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Abstract

We are given a set of clients with budget constraints and
a set of indivisible items. Each client is willing to buy
one or more bundles of (at most) k items each (bundles
can be seen as hyperedges in a k-hypergraph). If client
i gets a bundle e, she pays bi,e and yields a net profit
wi,e. The Hypermatching Assignment Problem (HAP)
is to assign a set of pairwise disjoint bundles to clients
so as to maximize the total profit while respecting
the budgets. This problem has various applications in
production planning and budget-constrained auctions
and generalizes well-studied problems in combinatorial
optimization: for example the weighted (unweighted) k-
hypergraph matching problem is the special case of HAP
with one client having unbounded budget and general
(unit) profits; the Generalized Assignment Problem
(GAP) is the special case of HAP with k = 1.

Let ε > 0 denote an arbitrarily small constant. In
this paper we obtain the following main results:

• We give a randomized (k + 1 + ε) approximation
algorithm for HAP, which is based on rounding
the 1-round Lasserre strengthening of a novel LP.
This is one of a few approximation results based
on Lasserre hierarchies and our approach might
be of independent interest. We remark that for
weighted k-hypergraph matching no LP nor SDP
relaxation is known to have integrality gap better
than k − 1 + 1/k for general k [Chan and Lau,
SODA’10].

• For the relevant special case that one wants to
maximize the total revenue (i.e., bi,e = wi,e),

we present a local search based (k + O(
√
k))/2

approximation algorithm for k = O(1). This
almost matches the best known (k + 1 + ε)/2
approximation ratio by Berman [SWAT’00] for

∗Partially supported by the ERC Starting Grant NEWNET

279352, by the Swiss NSF project 200020-122110/1 “Approxima-
tion Algorithms for Machine Scheduling Through Theory and Ex-

periments III”, and by Hasler Foundation Grant 11099.
†IDSIA, University of Lugano, Switzerland,

{marek,fabrizio,monaldo}@idsia.ch

the (less general) weighted k-hypergraph matching
problem.

• For the unweighted k-hypergraph matching prob-
lem, we present a (k + 1 + ε)/3 approximation
in quasipolynomial time. This improves over the
(k+2)/3 approximation by Halldórsson [SODA’95]
(also in quasipolynomial time). In particular
this suggests that a 4/3 + ε approximation for 3-
dimensional matching might exist, whereas the cur-
rently best known polynomial-time approximation
ratio is 3/2.

1 Introduction

Consider the following two natural scenarios. We are
given a set of clients, each one with a budget, and a
set of bundles of items, each one with a price and a
profit (which might vary from client to client). Clients
wish to buy one or more disjoint bundles of items
(they are not interested in buying subsets of bundles
however). Our goal is to maximize the total profit, while
respecting client budgets. Alternatively, we are given
a set of machines and a set of products obtained by
assembling together on a machine bundles of indivisible
and possibly different components. A component that
is used for a product cannot be used for another one.
Each product has an assembling time and a profit (both
depending on the machine), and the total time spent on
each machine cannot exceed a specified amount. The
goal is to choose which products we want to produce
and assign them to the machines for assembling in order
to maximize the total profit.

The mentioned scenarios can be modeled via the
following Hypermatching Assignment Problem (HAP).
We are given a k-hypergraph G = (V,E) and a set of m
clients (or machines) I = {1, . . . ,m}. Note that k and
m are not required be constant1. Each client i has a
budget Bi ≥ 0. For each client i and hyperedge e, there
is a cost (or price) bi,e ≥ 0 and a weight (or profit)
wi,e ≥ 0. The goal is to compute a set M of disjoint

1We remark that assuming m = O(1) would simplify the
problem considerably.



hyperedges (hypermatching) of G, and to partition M
into m subsets M1, . . . ,Mm so that the total profit∑m
i=1 wi(Mi), wi(Mi) :=

∑
e∈Mi

wi,e, is maximized and
the budget constraint bi(Mi) :=

∑
e∈Mi

bi,e ≤ Bi is
satisfied for all clients i.

W.l.o.g., we also assume that all hyperedges have
arity exactly k (i.e. G is k-uniform): this can be
achieved by adding dummy nodes. For shortness, we
will sometimes drop the suffix hyper in hypergraph,
hyperedge, etc.

Previous Work. To the best of our knowledge,
HAP was not studied before (even not for k = 2).
However, it generalizes in a natural way two well-
studied problems. When there is only one client (i.e.,
m = 1) with an unbounded budget, then HAP is the
k-hypermatching problem. When k = 1 then HAP is
the Generalized Assignment Problem (GAP).

The hypergraph matching problem, also known as
the set packing problem, is a fundamental problem in
combinatorial optimization with various applications.
H̊astad [19] proved that set packing cannot be approx-
imated to within O(N1−ε) unless NP ⊆ ZPP (where
N is the number of sets)2. The hypergraph matching
problem in k-uniform hypergraphs is also known as the
k-set packing problem and it is a generalization of some
classical combinatorial optimization problems, e.g. the
k-dimensional matching problem, and the maximum in-
dependent set problem in bounded degree graphs. All
the best known approximation algorithms for the hyper-
graph matching problem in k-uniform hypergraphs are
based on local search methods [2, 4, 7, 17, 21]: For the
unweighted problem, Hurkens and Schrijver [21] gave
a
(
k
2 + ε

