SA algorithm converges asymptotically to a
sub-set of optimal solutions. Unfortunately, this convergence requires an infinite
run-time. Consequently, we propose two alternatives to put SA in practice:

+ The first one, CSA, consists in implementing a unique centralized SA (as used
generally in literature) whose parameters, namely the tolerance and its decreasing
scheme, are shared and controlled by all the Resource agents.

» The second one, DS A, consists in fully exploiting the Multi- Agent philosophy,
namely locality and autonomy, by using a Distributed SA. In this case, each
agent maximizes its local cost function, which is the restriction of the global
function to its environment (operations allocated on it). It controls the above
mentioned parameters of its own SA according to its knowledge and its
interactions with its acquaintances.

In order to make fair comparisons between these two alternatives, we have
been inspired by [12] to determine the following decreasing scheme, also called
in the SA literature cooling scheme.

A decreasing scheme consists of an initial tolerance, a decreasing function and a
termination criterion.

« For the first alternative, the initial tolerance is equal to the sum of all job slack
times (for each job, the slack time here, is the difference between its deadline and
its earliest completion time, such that its start time is zero). The tolerance is
decreased after m cost deterioration acceptances, where m is the number of
Resource agents. The termination occurs when the tolerance reaches the zero
level.

« For the second alternative, the initial tolerance of each Resource agent is also
equal to the sum ot all job slack times. Each Resource agent decreases its
tolerance in the same manner as CSA whenever it accepts a local cost
deterioration. The termination occurs when the tolerance of the first resource R}
reaches the zero level. The choice of R} 1s due to the same reason as in
paragraph Improvement phase.

4.3 Experimental comparisons

@% Transactions on Information and Communications Technologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

78 Artificial Intelligence in Engineering

4.3.1 Experiment design The idea is to find the best finite-time
implementation of the SA algorithm resulting in a compromise between a good
quality of solution (the nearest to optimal solutions) and an acceptable run-time.
For this purpose, the two alternatives CSA and DSA are compared in terms of
optimality by measuring the rate of optimality, and efficiency by measuring the
run-time. This run-time includes the time spent to exchange messages between
agents.

The test examples have been randomly generated as follows: we have fixed the
number of jobs to 5 and attributed to the number of resources the following
values {2, 4, 6, 8, 10}, and vice versa. For each job, the deadline is equal to
Random [1.1, 1.3] times the sum of:

* the flow time of the job, which is its execution duration without neither setup
nor transfer duration and

* an approximate duration of the other jobs.

The number of components of each operation (the same for all operations
belonging to the same job), is chosen randomly between I and 200.

Moreover, and considering the random aspect of SA, we have performed /0
runs per example and taken the average of run-time. The rate of optimality is
computed as follows: Let max denotes the maximal value reached during ten
runs and let p_max be the number of runs where max is reached, the optimality
rate is determined by: (p_max/10) * 100

140 100
120 v
2 80
o 100] 0
E 30 z 604
s 60 = 40 A
2 40 g 20
20 s I
0+ } —t i 0 } i } i
o1 <t \O o] <o ol <t \O jole} o
Number of jobs Number of jobs

Figure 1: Run-time and optimality rate with number of resources = 5.

4.3.2 Experimental results The efficiency is represented by the run-time,
and the optimality by the optimality rate which reflects the quality solution.

The results are shown in figures where black squares represent CSA and white
squares represent DSA. The maximum cost values reached by the two
mechanisms are the same, but the rate is not the same as we will see later.

At constant number of resources equal to 5, figure 2 shows that, at the same
optimality rate, DSA is better than CSA from the run-time point of view. It
requires, indeed, less run-time. This advantage becomes more pronounced as the
number of jobs increases; indeed, DSA needs less time to have a better
optimality rate than CSA. At constant number of jobs equal to 5, figure 3 allows
to keep the same remarks as before.

@% Transactions on Information and Communications Technologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

Artificial Intelligence in Engineering 79

To summarize, we can assert that in terms of run-time, DSA always

outperforms CSA. In terms of optimality, DSA and CSA have the same rate for
numbers of jobs less than numbers of resources.
When the number of jobs oversteps the number of resources, the optimality rate
of DSA becomes much better. This result is very important since, in practice,
problems with large numbers of jobs seem to be the most difficult according to
our selected criteria. Such advantages become more important with an
implementation of DSA on parallel architecture.

Moreover, even if we slow down the decreasing scheme of DSA, its
performances would be, at least, as good as those of CSA. On the other hand,
even if we accelerate the decreasing scheme of CSA, its performances would be
either worst or, at most, the same as those of the DSA. Consequently, DSA
would give in both cases a better complexity-quality compromise.

80 100
L 80
60 + =
W
£ = 60
< 40+ =
5 = g 40 4
20 1 £ 20
0 P S — o0 P S —
ol <t \O oC o) o <t \C oC =
Number of resources Number of resources

Figure 2: Run-time and optimality rate with number of jobs =5

5 Conclusion and perspectives

In this paper, the flow shop scheduling problem has been treated by a Multi-
Agent model consisting of Job agents and Resource agents in interaction, trying
to find the best possible sequence of allocated jobs. For that purpose, an
optimization tool, the SA, has been implemented at the level of each Resource
agent.

Experimental comparisons, based on randomly generated examples, with a
centralized implementation of this tool have shown its power in terms of
efficiency and optimality.

As far as our future work is concerned, we have to do on the one hand further
experimentation with more complex examples, and on the other hand
comparisons of the model with other known methods.

Moreover, we intend to extend this model to the general case of the job shop
scheduling problem.

Acknowledgements

This work is supported by the Swiss National Founds of the Scientific Research
under contract # SPPIF5003-034319.

@% Transactions on Information and Communications Technologies vol 8, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517
80 Artificial Intelligence in Engineering

References

1. Aarts, E.-H.L. & Van Laarhoven, P.J.M. Simulated annealing: Theory and
applications, Reidel, D. Publishing Company, 1987.

2. Amico, D. A. & Trubian, M. Applying Taboo search to the job shop
scheduling problem, Annals of Operations Research, Vol.41, 1-4, 1993,

3. Daouas, T. & al A Distributed approach for the flow shop scheduling
problem, Proceedings of the Int. Conf. of Al Applications, Cairo, 1995,

4. Ferber, J. & Jacopin, E. The framework of Eco-problem solving,
Decentralized Artificial Intelligence, Vol.2, Editions North Holland, 1990.

5. Fox, M. S. Isis: A constraint-directed reasoning approach to job shop
scheduling, Proceedings of IEEE'83, 1983.

6. Fox, M. S. & Sadeh, N. Why scheduling difficult? a CSP perspective,
Proceedings of ECAI'91, 1991,

7. Fox, M. S. & Sycara, K. P. Overview of CORTES: A constraint based
approach to production planning, scheduling and control, Proceedings of the 4th
Int. Conf. on Expert systems in Production and Operations Management, 1990.
8. Ghedira, K. A reactive and distributed approach to the revision problem in the
framework of resource allocation problem, Proceedings of IEEE-ETFA,
Melbourne, 1992,

9. Ghedira, K. A Distributed approach to partial constraint satisfaction
problems, Proceedings of MAAMAW'94, Odense, 1994,

10. Ghedira, K. Distributed simulated re-annealing for dynamic constraint
satisfaction problems, Proceedings of TAI'94, 1994,

11. Ghedira, K. Partial constraint satisfaction by a Multi-Agent_Simulated
annealing approach, Vol.1, Proceedings of the Int. Avignon Conf. on Al, 1994,
12. Ghedira, K. & Verfaillie, G. Approche Multi-Agents pour les problémes
d'affectation, Proceedings of the Ini. Avignon Conf. on Al: Expert systems and
their applications, Avignon, 1991,

13. Ghedira, K. & Verfaillie, G. A Multi-Agent mode! for the resource
allocation problem: a reactive approach, Proceedings of ECAI'92, Vienna, 1992,
14. Lawrence, D. Job shop scheduling with genetic algorithms, pp. 136-140,
Proceedings of the Ist Int. Conf. on Genetic algorithms and their applications,

15. Lepape, C. & al Soja: Un systéme d'ordonnancement opportuniste,
Proceedings of the 5th Int. Avignon Conf. on Al, Avignon, 1985.

16. Sridhar, J. & Rajendran, C. Scheduling in a cellular manufacturing system:
a simulated annealing approach.

17. Sycara, K. P. & Liu, J. Emergent constraint satisfaction through Multi-
Agent coordinated interaction approach, Proceedings of the 5th European
workshop on Modelling autonomous agents in a Multi-Agent world, 1993.