)
-approximation algorithm. For the weighted

case, the currently best known algorithm is due to
Berman [2] who gave a

(
k+1+ε

2

)
-approximation algo-

rithm. Interestingly, a better result is possible in quasi-
polynomial time, as proved by Halldórsson [17] who
presented a (k + 2)/3 approximation algorithm for the
unweighted hypergraph matching problem in k-uniform
hypergraphs.3 On the other hand, Hazan, Safra and
Schwartz [20] proved that it is hard to approximate

within a factor of O
(

k
log k

)
. Recently, Chan and Lau [6]

analyzed different linear and semidefinite programming
relaxations for the hypergraph matching problem, and
studied their connections to the local search method.
In their paper they show that the standard linear pro-
gramming relaxation of the problem has integrality gap
exactly k− 1 + 1/k for k-uniform hypergraphs. For the

2Throughout this paper ε > 0 denotes an arbitrarily small

constant.
3The quasi-polynomial time (k+1+ ε)/3-approximation algo-

rithm claimed in [17] is incorrect [18].

unweighted problem, they show that there is a polyno-
mial size semidefinite program with integrality gap at
most k+1

2 (the proof is obtained in an indirect way, i.e.
not by a rounding algorithm). The latter result is not
known to extend to the weighted case. In [6] it is also ob-
served that no example with integrality gap larger than

Ω
(

k
log k

)
(as implied by the hardness result in [20]) is

known.
Regarding GAP, the problem is known [5] to be NP-

hard to approximate to any factor better than 11/10.
On the positive side, a 2-approximation algorithm is im-
plicit in the work of Shmoys and Tardos [30], as observed
by Chekuri and Khanna [8]. Their method is based on
rounding a standard LP relaxation (with integrality gap
2). The approximation factor has been improved to e−1

e
by Fleischer, Goemans, Mirrokni and Sviridenko [14].
Their approach is based on rounding a provably stronger
LP, called configuration LP, with an exponential num-
ber of variables. The configuration LP is a relaxation
of the problem where, for each client i, there is a vari-
able for each one of the (exponentially many) possible
feasible assignments to that client (configuration). This
LP can be solved up to an arbitrary precision, since
the separation problem of the dual is a knapsack prob-
lem. Any (fractional) solution of the configuration LP
can be seen as a probability distribution over the set
of all feasible assignments. By independently sampling
with this distribution, they obtain a tentative assign-
ment for each client which satisfies the corresponding
budget constraint. There might be conflicts between
clients, namely the same item might be assigned to dif-
ferent clients. These conflicts are resolved via a ran-
domized procedure. Recently, Feige and Vondrák [13]
improved the approximation factor for GAP to e−1

e − δ
for a proper (small) constant δ > 0. The algorithm is
based on the same configuration LP as in [14], but the
rounding technique is different.

Our Results. In this paper we obtain the following
main results:

(1) General case. We present a randomized (k+ 1 + ε)-
approximation algorithm for HAP (see Section 2). A
natural approach for the addressed problem would be to
extend the techniques in [13, 14] for GAP, by considering
the configuration LP for HAP. However, for GAP the
configuration LP can be solved in polynomial-time up
to an arbitrary precision, but for HAP we cannot hope
for the same since this would imply a PTAS for the
HAP with a single client, which is a generalization of
the k-uniform hypergraph matching problem.

In this paper we take an alternative approach, which
might be of independent interest. We design a novel par-
tial configuration LP, of intermediate complexity w.r.t.



the standard LP and configuration LP for HAP: our
LP contains a polynomial number of variables (but
exponential in 1/ε) which model the poly(1/ε) most
profitable edges assigned to each machine in the opti-
mum solution4. We strengthen this LP by 1-round of
the Lasserre’s lift-and-project method and solve it in
polynomial-time (within an arbitrarily small additive
error) [15]. Then we exploit a non-trivial randomized
rounding procedure to obtain an independent tenta-
tive assignment for each client of expected weight ar-
bitrary close to the weight of the fractional solution
of the Lasserre relaxation. Here we crucially exploit
the Decomposition Lemma in [22] to turn fractional
assignments of the most profitable edges into integral
ones. The computed tentative assignments respect bud-
get constraints. However, there might be conflicts (due
to nodes assigned multiple times) among clients and
even within the same client (differently from [14]). In-
tuitively, our sampling procedure produces relaxed con-
figurations, where conflicts among the least profitable
edges are allowed. Nonetheless, we are still able to
solve such conflicts with a simple randomized proce-
dure. Note that the resulting approximation factor is
w.r.t. the (almost) optimal solution to the Lasserre re-
laxation. We remark that for weighted k-hypermatching
problem no LP nor SDP relaxation is known [6] to have
integrality gap better than k − 1 + 1/k for general k.
We believe that our combination of a partial configu-
ration LP with Lasserre hierarchies might turn out to
be useful in other contexts as well, for example where
configuration LPs cannot be approximated well enough.

(2) Uniform case. We consider the uniform version
of HAP, where bi,e = wi,e for all i and e (see Section
3). This models the relevant special case where one
wants to maximize the total revenue (i.e. sum of the
prices) rather than the total profit. For example, this
might be the case if profits are (roughly) proportional
to prices. Alternatively, fixed costs of the seller might
largely prevail on bundle costs.

For this problem we present a local search based
(k + O(

√
k))/2 approximation algorithm for k = O(1).

This almost matches the best known (k + 1 + ε)/2
approximation ratio by Berman [2] for the (less general)
weighted k-hypermatching problem (also based on local
search and for k = O(1)). The main extra difficulty
that we need to address w.r.t. to the hypermatching
case is that improving the total profit with local changes
is not sufficient for us, we need also to satisfy budget
constraints on each machine at any time. To this aim,
we introduce dummy clients which inherit some fraction

4Note that we cannot “guess” such edges in polynomial-time,
being m unbounded.

of the budget of the associated (original) client, and
carefully move edges from dummy clients to original
ones and back.

(3) Unweighted hypermatching. Finally, we consider
the standard unweighted k-hypermatching problem (see
Section 4). We present a (k + 1 + ε)/3 approxima-
tion running in quasi-polynomial time. This improves
over the (k + 2)/3 approximation by Halldórsson [17]
(also in quasi-polynomial time). In particular this sug-
gests that a 4/3 + ε approximation for 3-dimensional
matching might exist, whereas the currently best known
polynomial-time approximation ratio is 3/2. Our re-
sult exploits the fact any (sufficiently dense) graph
G = (V,E), namely |E| ≥ (1 + ε)|V | for some constant
ε > 0, contains a cycle with O(log n) nodes. Based on
that and on a non-trivial construction, we prove that if
it is not possible to improve the current hypermatching
by adding O(log n) new edges (and removing the con-
flicting edges in the current solution), then the current
solution is “good enough”.

Related Work. A lot of research was devoted
in the last two decades to the strengthening of linear
and semidefinite programming relaxations by local con-
straints, e.g. Lovász-Schrijver hierarchy [24], Sherali-
Adams hierarchy [29], Lasserre hierarchy [23]. These
lift-and-project hierarchies are considered to be a strong
computational model which captures many known algo-
rithms. The computation of these hierarchies proceeds
in rounds. Intuitively, after r rounds the solutions are
required to be “locally” integral on all neighborhoods
of up to r vertices but require time nO(r) to run. Af-
ter n rounds, they are guaranteed to produce the exact
optimal solution. If local integrality implies global in-
tegrality, then these hierarchies will provide a good ap-
proximation after only a few rounds. Indeed, these hier-
archies provably imply some of the most celebrated ap-
proximation algorithms for NP-complete problems even
after a few rounds. These hierarchies give us a frame-
work to study the power and limitations of linear and
semidefinite programming by asking what the tradeoff
between the running time and the guaranteed approxi-
mation in these hierarchies is.

Unfortunately, most results along these lines have
been negative, showing that even relaxations at super-
constant (and sometimes even linear) levels of certain
hierarchies hardly yield any reduction in the integral-
ity gap (see e.g. [11, 28]). In contrast, new results
where improved approximation guarantees arise from
the first O(1) levels of a hierarchy, have recently be-
gun to emerge [12, 25, 1, 9, 10, 16, 27]. For a more
detailed overview on the use of hierarchies in approx-
imation algorithms, see the recent survey of Chlamtáč
and Tulsiani [11]. Finally, we mention the work of Kar-



lin, Nguyen and Mathieu on knapsack [22], that shows
that after r2 rounds of Lasserre, the integrality gap de-
creases from 2 to r/(r − 1), implying as a side product
of their analysis a PTAS for knapsack. In particular the
Decomposition Lemma in [22] plays an important role
in this paper.

2 A Lasserre-based Approximation for HAP

In this section we present the claimed k + 1 + ε ap-
proximation for HAP. We start by giving a high-level
description of our algorithm. We consider a proper LP
relaxation LPHAP of HAP. In this relaxation we cru-
cially introduce variables which describe the 1/β most
profitable edges for each client, for a proper constant
β > 0 which depends on ε. We compute the 1-round
Lasserre strengthening LASSHAP of LPHAP , and solve
it modulo a small additive mistake. Next we indepen-
dently sample a tentative assignment for each client, via
a non-trivial sampling procedure. Finally, we resolve the
conflicts between clients (due to nodes assigned multiple
times) with a simple randomized procedure.

By adding dummy edges of cost and weight zero,
we can assume w.l.o.g. that each client is assigned at
least 1/β edges. Consider LP relaxation for HAP given
in Fig. 1, denoted as LPHAP . The set Fi consists of all
the subsets of 1/β disjoint edges F with bi(F ) ≤ Bi.
Consider any integral (in particular, 0-1) solution to
LPHAP . Then yi,F = 1 iff F is the set of the 1/β edges
with the largest weights assigned to client i. Moreover,
xi,e = 1 iff edge e is assigned to client i. Constraint (2.1)
forces the budgets to be respected. Constraint (2.2)
guarantees that the solution is a matching. Constraint
(2.3) forces one choice of a set in F for each i. Constraint
(2.4) guarantees that, for a given i, the choice of F is
consistent with the assignment of the other edges not in
F (namely, the edges not in F with weight larger than
the minimum weight in F cannot be assigned to i).

Let LASSHAP be the 1-round Lasserre strengthen-
ing of LPHAP . We will exploit the following Decompo-
sition Lemma proved in [22].

Lemma 2.1. (Decomposition Lemma) [22] Con-
sider any linear program LP with feasible solutions in
[0, 1]n. Let LASSr be the r-round Lasserre strengthen-
ing of LP , and z = (z1, . . . , zn) be the projection of a
feasible solution to LASSr into the space of the vari-
ables of LP . Assume that there is a subset of variables
Y of LP such that in any feasible solution to LP there
are at most r variables of value 1 in Y . Then there is
a polynomial time algorithm which decomposes z into
a convex combination z1, . . . , zq of feasible solutions to
LP , such that each zi has 0-1 values on variables Y .

Our algorithm first solves LASSHAP ; This can be done

in polynomial time to an arbitrary prescribed precision
using the ellipsoid method (see [15]). Let z∗ = (x∗, y∗)
be the projection of this solution into the space of
variables of LPHAP . Then it independently samples
a tentative assignment Mi for each client i as follows.
Consider the variables Y = {yi,F }F∈Fi . Observe that,
due to Constraint (2.3), at most one variable Y can take
value 1 in any feasible fractional solution to LPHAP .
We can therefore apply Lemma 2.1 to solution x and
variables Y with r = 1, hence obtaining a set of feasible
solutions z1, . . . , zq to LPHAP , such that each zj has
integer values on variables Y . Furthermore, z∗ =∑q
j=1 α

j ·zj for proper coefficients αj ≥ 0,
∑q
j=1 α

j = 1.
Let β ∈ (0, 1) and γ ∈ (0, 1) be constant parame-

ters, depending on ε, to be defined later. We compute
Mi as follows:

1. (Sampling) Sample a solution z′ = (x′, y′) among
the zj ’s according to the probability distribution
induced by the coefficients αj . Let Fi be such that
y′i,Fi = 1.

2. (Rounding) Add Fi to Mi. For each small edge
e such that bi,e ≤ γ · B′i and wi,e ≤ γ ·W ′i , with
B′i :=

∑
e∈E bi,e · x′i,e and W ′i :=

∑
e∈E wi,e · x′i,e,

add e to Mi with probability x′i,e.

3. (Greedy) Remove edges in Mi − Fi in a greedy
way (according to ratio of weight to cost) until
b(Mi) ≤ Bi.

Note that, by Constraint (2.3), in each zj there is a
unique F with yji,F = 1 (and all other yji,F = 0). Hence
the sampling step is well defined. We also remark that
after the sampling step, if e /∈ Fi and x′i,e > 0, then
wi,e ≤ minf∈Fi{wi,f} ≤ β · w(Fi).

Observe that Mi satisfies the budget constraint
of client i by construction. We next show that in
expectation its weight w(Mi) is close to the fractional
weight wilass :=

∑
F∈F wi(F ) · y∗i,F +

∑
e∈E wi,e · x∗i,e

associated to the same client in the (almost) optimal
fractional solution z∗.

Lemma 2.2. For any ε > 0, there is a choice of the
parameters β and γ of the algorithm so that E[w(Mi)] ≥
(1− ε) · wilass for every client i.

Proof. In order to simplify the analysis, we consider
a variant of the algorithm which produces solutions
of expected profit not larger than E[w(Mi)]. In the
rounding step, we also consider large edges e with bi,e >
γ ·B′i or wi,e > γ ·W ′i . We compute the minimum integer
h(e) > 0 so that bi,e/h ≤ γ ·B′i and wi,e/h(e) ≤ γ ·W ′i ,
create h(e) copies e1, . . . , eh(e) of e of cost bi,e/h(e)
and weight wi,e/h(e) each, and add each copy ei to



max
∑

i∈I,F∈Fi

wi(F ) · yi,F +
∑

i∈I,e∈E

wi,e · xi,e

s.t.
∑
F∈Fi

bi(F ) · yi,F +
∑
e∈E

bi,e · xi,e ≤ Bi, ∀i ∈ I;(2.1)

∑
i∈I,F∈Fi:v∈e∈F

yi,F +
∑

i∈I,e∈E:v∈e

xi,e ≤ 1, ∀v ∈ V ;(2.2)

∑
F∈Fi

yi,F = 1, ∀i ∈ I;(2.3)

xi,e ≤ 1− yi,F , ∀F ∈ F , e ∈ E : e ∈ F ∨ wi,e > min
f∈F
{wi,f};(2.4)

yi,F , xi,e ≥ 0, ∀F ∈ F , e ∈ E, i ∈ I.

Figure 1: LP relaxation for HAP, denoted as LPHAP .

Mi independently with probability x′i,e. Then after the
greedy step we remove all the copies of large edges. In
both algorithms large edges do not contribute to the
profit. However, in the modified algorithm each sampled
small edge has a higher probability to be deleted during
the greedy step.

Let us then focus on the modified algorithm. Ob-
serve that there are two types of random variables:
variable z′ in the sampling step and the variables as-
sociated to edge sampling in the (modified) rounding
step. In order to lighten the notation, we next implic-
itly condition on the value of z′ (and consequently on
random variables Fi, B

′
i and W ′i ). Let M ′i , M

′′
i and

M ′′′i be the value of Mi after the rounding step, after
the greedy step, and after the removal of large edges
(i.e., at the end of the process), respectively. Let Li
be the set of large edges, and L′i be the corresponding
copies. We observe that

∑
e∈Li x

′
i,e ≤ 2

γ , and conse-

quently
∑
e∈Li w

′
i,ex
′
i,e ≤ 2

γ · β w(Fi). In fact, otherwise

one would have either B′i ≥
∑
e∈Li bi,e ·x

′
i,e >

1
γ ·γB

′
i or

W ′i ≥
∑
e∈Li wi,e ·x

′
i,e >

1
γ ·γW

′
i , a contradiction. Then

E[w(M ′′′i )] ≥ E[w(M ′′i )]− E[
∑
ej∈L′

i

wi,ej ]

= E[w(M ′′i )]−
∑
e∈Li

h(e) · wi,e
h(e)

· x′i,e

≥ E[w(M ′′i )]− 2β

γ
· w(Fi).(2.5)

In the greedy step, if b(M ′i) > Bi, we lose in the worst

case a factor
b(M ′

i−Fi)
Bi−b(Fi) ≤

b(M ′
i−Fi)
B′
i

of w(M ′i − Fi) plus

integrally the weight of one edge (the latter weight is

upper bounded by β · w(Fi)):

E[w(M ′′i )] ≥ w(Fi)− β w(Fi)

+ E[min{1, B′i
b(M ′i − Fi)

} · w(M ′i − Fi)](2.6)

Consider the event A := {b(M ′i − Fi) ≤ (1 + δ)B′i ∧
w(M ′i−Fi) ≥ (1−δ)W ′i}, for a proper constant δ ∈ (0, 1)
to be fixed later. Observe that:

E[min{1, B′i
b(M ′i − Fi)

} · w(M ′i − Fi)] ≥ Pr[A] · 1− δ
1 + δ

W ′i .

(2.7)

Observe also that E[b(M ′i −Fi)] = B′i and b(M ′i −Fi) is
the sum of independent random variables, each one with
value in [0, γ ·B′i]. Symmetrically, E[w(M ′i −Fi)] = W ′i
and w(M ′i − Fi) is the sum of independent random
variables, each one with value in [0, γ ·W ′i ]. Therefore
by Chernoff’s bound and the union bound we obtain

(2.8) Pr[A] ≥ 1− e
− δ

2B′
i

3γB′
i − e

− δ
2W ′

i
2γW ′

i ≥ 1− 2e−
δ2

3γ .

Putting everything together:

E[w(M ′′′i )]
(2.5)

≥ E[w(M ′′i )]− 2β

γ
w(Fi)

(2.6)

≥ w(Fi) + E[
B′i

b(M ′i − Fi)
· w(M ′i − Fi)]

− βw(Fi)−
2β

γ
w(Fi)

(2.7)

≥ (1− 3β

γ
)w(Fi) + Pr[A] · 1− δ

1 + δ
W ′i

(2.8)

≥ (1− 3β

γ
− (1− 2e−

δ2

3γ )(1− δ)
1 + δ

)

· (w(Fi) +W ′i ).



Removing the conditioning on z′, E[w(Fi) + W ′i ] =

wilass. The claim follows by choosing δ =
√

3γ ln 1
γ ,

γ = β2/3, and β = Θ(ε3).

From Lemma 2.2, the collection of preliminary
assignments altogether as an expected profit of at least
(1−ε) times the optimal value of LASSHAP . However it
might happen that a node v is assigned to several clients
(or even multiple times to the same client through
different edges). In order to solve these conflicts, we
exploit a simple randomized strategy. We sort the
pairs (i, e) ∈ {1, . . . ,m} × E uniformly at random.
Given e ∈ Mi and f ∈ Mj with (i, e) 6= (j, f) and
v ∈ e∩f (possibly i = j), we remove f from Mj if (j, f)
follows (i, e) in the random ordering, and otherwise we
remove e from Mi. It is clear that after this step we
obtain a feasible assignment (i.e., assigned edges are
node disjoint and budget constraints are satisfied). Next
lemma shows that we do not lose too much in terms
of profit. Let M̃i be the edges assigned to i after the
conflict resolution phase.

Lemma 2.3. For every e ∈Mi, e ∈ M̃i with probability
at least 1

k+1 .

Proof. Let Ci,e,v be the random set of pairs (j, f),
f ∈ Mj and (j, f) 6= (i, e), conflicting with (i, e) on
node v (i.e., v ∈ e ∩ f). From Jensen’s inequality

Pr[e ∈ M̃i|e ∈Mi] = E[
1

1 + | ∪v∈e Ci,e,v|
]

≥ 1

1 + E[| ∪v∈e Ci,e,v|]

≥ 1

1 +
∑
v∈eE[|Ci,e,v|]

.

Therefore it is sufficient to show that E[|Ci,e,v|] ≤ 1.
Note that E[|Ci,e,v|] is upper bounded by the expected
number of edges f ∈ ∪jMj (counting multiplicities)
which contain node v. In turn, the latter quantity is
equal to the sum over j ∈ I and f ∈ E, v ∈ f , of the
probability pj,f that f ∈ Mj . The probability pj,f is
upper bounded by the probability p′j,f that f ∈Mj after
the rounding step (since the greedy step can only remove
edges). As before, let us condition implicitly on variable
z′. Then one has p′j,f = 1 if f ∈ Fj , p

′
j,f = 0 ≤ x′j,f

if f /∈ Fj and f is large w.r.t. Fj , and p′j,f = x′j,f
otherwise. Then one obtains

E[|Ci,e,v|] ≤
∑

j∈I,v∈f

p′j,f ≤
∑

j∈I,v∈f∈Fj

1 +
∑

j∈I,v∈f∈E

x′j,f .

Removing the conditioning on z′, and by Con-

straint (2.2),

E[
∑

j∈I,v∈f∈Fj

1 +
∑

j∈I,v∈f∈E

x′j,f ] =

∑
j∈I,v∈f∈F∈Fj

y∗j,F +
∑

j∈I,v∈f∈E

x∗j,f ≤ 1.

Theorem 2.1. For any constant ε > 0, there is a poly-
nomial time algorithm for HAP with expected approxi-
mation factor k+ 1 + ε with respect to the optimal frac-
tional solution to LASSHAP .

Proof. Trivially from Lemmas 2.2 and 2.3.

3 An Improved Approximation for Uniform
HAP

In this section we present an improved approximation
algorithm for the uniform case, where bi,e = wi,e for all
clients i and edges e. Here we assume k = O(1). We
remark that we do not force clients to have the same
valuations, that is potentially bi1,e 6= bi2,e, for i1 6= i2.
Analogously to [2], we exploit a local search strategy
which tries to minimize the sum of squared weights.
We will use the following result, implicit in [2], which
relates the sum of squared weights to a maximum weight
independent set in a k-claw free graph.

Lemma 3.1. [2] Let G = (V,E) be an undirected (k+1)-
claw free graph with weight function w : V → R+, and
let w∗MIS be the maximum weight of an independent set
in G. Consider any independent set S ⊆ V such that,
for any independent set S′ ⊆ V \ S of size at most
k + 1, one has

∑
v∈S w

2(v) ≥
∑
v∈S\N(S′)∪S′ w2(v).

Then k+1
2

∑
v∈S w(v) ≥ w∗MIS.

Without loss of generality, we can assume that all
the weights are positive integers in [1,W ]. We start
by describing a pseudo-polynomial time algorithm, i.e.
Algorithm 1 in the figure.

Here α = α(k) is a proper parameter to be fixed
later. During the course of the algorithm, we maintain
a hypermatching M ⊆ E, which is partitioned into
2m sets M1, . . . ,M2m. Intuitively the additional sets
Mm+1, . . .M2m correspond to dummy clients, that we
exploit to deal with budget constraints. For each 1 ≤
i ≤ m the valuations for client i+m are the same as for
clients i, whereas the budget for client i+m is αBi, i.e.
we implicitly assume wi+m,e = wi,e and Bi+m = αBi.
By comp(A,B) we denote the subset of edges of A which
are compatible (i.e. have empty intersection) with each
edge of B. Moreover we let wi(A) =

∑
e∈A wi,e and

w2
i (A) =

∑
e∈A w

2
i,e.

Let Mopt ⊆ E be an optimum solution and con-
sider a partition of Mopt into Mopt

empty and Mopt
full , where



Algorithm 1 Pseudo-polynomial algorithm for uniform HAP.

(A) Initialize MA
i := ∅ for each 1 ≤ i ≤ 2m. Apply exhaustively the following rules:

(1) If for some 1 ≤ i ≤ m we have MA
i 6= ∅ and wi(M

A
i ∪MA

i+m) ≤ αBi, then MA
i+m := MA

i ∪MA
i+m and

MA
i := ∅.

(2) If there exists a matching E′ ⊆ E of at most k + 1 edges together with a partition of E′ into 2m sets
E1, . . . , E2m, such that:

(i) ∀1 ≤ i ≤ 2m : wi(M
A
i ∪ Ei) ≤ Bi (ii)

∑
1≤i≤2m

w2
i (comp(MA

i , E
′) ∪ Ei) >

∑
1≤i≤2m

w2
i (M

A
i ),

then for each i = 1, . . . , 2m do MA
i := comp(MA

i , E
′) ∪ Ei.

(B) For each i = 1, . . . ,m if w(MA
i ) + w(MA

i+m) ≤ Bi then MB
i := MA

i ∪MA
i+m, otherwise MB

i := MA
i . Output

the matching
⋃

1≤i≤mM
B
i .

an edge e ∈ Mopt assigned to client i in the opti-
mum solution belongs to Mopt

empty iff MA
i = ∅. More-

over let OPTempty and OPTfull be the total profit of
edges of Mopt

empty and Mopt
full , respectively. Finally let

Mopt
1 , . . . ,Mopt

m be the partition of Mopt
empty correspond-

ing to the assignment of edges of Mopt
empty to clients in

the optimum solution. We need the following technical
lemma.

Lemma 3.2.
∑

1≤i≤2m wi(M
A
i )≥ 2OPTempty

k+1 .

Proof. Create the following auxiliary undirected simple
graph H. As the set of vertices of H take VH = {vi,e :
1 ≤ i ≤ m, e ∈ (Mopt

i ∪MA
i ∪MA

i+m)}, that is we have a
vertex for each client i and for each edge e used either in
Mopt

empty or in the solution obtained at the end of phase
(A). As a weight function we take w(vi,e) = wi,e. Two
vertices vi1,e1 , vi2,e2 of H are adjacent iff e1 ∩ e2 6= ∅.
Recall that the intersection graphs created from set
systems where sets are of cardinality k are (k + 1)-claw
free.

Let S = {vi,e ∈ VH : e ∈ (MA
i ∪ MA

i+m)} and
observe that S is an independent set in H. Assume
that there exists a set S′ ⊆ VH \ S of size at most
k + 1, such that the sum of squares of weights in
S \ NH(S′) ∪ S′ is greater than in S. Since VH \ S =
{vi,e : 1 ≤ i ≤ m, e ∈Mopt

i } and MA
i = ∅ for nonempty

Mopt
i , Rule (2) is applicable, because the assumption

MA
i = ∅ ensures that the budget Bi is not exceeded.

Therefore we have a contradiction and such a set S′

does not exist. Hence by Lemma 3.1 we infer that∑
1≤i≤2m wi(M

A
i ) =

∑
vi,e∈S wi,e ≥

2OPTempty

k+1 , since

{vi,e ∈ VH : 1 ≤ i ≤ m, e ∈Mopt
i } is an independent set

in H.

Lemma 3.3. Algorithm 1 is a (k+1
2 +

√
k
2 + 3

2 + 1)-

approximation algorithm for the uniform HAP problem
with integral weights from [1,W ], with running time
O(W 2k|E|2(|E|m)k+1).

Proof. Rule (2) cannot be applied more than
W 2|E| times, and Rule (1) can be applied at
most m times between two applications of Rule
(2), so the total running time of the algorithm
is bounded by O(W 2|E|(2m|E|)k+1(k|E|)) =
O(W 2k|E|2(2m|E|)k+1).

For 1 ≤ i ≤ m let ai be the sum of weights of
edges assigned to client i after Phase (B), i.e., ai =
wi(M

B
i ), and let bi = k+1

2 wi(M
A
i ∪ MA

i+m). Note
that by Lemma 3.2 we have

∑
1≤i≤m bi ≥ OPTempty.

For 1 ≤ i ≤ m let ci be equal to 0 if MA
i = ∅

and ci = Bi otherwise. Note that by the definition
of OPTfull we have

∑
1≤i≤m ci ≥ OPTfull. Since∑

1≤i≤m(bi + ci) ≥ OPT, in order to prove the desired
bound on the approximation ratio of the algorithm it
is sufficient to show that for each 1 ≤ i ≤ m we have
bi+ci
ai
≤ k+1

2 +
√

k
2 + 3

2+1. For 1 ≤ i ≤ m let us consider

the following cases:

• MA
i = ∅. We have MB

i = MA
i+m, bi =

k+1
2 wi(M

A
i+m) and ci = 0, hence bi+ci

ai
= k+1

2 .

• MA
i 6= ∅ and wi(M

A
i ∪MA

i+m) ≤ Bi. Observe that
since MA

i 6= ∅, because of Rule (1) of Phase (A)
we have ai > αBi. Moreover bi = k+1

2 ai, and

consequently bi+ci
ai

< k+1
2 + 1

α .

• MA
i 6= ∅ and wi(M

A
i ∪ MA

i+m) > Bi. Note that
ai > (1 − α)Bi, since otherwise edges of MA

i and
MA
i+m would not exceed the budget Bi. Moreover

bi = k+1
2 (ai +wi(M

A
i+m)) ≤ k+1

2 (ai +αBi). In this



case we infer that bi+ci
ai
≤ k+1

2 + (k+1)α
2(1−α) + 1

1−α =
k+1
2 + (k+1)α+2

2(1−α) .

Imposing (k+1)α+2
2(1−α) = 1

α we obtain α =
√
2k+6−2
k+1 and

hence the claimed approximation ratio.

Theorem 3.1. For any ε > 0, there exists a (k+1
2 +√

k
2 + 3

2 +1+ε) approximation algorithm for HAP with

running time O(k3|E|5(|E|m)k+1/ε2).

Proof. First, if for some edge e ∈ E and 1 ≤ i ≤ m
we have wi,e > Bi, then we set wi,e := 0, since this
edge is not going to be used in any feasible solution.
Denote W = maxe∈E,1≤i≤m{wi,e} and set new weights

according to the formula w′i,e := bk|E|wi,eεW c. Let E0 ⊆ E
and E1 ⊆ E be optimum solutions w.r.t. the original
weights wi,e and the modified weights w′i,e, respectively.
Observe that w(E0) ≥ W because one edge always
forms a feasible solution. Then w(E1)(1 + ε

k ) ≥ w(E0).
Moreover, the new weights are positive integers with
polynomially bounded values. Therefore we can use
Lemma 3.3 and the claim follows.

4 A Quasi-Polynomial Time Hypermatching
Algorithm

In this section we present a (k+1+ε)/3 approximation
for maximum (cardinality) independent set in (k + 1)-
claw free graphs G = (V,E)5. This immediately implies
the claimed approximation for k-hypermatching. We
next assume k ≥ 4, since in 3-claw free graph one can
find the largest independent set in polynomial time [26].

Lemma 4.1. (Lemma 3.2 of [3]) For any integer h ≥
1 any undirected multigraph graph G = (V,E) with
|E| ≥ h+1

h |V | contains a set X of at most 4h log2 n
vertices, such that in G[X] there are more edges than
vertices.

Lemma 4.2. Consider any fixed ε > 0 and k ≥ 4.
For any undirected (k + 1)-claw free graph G = (V,E)
and two independent sets A,B ⊆ V , such that for any
independent set X ⊆ V \ A of size at most 91+1/ε(4 +
4/ε) log2 n we have |A \N(X) ∪X| ≤ |A|, then

(
k + 1

3
+ ε)|A| ≥ |B| .

Proof. Consider an auxiliary undirected bipartite graph
H = (A ∪ B,EH), where two vertices a ∈ A, b ∈ B are
adjacent, i.e. ab ∈ EH , iff a ∈ NG[b]. Note that H is
not a subgraph of G, since a copy of a vertex of G might

5Recall that a h-claw is a star with h leaves, and a graph is
h-claw free if it does not contain a h-claw as an induced subgraph.

appear on both sides of the bipartite graph H, and then
such two copies are adjacent (this is the reason why we
use closed neighborhood in the definition of edges of
EH). Since both A and B are independent sets in G
and G is k-claw free, we infer that the maximum degree
in H is at most k and therefore |EH | ≤ k|A|.

We are going to create a sequence of induced
subgraphs Hi := H[Ai ∪ Bi] of H with an Invariant
(∗) that in Hi there is no subset X ⊆ Bi of size at
most 91+1/ε−i(4+4/ε) log2 n such that |NHi(X)| < |X|.
Initially take A0 := A, B0 := B and H0 := H[A0 ∪B0].
Clearly for i = 0 Invariant (∗) is satisfied. For any i
we call a set Y ⊆ Bi improving iff |NHi(Y )| < |Y |.
Consider subsequent integral values of i, starting from
i = 0. Let B1

i be the subset of vertices of Bi, which have
degree exactly one in Hi. Let A1

i := NHi(B
1
i ). Observe

that |A1
i | = |B1

i |, since if there would be a vertex
in A1

i with two neighbors in B1
i such three vertices

would form an improving set. Moreover, let B9
i be the

subset of vertices of Bi having at least 9 neighbors in
A1
i . If |B1

i | ≤ ε|A|, then terminate the process, i.e.
` := i is the last value of i considered. Otherwise, set
Bi+1 := Bi \ (B1

i ∪B9
i ) and Ai+1 := Ai \A1

i (see Fig. 2).
Note that since in each round at least ε|A| vertices are
removed from Ai the process ends in at most 1/ε rounds,
i.e. ` ≤ 1 + 1/ε.

Now we prove, that if the Invariant (∗) is satisfied
for i, then it is also satisfied for i+ 1. Let Y ⊆ Bi+1 be
an improving set in Hi+1. Let X = NHi(Y ) ∩ A1

i , and
observe that |X| ≤ 8|Y |, since each vertex of Y has at
most 8 neighbors in A1

i . Consequently Y ∪ (NHi(X) ∩
B1
i ) is an improving set of size at most 9|Y |. Indeed,

each vertex in A1
i has exactly one neighbor in B1

i , and
therefore 9|Y | ≤ 91+1/ε−i(4 + 4/ε) log2 n, which gives
Invariant (∗) for i+ 1.

Now we want to analyze the ratio |B|/|A|. Observe
that since ` ≤ 1 + 1/ε by Invariant (∗) there is no
improving set of size at most (4 + 4/ε) log2 n in H`.
Let us partition vertices of B` according to their degree
in H`. By B0

` , B
1
` , B

2
` , B

3+
` we denote the vertices of

B` with degree zero, one, two and at least three in H`

respectively. Observe that B0 = ∅, since otherwise there
would be an improving set of size one in H`. Denote
a = |A`|, b1 = |B1

` |, b2 = |B2
` |, b3 = |B3+

` |, and observe
that |E(H`)| ≥ b1 +2b2 +3b3. Recall that b1 ≤ ε|A| and
the degree k upper bound gives |E(H`)| ≤ ka. Now we
want to upper bound b2. We consider one more auxiliary
undirected multigraph graph H ′, where as the vertex set
we take A, for each vertex v ∈ B2

` , NH(v) = {a1, a2} we
add to H ′ an edge a1a2. Observe also that H ′ consists
of exactly a vertices and b2 edges (potentially some of
them are parallel). Since S can not be improved by a
set of size at most 4(1 + 1/ε) log2 n by Lemma 4.1 we



Ai

A1
i Ai+1

Bi

B1
i B9

i Bi+1

Figure 2: Constructing the sets Ai+1, Bi+1 out of Ai, Bi.

infer that |E(H ′)| ≤ |V (H ′)|(1 + ε) and consequently
b2 ≤ (1 + ε)a. Therefore

k|A`| ≥ |E(H`)| ≥ b1 + 2b2 + 3b3 = 3|B`| − b2 − 2b1

≥ 3|B| − (1 + ε)|A`| − 2ε|A|

and consequently (k+1+ε
3 )|A`| + 2ε|A| ≥ |B`|. Finally,

observe that for each 0 ≤ i < ` we have |Bi\Bi+1|
|Ai\Ai+1| =

|B1
i∪B

9
i |

|A1
i |

≤ (1 + k−1
9 ) ≤ k+1

3 for k ≥ 4, which gives
|B|
|A| ≤

k+1
3 + ε.

Theorem 4.1. For any fixed ε > 0, there is a k+1+ε
3 -

approximation algorithm for the maximum cardinality
independent set problem in (k+1)-claw free graphs, with
running time nO(logn).

Proof. By Lemma 4.2 it is sufficient to find a local
maximum S ⊆ V , for which it is impossible to improve
the cardinality of S by replacing O(log n) vertices. Since
the cardinality of an independent set can be increased
at most n times and in time O(nlogn) we can check
whether an improvement with a set of size O(log n) can
be made, the theorem follows.

Corollary 4.1. For any fixed ε > 0, there is a
k+1+ε

3 -approximation algorithm for the unweighted k-

hypermatching problem, with running time nO(logn).

Proof. By Theorem 4.1, since the intersection graph of
a set system with sets of cardinality k is (k + 1)-claw
free.
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